View Filters

Reset Filters to Default:

Reset All Filters

Detail Level:

Time Interval for Citations (Years):

From: To: Set Time Interval
Citations Report
 
 
Summary
44 Works cited by other authors
386 Citations in scientific papers (with a cummulated IF: 901.469)
8 h-index  (the number of h works published by the author, that have each been cited at least h times)
19 g-index  (the top g works, ranked in decreasing order of citations, that received together at least g2 citations)
8 i10-index  (the number of works published by the author, that have each been cited at least 10 times)
Note: This Citations Report excludes the auto-citations and the circular citations.
 
 
Cited work:
[BChp ]
Mihai V. Micea, Valentin Stangaciu, Cristina Stangaciu, Constantin Filote, "Sensor-Level Real-Time Support for XBee-Based Wireless Communication", in Advances in Intelligent and Soft Computing (AISC), volume 145, section 20, Ford L. Gaol, Quang V. Nguyen (Eds.), Springer Berlin Heidelberg, Berlin, Germany, Jan., 2012, pp. (147 - 154), ISBN 978-3-642-28307-9, DOI: 10.1007/978-3-642-28308-6_20. [Indexed: ISI Web of Science, Thomson Reuters].
 
[+] Keywords | [+] Abstract | Book info | Conference guide | Springer Link Index Record
Wireless sensors; Real-time support; Wireless communication; XBee modules; Predictability
The ZigBee standard is focused on low-cost, low-power, wireless mesh networking, having a wide applicability mainly in the field of wireless sensor networks. A growing number of such applications require real-time behavior, both at the wireless communication and at the sensor levels. This paper proposes a solution to the problem of providing sensor-level real-time support for wireless platforms using ZigBee-based devices such as the XBee module. The discussion of the experimental results proves the predictable behavior of the XBee sensor platform used as a case study.
  Cited in 2 papers:
 
  • [Jrnl 2]  H. H. Al-Ahmadi, A. Mojahed, "Real-Time Simulation of Traffic Monitoring System in Smart City", Int. J Comput. Sci. Netw. Secur., vol. 19 (22), IJCSNS, Seoul, Republic of Korea, Nov. 2019, pp. (41 - 47), ISSN 1738-7906. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 1]  D. Garcia, R. Barber, M. A. Salichs, "Design and Development of a Wireless Emergency Start and Stop System for Robots", in Proc. Int. C Informatics Control, Autom., Robotics, ICINCO 2014, Science and Technology Publications, Lda., 01-03 Sep., 2014, pp. (223 - 230), ISBN 978-989-758-040-6, DOI: 10.5220/0004926602230230. [Indexed: Scopus, Elsevier].
 
 
Cited work:
[Labs ]
Mihai V. Micea, "Sisteme de achizitie numerica a datelor: Indrumator de laborator", Politehnica University of Timisoara, Timisoara, Romania, Sep., 2000, 182 pg.. [Print Order 270].
 
[+] Keywords | [+] Abstract | Cover picture | Book info (RO)
Data acquisition; Signal conditioning; Operational amplifiers; Analog multiplexers; Sample and hold; Digital-to-analog converters; Analog-to-digital converters; DAQ systems
This work focuses on the data acquisition and signal conditioning systems, allocating up to three sections to discuss each of the system components. Thus, the main topics of the workbook are: operational amplifiers, analog multiplexers/de-multiplexers, sample and hold circuits, digital-to-analog converters, analog-to-digital converters, and the structure, operation, programming principles and modes of use of a fully-equipped data acquisition and conditioning system. Two distinct sections are allocated for each of these topics. The theoretical section focuses on the architecture and operating principles of the respective class of circuits, with particular emphasis on the presentation and discussion of the main catalog parameters, with real-life exemplifications. The practical section consists of a set of practical (experimental) workshops and applications, specifically designed to study, test and measure each of the main parameters of the respective class of circuits. The measurement results will also be compared with the catalog specifications. Each workshop defines the parameter of interest, the graphical schematics of the electronic setup of the experiment, the required measurement and control equipment, and the necessary steps of the experiment. The audience of this workbook is intended to contain, besides the students of the DAQ Systems course, also professionals or even amateurs which are interested in this very attractive field of engineering.
  Cited in 1 paper:
 
  • [Conf 1]  M. Antonyuk, M. Lobur, V. Antonyuk, "Design digital data acquisition and processing systems for embedded system", in Proc. Int. C Perspective Tech. Methods MEMS Design, MEMSTECH 2007, Lviv Polytechn Natl Univ, Lviv, Ukraine, 23-26 May., 2007, pp. (54 - 60), ISBN 978-966-553-614-7. [Indexed: ISI Web of Science, Thomson Reuters].
 
 
Cited work:
[Jrnl ]
Gabriel Carstoiu, Mihai V. Micea, Lucian Ungurean, Marius Marcu, "Novel battery wear leveling method for large-scale reconfigurable battery packs", International Journal of Energy Research, volume 45, issue 2, Ibrahim Dincer (Eds.), Wiley, USA, Feb., 2021, pp. (1932 - 1947), ISSN 0363-907X, DOI: 10.1002/er.5879. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 5.164]. [8].
 
[+] Keywords | [+] Abstract | Journal info | TOP (#1) Journal, "Science - NUCLEAR SCIENCE & TECHNOLOGY" Section
Battery; Large-scale battery pack; Reconfigurable battery management system; State of health; Wear leveling
As the market and the application areas of high capacity battery energy storage systems are rapidly increasing, there is a correspondingly high interest in the topic of minimizing battery state of health degradation in battery packs. In this article, a novel method for battery management in large-scale battery packs is introduced, aiming to minimize battery degradation by enforcing a special wear leveling (WL) policy, adapted from the flash memory arrays. Using this method in conjunction with a hybrid mathematical-electrochemical battery model, a reconfigurable battery management system (BMS) is proposed and evaluated. The results of the performance analysis and in-depth comparisons with other state-of-the-art solution shows that the proposed method achieves significantly longer operating times for the battery packs-for example, 415% improvement over the classical BMS in the load current variation scenario. As the computing and memory requirements are relatively low, the new battery WL method can also be implemented on embedded systems with limited resources.
  Cited in 1 paper (with a cummulated IF: 4.672):
 
  • [Jrnl 1]  S. R. Hashemi, A. B. Baghbadorani, R. Esmaeeli, . et al., "Machine learning-based model for lithium-ion batteries in BMS of electric/hybrid electric aircraft", Int. J Energy Res., vol. 45 (4), Wiley, USA, Mar. 2021, pp. (5747 - 5765), ISSN 0363-907X, DOI: 10.1002/er.6197. [Indexed: ISI Web of Science, Clarivate Analytics].
 
 
Cited work:
[Jrnl ]
Lucian Ungurean, Mihai V. Micea, Gabriel Carstoiu, "Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks", International Journal of Energy Research, volume 44, issue 8, Ibrahim Dincer (Eds.), Wiley, USA, Jun., 2020, pp. (6767 - 6777), ISSN 0363-907X, DOI: 10.1002/er.5413. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 5.164]. [82].
 
[+] Keywords | [+] Abstract | Journal info | TOP (#1) Journal, "Science - NUCLEAR SCIENCE & TECHNOLOGY" Section | UEFISCDI PRECISI Prize
Battery management system; Gated recurrent unit; Lithium-ion battery; Long-short term memory; Online state prediction; Recurrent neural networks; State of health
Online state of health {SOH) prediction of lithium-ion batteries remains a very important problem in assessing the safety and reliability of batterypowered systems. Deep learning techniques based on recurrent neural networks with memory, such as the long short-term memory {LSTM) and gated recurrent unit {GRU), have very promising advantages, when compared to other SOH estimation algorithms. This work addresses the battery SOH prediction based on GRU. A complete BMS is presented along with the internal structure and configuration parameters. The neural network was highly optimized by adaptive moment estimation {Adam) algorithm. Experimental data show very good estimation results for different temperature values, not only at room value. Comparisons performed against other relevant estimation methods highlight the performance of the recursive neural network algorithms such as GRU and LSTM, with the exception ofthe battery regeneration points. Compared to LSTM, the GRU algorithm gives slightly higher estimation errors, but within similar prediction error range, while needing significantly fewer parameters {about 25% fewer), thus making it a very suitable candidate for embedded implementations.
  Cited in 20 papers (with a cummulated IF: 100.325):
 
  • [Jrnl 20]  A. Kim, S. Lee, "Online State of Health Estimation of Batteries under Varying Discharging Current Based on a Long Short Term Memory", Int. C Ubiquitous Inf. Manag. Commun., IEEE, USA, Jan. 2021, ISBN 9-780-7381-0508-6, DOI: 10.1109/IMCOM51814.2021.9377368. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 19]  K. Yang, X. Wang, "Abnormal identification of lubricating oil parameters and evaluation of physical and chemical properties based on machine learning", IOP C Ser. Mater. Sci. Eng., vol. 1043 (5), IOP Publishing Ltd., USA, 2021, ISSN 1757-8981, DOI: 10.1088/1757-899X/1043/5/052053. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 18]  A. Yuliani, A. Ramdan, V. Zilvan, A. Supianto, D. Krisnandi, R. Yuwana, D. Prajitno, H. Pardede, "Remaining Useful Life Prediction of Lithium-Ion Battery Based on LSTM and GRU", Int. C Comput. Contr. Informatics Applic., ACM, USA, Oct. 2021, pp. (21 - 25), ISBN 978-1-4503-8524-4, DOI: 10.1145/3489088.3489092. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 17]  L. Yao, S. Xu, A. Tang, . et al., "A review of lithium-ion battery state of health estimation and prediction methods", World Electr. Veh. J, vol. 12 (3), MDPI AG., Basel, Switzerland, 2021, ISSN 2032-6653, DOI: 10.3390/wevj12030113. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 16]  X. Lai, Y. Huang, H. Gu, . et al., "Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries", Energy Storage Mater., vol. 40, Elsevier Science B.V., The Netherlands, Sep. 2021, pp. (96 - 123), ISSN 2405-8297, DOI: 10.1016/j.ensm.2021.05.010. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 15]  L. Zhang, S. Wang, C. Zou, . et al., "A novel streamlined particle-unscented Kalman filtering method for the available energy prediction of lithium-ion batteries considering the time-varying temperature-current influence", Int. J Energy Res., vol. 45 (12), Wiley, USA, Oct. 2021, pp. (17858 - 17877), ISSN 0363-907X, DOI: 10.1002/er.6930. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 14]  L. Zheng, Y. Hou, T. Zhang, X. Pan, "Performance prediction of fuel cells using long short-term memory recurrent neural network", Int. J Energy Res., vol. 45 (6), Wiley, USA, May. 2021, pp. (9141 - 9161), ISSN 0363-907X, DOI: 10.1002/er.6443. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 13]  M. S. H. Lipu, M. A. Hannan, T. F. Karim, . et al., "Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook", J Clean Prod., vol. 292, Elsevier Science B.V., The Netherlands, Apr. 2021, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2021.126044. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 12]  C. Jiang, Y. Mao, V. Chai, M. Yu, "Day-ahead renewable scenario forecasts based on generative adversarial networks", Int. J Energy Res., vol. 45 (5), Wiley, USA, Apr. 2021, pp. (7572 - 7587), ISSN 0363-907X, DOI: 10.1002/er.6340. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 11]  K. Kaur, A. Garg, X. Cui, S. Singh, B. K. Panigrahi, "Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (3113 - 3128), ISSN 0363-907X, DOI: 10.1002/er.6005. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 10]  A. Chmielewski, J. Mozaryn, P. Piorkowski, J. Dybala, "Comparison of hybrid recurrent neural networks anddual-polarizationmodels of valve regulated lead acid battery", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (2560 - 2580), ISSN 0363-907X, DOI: 10.1002/er.5947. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 9]  C. Huang, Y. Shen, Y. Chen, H. Chen, "A novel hybrid deep neural network model for short-term electricity price forecasting", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (2511 - 2532), ISSN 0363-907X, DOI: 10.1002/er.5945. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 8]  Z. Chen, H. Zhao, Y. Zhang, S. Shen, J. Shen, Y. Liu, "State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network", J Power Sources, vol. 521, Elsevier Science B.V., The Netherlands, Dec. 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2021.230892. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 7]  M. Adaikkappan, N. Sathiyamoorthy, "Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review", Int. J Energy Res., vol. 46 (3), Wiley, USA, Oct. 2021, pp. (2141 - 2165), ISSN 0363-907X, DOI: 10.1002/er.7339. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 6]  R. Rouhi Ardeshiri, C. Ma, "Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach", Int. J Energy Res., vol. 45 (11), Wiley, USA, Sep. 2021, pp. (16633 - 16648), ISSN 0363-907X, DOI: 10.1002/er.6910. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 5]  Y. Hou, Z. Zhang, P. Liu, C. Song, Z. Wang, "Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles", Adv. Mech. Eng., vol. 13 (7), Sage Publications, London, UK, Jul. 2021, ISSN 1687-8132, DOI: 10.1177/16878140211027735. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 4]  E. Vanem, C. B. Salucci, A. Bakdi, O. A. Alnes, "Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems", J Energy Storage, vol. 43, Elsevier Science B.V., The Netherlands, Nov. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103158. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 3]  X. Shu, S. Shen, J. Shen, Y. Zhang, . et al., "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", Iscience, vol. 24 (11), Cell Press, USA, Nov. 2021, ISSN 2589-0042, DOI: 10.1016/j.isci.2021.103265. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 2]  S. Wang, Y. S. Fan, C. Fernandez, C. Yu, W. Cao, Z. Chen, "Battery System Modeling", Batt. Syst. Modeling, Elsevier, The Netherlands, 2021, pp. (1 - 347), ISBN 9-780-3239-0472-8, DOI: 10.1016/B978-0-323-90472-8.09993-5. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 1]  R. Li, H. Zhang, W. Li, X. Zhao, Y. Zhou, "Toward group applications: A critical review of the classification strategies of lithium-ion batteries", World Electr. Veh. J, vol. 11 (3), MDPI AG., Basel, Switzerland, 2020, pp. (1 - 23), ISSN 2032-6653, DOI: 10.3390/wevj11030058. [Indexed: Scopus, Elsevier].
 
 
Cited work:
[Jrnl ]
Eugenia A. Capota, Cristina S. Stangaciu, Mihai V. Micea, Daniel I. Curiac, "Towards mixed criticality task scheduling in cyber physical systems: Challenges and perspectives", Journal of Systems and Software, volume 156, P. Avgeriou, D. Shepherd (Eds.), Elsevier, Amsterdam, The Netherlands, Oct., 2019, pp. (204 - 216), ISSN 0164-1212, DOI: 10.1016/j.jss.2019.06.099. [Online]. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 2.45]. [32].
 
[+] Keywords | [+] Abstract | Journal info | Full paper | UEFISCDI PRECISI Prize
Cyber physical systems; Real-time scheduling; Mixed criticality systems; Multiple processing units
Cyber physical systems (CPSs) are a fast-evolving technology based on a strong synergy between heterogeneous sensing, networking, computation and control modules. When coping with critical applications that require real-time performance and autonomous operation in uncertain conditions, the design of such complex systems is still facing significant difficulties. A particular challenge in this respect derives from the software intensive nature of these systems - the need to develop flexible and specifically tailored task scheduling techniques. In our view, an appropriate line of thinking is to take advantage of mixed criticality concepts following the lessons learned from avionics and automotive domains, where complexity, safety, determinism and real-time constraints are extreme. From this perspective, our work aims at facilitating the integration of mixed criticality systems-based strategy in cyber physical systems by identifying the particularities of the latter and their influence on scheduling mechanisms, by describing the standard mixed-criticality task model in the cyber physical systems context, and by analyzing and proposing the most suitable scheduling algorithms to be implemented in cyber physical systems. Moreover, the perspectives on future developments in this area are discussed, as new horizons in research arise with the integration of mixed criticality concepts in the cyber physical systems context.
  Cited in 10 papers (with a cummulated IF: 20.762):
 
  • [Jrnl 10]  S. Sabri, N. Ahmad, S. Sahibuddin, R. Dziyauddin, "Dynamic frequency scheduling for CubeSat's on-board and data handling subsystem", Indones. J Electrical Eng. Comput. Sci., vol. 22 (3), Institute of Advanced Engineering and Science, Indonesia, 2021, pp. (1672 - 1678), ISSN 2502-4752, DOI: 10.11591/ijeecs.v22.i3.pp1672-1678. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 9]  B. Jiang, X. Lyu, Y. Liu, "Realization of cyber-physical systems for smart petrochemical factory based on agents", CIESC J, vol. 72 (3), Materials China, China, 2021, pp. (1575 - 1584), ISSN 0438-1157, DOI: 10.11949/0438-1157.20201734. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 8]  F. J. Alvarez Garcia, D. Rodriguez Salgado, "Maintenance Strategies for Industrial Multi-Stage Machines: The Study of a Thermoforming Machine", Sensors, vol. 21 (20), MDPI AG., Basel, Switzerland, Oct. 2021, ISSN 1424-8220, DOI: 10.3390/s21206809. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 7]  A. Amarnath, S. Pal, H. T. Kassa, . et al., "Heterogeneity-Aware Scheduling on SoCs for Autonomous Vehicles", IEEE Comput. Archit. Lett., vol. 20 (2), IEEE, USA, Jul. 2021, pp. (82 - 85), ISSN 1556-6056, DOI: 10.1109/LCA.2021.3085505. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 6]  J. Chu, T. Zhao, J. Jiao, Z. Chen, "Optimal Design of Configuration Scheme for Integrated Modular Avionics Systems With Functional Redundancy Requirements", IEEE Syst. J, vol. 15 (2), IEEE, USA, Jun. 2021, pp. (2665 - 2676), ISSN 1932-8184, DOI: 10.1109/JSYST.2020.2993636. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 5]  S. Fadlelseed, R. Kirner, C. Menon, "z ATMP-CA: Optimising Mixed-Criticality Systems Considering Criticality Arithmetic", Electronics, vol. 10 (11), MDPI AG., Basel, Switzerland, Jun. 2021, ISSN 2079-9292, DOI: 10.3390/electronics10111352. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 4]  M. A. B. Al-Tarawneh, "Bi-objective optimization of application placement in fog computing environments", J Ambient Intell. Humaniz. Comput., vol. 13 (1), Springer Heidelberg, Germany, Feb. 2021, pp. (445 - 468), ISSN 1868-5137, DOI: 10.1007/s12652-021-02910-w. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 3]  A. Shukalov, I. Zharinov, O. Zharinov, "Industrial cyber-machines remote control method", J Phys. Conf. Ser., vol. 1661 (1), IOP Publishing Ltd., USA, Apr. 2020, ISSN 1742-6588, DOI: 10.1088/1742-6596/1661/1/012109. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 2]  V. Padmajothi, J. L. M. Iqbal, "Adaptive neural fuzzy inference system-based scheduler for cyber-physical system", Soft Comput., vol. 24 (22), Springer, USA, Nov. 2020, pp. (17309 - 17318), ISSN 1432-7643, DOI: 10.1007 /s00500-020-05020-5. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Conf 1]  M. Riegler, J. Sametinger, "Mode Switching from a Security Perspective: First Findings of a Systematic Literature Review", in Proc. Commun. Comput. Info. Sci., CCIS, Springer, Online, 14-17 Sep., 2020, pp. (63 - 73), ISBN 978-3-0305-9027-7, ISSN 1865-0929, DOI: 10.1007/978-3-030-59028-4_6. [Indexed: Scopus, Elsevier].
 
 
Cited work:
[Jrnl ]
Lucian Ungurean, Gabriel Carstoiu, Mihai V. Micea, Voicu Groza, "Battery state of health estimation: a structured review of models, methods and commercial devices", International Journal of Energy Research, volume 41, issue 2, Ibrahim Dincer (Eds.), Wiley, USA, Feb., 2017, pp. (151 - 181), ISSN 0363-907X, DOI: 10.1002/er.3598. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 3.009]. [213].
 
[+] Keywords | [+] Abstract | Journal info | Wiley Journal Index Record | TOP (#1) Journal, "Science - NUCLEAR SCIENCE & TECHNOLOGY" Section | UEFISCDI PRECISI Prize
Battery state estimation; State of health; Remaining useful life; Battery model; Embedded application; Battery fuel gauge
Estimating the dynamic status parameters of a battery, such as its state of health (SoH) and remaining useful life (RUL), is still a very difficult and complex task. In this paper we perform a structured review of the most relevant state of the art models, algorithms and commercial devices employed in the estimation of the SoH/RUL battery performance figures, in the context of embedded applications. The models and estimation techniques are thoroughly classified and, for each taxonomy class, a presentation of the working principles is made. A comprehensive set of metrics is then introduced for the evaluation of the SoH/RUL estimation techniques from the perspective of their implementation and operation efficiency in embedded systems. These algorithms are then analyzed and discussed in a comparative manner, with concrete figures and results. The capability and the performance of the different types of off-the-shelf fuel gauges to estimate the battery SoH/RUL parameters are also evaluated in this paper.
  Cited in 95 papers (with a cummulated IF: 408.473):
 
  • [Jrnl 95]  W. Putra, J. Kuswanto, M. Koprawi, W. Ashari, "Comparative Study of Kalman Filter and H infinity Filter for Current Sensorless Battery Health Analysis", Int. C Inf. Commun. Technol., vol. 4, IEEE, USA, Aug. 2021, pp. (92 - 97), ISBN 9-781-6654-3394-5, DOI: 10.1109/ICOIACT53268.2021.9563993. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 94]  R. Chen, C. Hsu, T. Lu, J. Teng, "Rapid SOH Estimation for Retired Lead-acid Batteries", Int. Future Energy Electron. C, IEEE, USA, Nov. 2021, ISBN 9-781-6654-3448-5, DOI: 10.1109/IFEEC53238.2021.9661749. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 93]  A. Bombik, S. Y. S. Ha, M. F. Haider, . et al., "Li-ion Battery Health Estimation Using Ultrasonic Guided Wave Data and an Extended Kalman Filter", Annual IEEE Appl. Power Electron. C, vol. 26, IEEE, Online, Jun. 2021, pp. (962 - 966), ISBN 978-1-7281-8949-9, ISSN 1048-2334. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 92]  M. Messing, T. Shoa, S. Habibi, "EIS from Accelerated and Realistic Battery Aging", IEEE Transp. Elect. C, IEEE, Online, Jun. 2021, pp. (720 - 725), ISBN 978-1-7281-7583-6, ISSN 2377-5483, DOI: 10.1109/ITEC51675.2021.9490091. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 91]  R. Wang, Z. Liu, Y. Zhang, Q. Su, X. Li, "Remaining Useful Life Prediction of Lithium-ion Batteries with Fused Features and Multi-kernel Gaussian Process Regression", Chinese Contr. Decision C, vol. 33, IEEE, Kunming, China, May. 2021, pp. (3732 - 3737), ISBN 978-1-6654-4089-9, ISSN 1948-9439, DOI: 10.1109/CCDC52312.2021.9601434. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 90]  J. Jiang, S. Zhao, C. Zhang, "State-of-health estimate for the lithium-ion battery using chi-square and ELM-LSTM", World Electr. Veh. J, vol. 12 (4), MDPI AG., Basel, Switzerland, 2021, ISSN 2032-6653, DOI: 10.3390/wevj12040228. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 89]  Q. Han, F. Jiang, "State of Health Estimation for Lithium-Ion Batteries Based on the Framework of IHF-IGPR under Variable Temperature", T China Electrotech. Soc., vol. 36 (17), Chinese Machine Press, China, 2021, pp. (3705 - 3720), ISSN 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.201593. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 88]  L. Yao, S. Xu, A. Tang, . et al., "A review of lithium-ion battery state of health estimation and prediction methods", World Electr. Veh. J, vol. 12 (3), MDPI AG., Basel, Switzerland, 2021, ISSN 2032-6653, DOI: 10.3390/wevj12030113. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 87]  X. Shu, S. Shen, J. Shen, Y. Zhang, . et al., "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", Iscience, vol. 24 (11), Cell Press, USA, Nov. 2021, ISSN 2589-0042, DOI: 10.1016/j.isci.2021.103265. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 86]  E. Vanem, C. B. Salucci, A. Bakdi, O. A. Alnes, "Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems", J Energy Storage, vol. 43, Elsevier Science B.V., The Netherlands, Nov. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103158. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 85]  B. Xiao, B. Xiao, L. Liu, "Rapid measurement method for lithium-ion battery state of health estimation based on least squares support vector regression", Int. J Energy Res., vol. 45 (4), Wiley, USA, Mar. 2021, pp. (5695 - 5709), ISSN 0363-907X, DOI: 10.1002/er.6194. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 84]  O. Kalaf, D. Solyali, M. Asmael, Q. Zeeshan, B. Safaei, A. Askir, "Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review", Int. J Energy Res., vol. 45 (5), Wiley, USA, Apr. 2021, pp. (6495 - 6517), ISSN 0363-907X, DOI: 10.1002/er.6268. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 83]  M. Rkhis, A. Aiaoui-Belghiti, S. Laasri, . et al., "Dependence of Mg, Be and AI substitution on the hydrogen storage characteristics of ZrNiH3", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (2292 - 2302), ISSN 0363-907X, DOI: 10.1002/er.5922. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 82]  Y. Qiu, F. Jiang, "A review on passive and active strategies of enhancing the safety of lithium-ion batteries", Int. J Heat Mass Transf., vol. 184, Pergamon-Elsevier Science Ltd., Oxford, UK, Dec. 2021, ISSN 0017-9310, DOI: 10.1016/j.ijheatmasstransfer.2021.122288. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 81]  S. Jenu, A. Hentunen, J. Haavisto, M. Pihlatie, "State of health estimation of cycle aged large format lithium-ion cells based on partial charging", J Energy Storage, vol. 46, Elsevier Science B.V., The Netherlands, Dec. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103855. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 80]  J. Lee, A. Abidi, S. M. Sajadi, A. S. El-Shafay, M. Degani, M. Sharifpur, "Study of the effect of the aspect ratio of a cylindrical lithium-ion battery enclosure in an air-cooled thermal management system", J Energy Storage, vol. 45, Elsevier Science B.V., The Netherlands, Dec. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103684. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 79]  B. E. Lebrouhi, Y. Khattari, B. Lamrani, M. Maaroufi, . et al., "Key challenges for a large-scale development of battery electric vehicles: A comprehensive review", J Energy Storage, vol. 44, Elsevier Science B.V., The Netherlands, Nov. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103273. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 78]  A. Rastegarpanah, M. Ahmeid, N. Marturi, . et al., "Towards robotizing the processes of testing lithium-ion batteries", Proc. lnst. Mech. Eng. Part I - J Syst Control Eng., vol. 235 (8), Sage Publications, London, UK, Sep. 2021, pp. (1309 - 1325), ISSN 0959-6518, DOI: 10.1177/0959651821998599. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 77]  D. Huang, H. Zhang, X. Wang, X. Huang, H. Dai, "Experimental investigations on the performance of mini-channel evaporator refrigeration system for thermal management of power batteries", Int. J Refrig., vol. 130, Elsevier Science Ltd., Oxon, UK, Oct. 2021, ISSN 0140-7007, DOI: 10.1016/j.ijrefrig.2021.05.038. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 76]  K. M. Carthy, H. Gullapalli, K. M. Ryan, T. Kennedy, "Review-Use of Impedance Spectroscopy for the Estimation of Li-ion Battery State of Charge, State of Health and Internal Temperature", J Electrochem. Soc., vol. 168 (8), Electrochemical Soc. Inc., USA, Aug. 2021, ISSN 0013-4651, DOI: 10.1149/1945-7111/ac1a85. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 75]  J. Schmitt, M. Schindler, A. Jossen, "Change in the half-cell open-circuit potential curves of silicon-graphite and nickel-rich lithium nickel manganese cobalt oxide during cycle aging", J Power Sources, vol. 506, Elsevier Science B.V., The Netherlands, Sep. 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2021.230240. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 74]  Q. Han, F. Jiang, Z. Cheng, "The State of Health Estimation Framework for Lithium-Ion Batteries Based on Health Feature Extraction and Construction of Mixed Model", J Electrochem. Soc., vol. 168 (7), Electrochemical Soc. Inc., USA, Jul. 2021, ISSN 0013-4651, DOI: 10.1149/1945-7111. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 73]  B. Tarhan, O. Yetik, T. H. Karakoc, "Hybrid battery management system design for electric aircraft", Energy, vol. 234, Pergamon-Elsevier Science Ltd., Oxford, UK, Nov. 2021, ISSN 0360-5442, DOI: 10.1016/j.energy.2021.121227. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 72]  J. Olarte, J. Martinez de Ilarduya, E. Zulueta, . et al., "Automatic Identification Algorithm of Equivalent Electrochemical Circuit Based on Electroscopic Impedance Data for a Lead Acid Battery", Electronics, vol. 10 (11), MDPI AG., Basel, Switzerland, Jun. 2021, ISSN 2079-9292, DOI: 10.3390/electronics10111353. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 71]  Y. Yang, J. Wen, Y. Shi, J. Zeng, "State of Health Prediction of Lithium-Ion Batteries Based on the Discharge Voltage and Temperature", Electronics, vol. 10 (12), MDPI AG., Basel, Switzerland, Jun. 2021, ISSN 2079-9292, DOI: 10.3390/electronics10121497. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 70]  P. Iurilli, C. Brivio, V. Wood, "On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review", J Power Sources, vol. 505, Elsevier Science B.V., The Netherlands, Sep. 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2021.229860. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 69]  A. Basia, Z. Simeu-Abazi, E. Gascard, P. Zwolinski, "Review on State of Health estimation methodologies for lithium-ion batteries in the context of circular economy", CIRP J Manuf. Sci. Technol., vol. 32, Elsevier Science B.V., The Netherlands, Feb. 2021, pp. (517 - 528), ISSN 1755-5817, DOI: 10.1016/j.cirpj.2021.02.004. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 68]  M. Ge, Y. Liu, X. Jiang, J. Liu, "A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries", Measurement, vol. 174, Elsevier Science Ltd., Oxon, UK, Apr. 2021, ISSN 0263-2241, DOI: 10.1016/j.measurement.2021.109057. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 67]  A. Alyakhni, L. Boulon, J. Vinassa, O. Briat, "A Comprehensive Review on Energy Management Strategies for Electric Vehicles Considering Degradation Using Aging Models", IEEE Access, vol. 9, IEEE, USA, 2021, pp. (143922 - 143940), ISSN 2169-3536, DOI: 10.1109/ACCESS.2021.3120563. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 66]  K. Kirad, M. Chaudhari, "Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system", J Power Sources, vol. 481, Elsevier Science B.V., The Netherlands, Jan. 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2020.229016. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 65]  M. Messing, T. Shoa, S. Habibi, "Electrochemical Impedance Spectroscopy With Practical Rest-Times for Battery Management Applications", IEEE Access, vol. 9, IEEE, USA, 2021, pp. (66989 - 66998), ISSN 2169-3536, DOI: 10.1109/ACCESS.2021.3077211. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 64]  T. Oji, Y. Zhou, S. Ci, . et a, . ., "Data-Driven Methods for Battery SOH Estimation: Survey and a Critical Analysis", IEEE Access, vol. 9, IEEE, USA, 2021, pp. (126903 - 126916), ISSN 2169-3536, DOI: 10.1109/ACCESS.2021.3111927. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 63]  F. Liu, X. Liu, W. Su, H. Lin, "Online Estimation Method for State of Health of Electric Vehicle Power Battery", Dongbei Daxue Xuebao, vol. 41 (4), Northeastern University, China, 2020, pp. (492 - 498), ISSN 1005-3026, DOI: 10.12068/j.issn.1005-3026.2020.04.007. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 62]  . Liu Fang, . Liu Xinyi, . Su Weixing, . Chen Hanning, . He Maowei, . Liang Xiaodan, "State-of-Health Online Estimation for Li-lon Battery", SAE Int J Electrified Vehicles, vol. 9 (2), SAE Int., USA, Sep. 2020, pp. (185 - 196), ISSN 2691-3747, DOI: 10.4271/14-09-02-0012. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 61]  M. Park, M. Sea, Y. Song, S. W. Kim, "Capacity Estimation of Li-lon Batteries Using Constant Current Charging Voltage With Multilayer Perceptron", IEEE Access, vol. 8, IEEE, USA, 2020, pp. (180762 - 180772), ISSN 2169-3536, DOI: 10.1109/ACCESS.2020.3028095. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 60]  X. Cong, C. Zhang, J. Jiang, W. Zhang, V. Jiang, X. Jia, "An Improved Unscented Particle Filter Method for Remaining Useful Life Prognostic of Lithium-ion Batteries With Li(NiMnCo)0-2 Cathode With Capacity Diving", IEEE Access, vol. 8, IEEE, USA, 2020, pp. (58717 - 58729), ISSN 2169-3536, DOI: 10.1109/ACCESS.2020.2978245. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 59]  S. Tang, X. Xu, C. Yu, X. Sun, H. Fan, X. Si, "Remaining Useful Life Prediction With Fusing Failure Time Data and Field Degradation Data With Random Effects", IEEE Access, vol. 8, IEEE, USA, 2020, pp. (11964 - 11978), ISSN 2169-3536, DOI: 10.1109/ACCESS.2019.2948263. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 58]  M. Bentaha, A. Voisin, P. Marange, "A decision tool for disassembly process planning under end-of-life product quality", Int J Prod. Econ., vol. 219, Elsevier Science B.V., The Netherlands, Jan. 2020, pp. (386 - 401), ISSN 0925-5273, DOI: 10.1016/j.ijpe.2019.07.015. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 57]  M. AI-Zareer, I. Dincer, M. A. Rosen, "A thermal performance management system for lithium-ion battery packs", Appl. Therm. Eng., vol. 165, Elsevier Science B.V., The Netherlands, Jan. 2020, ISSN 1359-4311, DOI: 10.1016/j.applthermaleng.2019.114378. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 56]  Y. Zhou, M. Huang, M. Pecht, "Remaining useful life estimation of lithium-ion cells based on k-nearest neighbor regression with differential evolution optimization", J Clean Prod., vol. 249, Elsevier Science B.V., The Netherlands, Mar. 2020, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2019.119409. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 55]  C. M. Tan, P. Singh, C. Chen, "Accurate Real Time On-Line Estimation of State-of-Health and Remaining Useful Life of Li ion Batteries", Appl. Sci.-Basel, vol. 10 (21), MDPI AG., Basel, Switzerland, Nov. 2020, ISSN 2076-3417, DOI: 10.3390/app10217836. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 54]  Y. Tan, G. Zhao, "Transfer Learning With Long Short-Term Memory Network for State-of-Health Prediction of Lithium-len Batteries", IEEE Trans. Ind. Electron., vol. 67 (10), IEEE, USA, Oct. 2020, pp. (8723 - 8731), ISSN 0278-0046, DOI: 10.1109/TIE.2019.2946551. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 53]  X. Hu, Z. Jiang, L. Van, G. Yang, . et al., "Real-time visualized battery health monitoring sensor with piezoelectric/pyroelectric poly (vinylidene fluoride-trifluoroethylene) and thin film transistor array by in-situ poling", J Power Sources, vol. 467, Elsevier Science B.V., The Netherlands, Aug. 2020, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2020.228367. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 52]  Z. Lyu, R. Gao, "Li-ion battery state of health estimation through Gaussian process regression with Thevenin model", Int. J Energy Res., vol. 44 (13), Wiley, USA, Oct. 2020, pp. (10262 - 10281), ISSN 0363-907X, DOI: 10.1002/er.5647. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 51]  A. Ran, Z. Zhou, S. Chen, P. Nie, . et al., "Data-Driven Fast Clustering of Second-Life Lithium-ion Battery: Mechanism and Algorithm", Adv. Theory Simul., vol. 3 (8), Wiley, USA, Aug. 2020, ISSN 2513-0390, DOI: 10.1002/adts.202000109. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 50]  H. Tian, P. Qin, K. Li, Z. Zhao, "A review of the state of health for lithium -ion batteries: Research status and suggestions", J Clean Prod., vol. 261, Elsevier Science B.V., The Netherlands, Jul. 2020, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2020.120813. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 49]  X. Chen, H. Yang, J. Wun, C. Wang, L. Lil, "Life prediction of lithium-ion battery based on a hybrid model", Energy Explor. Exploit., vol. 38 (5), Sage Publications, USA, Sep. 2020, pp. (1854 - 1878), ISSN 0144-5987, DOI: 10.1177/0144598720911724. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 48]  W. Sun, X. Tang, Y. Wang, "Multi-metal-Organic Frameworks and Their Derived Materials for Li/Na-lon Batteries", Electrochem. Energy Rev., vol. 3 (1), Springer, USA, Mar. 2020, pp. (127 - 154), ISSN 2520-8489, DOI: 10.1007/s4191B-019-00056-0. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 47]  Z. Xue, Y. Zhang, C. Cheng, G. Ma, "Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression", Neurocomputing, vol. 376, Elsevier Science B.V., The Netherlands, Feb. 2020, pp. (95 - 102), ISSN 0925-2312, DOI: 10.1016/j.neucom.2019.09.074. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 46]  E. Banguero, A. Correcher, A. Perez-Navarro, E. Garcia, A. Aristizabal, "Diagnosis of a battery energy storage system based on principal component analysis", Renew. Energy, vol. 146, Elsevier Science B.V., The Netherlands, Feb. 2020, pp. (2438 - 2449), ISSN 0960-1481, DOI: 10.1016/j.renene.2019.08.064. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 45]  M. Pan, C. Li, C. Pan, H. Lei, H. Huang, "A novel predicting method on degree of catalytic reaction in fuel cells", Int. J Energy Res., vol. 44 (8), Wiley, USA, Jun. 2020, pp. (6860 - 6872), ISSN 0363-907X, DOI: 10.1002/er.5433. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 44]  F. Liu, X. Liu, W. Su, H. Lin, H. Chen, M. He, "An online state of health estimation method based on battery management system monitoring data", Int. J Energy Res., vol. 44 (8), Wiley, USA, Jun. 2020, pp. (6338 - 6349), ISSN 0363-907X, DOI: 10.1002/er.5351. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 43]  Z. Cen, P. Kubiak, "Lithium-ion battery SOC/SOH adaptive estimation via simplified single particle model", Int. J Energy Res., vol. 44 (15), Wiley, USA, Dec. 2020, pp. (12444 - 12459), ISSN 0363-907X, DOI: 10.1002/er.5374. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Conf 42]  J. Linghu, L. Kang, X. Luo, C. Lu, H. Lin, Z. Zhao, "A Flexible Online State of Health Estimation Approach for Lithium-ion Battery", in Proc. IEEE Int Power Electr Motion Control C, IPEMC, vol. 9, IEEE, USA, 29 Nov. - 02 Dec., 2020, pp. (2195 - 2201), ISBN 978-1-7281-5301-8, DOI: 10.1109/IPEMC-ECCEAsia48364.2020.9367785. [Indexed: Scopus, Elsevier].
 
  • [Conf 41]  M. Messing, T. Shoa, R. Ahmed, S. Habibi, "Battery SoC Estimation from EIS using Neural Nets", in Proc. IEEE Transp. Elect. C, ITEC, IEEE, USA, 23-26 Jun., 2020, pp. (588 - 593), ISBN 978-1-7281-4629-4, ISSN 2377-5483. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 40]  M. Al-Zareer, l. Dincer, M. A. Rosen, "Comparative assessment of new liquid-to-vapor type battery cooling systems", Energy, vol. 188, Pergamon-Elsevier Science Ltd., Oxford, UK, Dec. 2019, pp. (1 - 15), ISSN 0360-5442, DOI: 10.1016/j.energy.2019.116010. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 39]  S. Saponara, R. Saletti, L. Mihet-Popa, "Hybrid Micro-Grids Exploiting Renewables Sources, Battery Energy Storages, and Bi-Directional Converters", Appl. Sci.-Basel, vol. 9 (22), MDPI AG., Basel, Switzerland, Nov. 2019, pp. (1 - 18), ISSN 2076-3417, DOI: 10.3390/app9224973. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 38]  Y. Wang, Y. Ni, S. Lu, J. Wang, X. Zhang, "Remaining Useful Life Prediction of Lithium-ion Batteries Using Support Vector Regression Optimized by Artificial Bee Colony", IEEE Trans. Veh. Technol., vol. 68 (10), IEEE, USA, Oct. 2019, pp. (9543 - 9553), ISSN 0018-9545, DOI: 10.1109/TVT.2019.2932605. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 37]  C. Zhang, C. Wang, N. Lu, B. Jiang, "An RBMs-BN method to RUL prediction of traction converter of CRH2 trains", Eng. Appl. Artif. Intell., vol. 85, Pergamon-Elsevier Science Ltd., Oxford, UK, Oct. 2019, pp. (46 - 56), ISSN 0952-1976, DOI: 10.1016/j.engappai.2019.06.001. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 36]  Z. Lyu, R. Gao, "A model-based and data-driven joint method for state-of-health estimation of lithium-ion battery in electric vehicles", Int. J Energy Res., vol. 43 (14), Wiley, USA, Aug. 2019, pp. (7956 - 7969), ISSN 0363-907X, DOI: 10.1002/er.4784. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 35]  M. Shen, Q. Gao, "A review on battery management system from the modeling efforts to its multiapplication and integration", Int. J Energy Res., vol. 43 (10), Wiley, USA, Aug. 2019, pp. (5042 - 5075), ISSN 0363-907X, DOI: 10.1002/er.4433. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 34]  W. Hac, J. Xie, X. Bo, F. Wang, "Resistance exterior force property of lithium-ion pouch batteries with different positive materials", Int. J Energy Res., vol. 43 (9), Wiley, USA, Jul. 2019, pp. (4976 - 4986), ISSN 0363-907X, DOI: 10.1002/er.4588. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 33]  C. Paster-Fernandez, T. F. Yu, W. D. Widanage, J. Marco, "Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries", Renew. Sust. Energ. Rev., vol. 109, Pergamon-Elsevier Science Ltd., Oxford, UK, Jul. 2019, pp. (138 - 159), ISSN 1364-0321, DOI: 10.1016/j.rser.2019.03.060. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 32]  J. He, D. Feng, C. Hu, Z. Wei, F. Van, "Two-layer online state-of-charge estimation of lithium-ion battery with current sensor bias correction", Int. J Energy Res., vol. 43 (8), Wiley, USA, Jun. 2019, pp. (3837 - 3852), ISSN 0363-907X, DOI: 10.1002/er.4557. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 31]  A. R. Mandli, A. Kaushik, R. S. Patil, A. Naha, K. 5. Hariharan, S. M. Kolake, S. Han, W. Choi, "Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries", Int. J Energy Res., vol. 43 (6), Wiley, USA, May. 2019, pp. (2044 - 2056), ISSN 0363-907X, DOI: 10.1002/er.4397. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 30]  W. Wu, W. Wu, X. Qiu, S. Wang, "Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles", Int. J Energy Res., vol. 43 (1), Wiley, USA, Jan. 2019, pp. (243 - 253), ISSN 0363-907X, DOI: 10.1002/er.4257. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 29]  J. Jiang, Y. Gao, C. Zhang, W. Zhang, V. Jiang, "Lifetime Rapid Evaluation Method for Lithium-ion Battery with Li(NiMnCo)O-2 Cathode", J Electrochem. Soc., vol. 166 (6), Electrochemical Soc. Inc., USA, Apr. 2019, pp. (1070 - 1081), ISSN 0013-4651, DOI: 10.1149/2.1051904jes. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 28]  X. Xu, C. Yu, S. Tang, X. Sun, X. Si, L. Wu, "State-of-Health Estimation for Lithium-ion Batteries Based on Wiener Process With Modeling the Relaxation Effect", IEEE Access, vol. 7, IEEE, USA, 2019, pp. (105186 - 105201), ISSN 2169-3536, DOI: 10.1109/ACCESS.2019.2923095. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 27]  R. R. Richardson, C. R. Birkl, M. A. Osborne, D. A. Howey, "Gaussian Process Regression for In Situ Capacity Estimation of Lithium-ton Batteries", IEEE Trans. Ind. Inform., vol. 15 (1), IEEE, USA, Jan. 2019, pp. (127 - 138), ISSN 1551-3203, DOI: 10.1109/TII.2018.2794997. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 26]  S. Castano-Solis, D. Serra no-Jimenez, J. Fraile-Ardanuy, J. Sanz-Feito, "Hybrid characterization procedure of Li-ion battery packs for wide frequency range dynamics applications", Electr. Power Syst. Res., vol. 166, Elsevier Science B.V., The Netherlands, Jan. 2019, pp. (9 - 17), ISSN 0378-7796, DOI: 10.1016/j.epsr.2018.09.017. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 25]  S. Chowdhury, M. Bin Shaheed, Y. Sozer, "An integrated state of health (SOH) balancing method for lithium-ion battery cells", in Proc. Energ. Convers. Congr. Expo., ECCE 2019, IEEE, USA, 29 Sep. - 03 Oct., 2019, pp. (5759 - 5763), ISBN 978--1-7281-0395-2, DOI: 10.1109/ECCE.2019.8912932. [Indexed: Scopus, Elsevier].
 
  • [Conf 24]  M. Vatani, M. Szerepko, J. Preben Vie, "State of health prediction of Li-ion batteries using incremental capacity analysis and support vector regression", in Proc. IEEE Milan PowerTech, PowerTech 2019, IEEE, USA, 23-27 Jun., 2019, ISBN 978-1-5386-4722-6, DOI: 10.1109/PTC.2019.8810665. [Indexed: Scopus, Elsevier].
 
  • [Conf 23]  K. Saqli, H. Bouchareb, M. Oudghiri, N. MSirdi, "An overview of state of charge (SOC) and state of health (SOH) estimation methods of li-ion batteries", in Proc. Int. C Integr. Model. Anal. Appl. Control Autom., IMAACA 2019, vol. 12, Dime University of Genoa, Genoa, IT, 18-20 Sep., 2019, pp. (99 - 104), ISBN 978-8-8857-4132-4. [Indexed: Scopus, Elsevier].
 
  • [Conf 22]  E. Schaltz, D. Stroe, K. Norregaard, B. Johnsen, A. Christensen, "Partial Charging Method for Lithium-ion Battery State-of-Health Estimation", in Proc. IEEE Int. C Ecological Vehicles Renew. Energ., EVER 2019, vol. 14, IEEE, Monte Carlo, Monaco, 08-10 May., 2019, pp. (1 - 5), ISBN 978-1-7281-3703-2. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 21]  M. Messing, T. Shea, S. Habibi, "Lithium-len Battery Relaxation Effects", in Proc. IEEE Transp Electrific C, ITEC 2019, IEEE, USA, 19-21 Jun., 2019, pp. (1 - 6), ISBN 978-1-5386-9310-0, ISSN 2377-5483. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 20]  H. Pan, Z. Lu, H. Wang, H. Wei, L. Chen, "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine", Energy, vol. 160, Pergamon-Elsevier Science Ltd., Oxford, UK, Oct. 2018, pp. (466 - 477), ISSN 0360-5442, DOI: 10.1016/j.energy.2018.06.220. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 19]  X. Lai, W. Vi, Y. Zheng, L. Zhou, "An All-Region State-of-Charge Estimator Based on Global Particle Swarm Optimization and Improved Extended Kalman Filter for Lithium-Ion Batteries", Electronics, vol. 7 (11), MDPI AG., Basel, Switzerland, Nov. 2018, pp. (1 - 17), ISSN 2079-9292, DOI: 10.3390/electronics7110321. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 18]  M. Al-Zareer, I. Dincer, M. A. Rosen, "A novel phase change based cooling system for prismatic lithium ion batteries", Int. J Refrig., vol. 86, Elsevier Science Ltd., Oxon, UK, Feb. 2018, pp. (203 - 217), ISSN 0140-7007, DOI: 10.1016/j.ijrefrig.2017.12.005. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 17]  M. Al-Zareer, I. Dincer, M. A. Rosen, "A review of novel thermal management systems for batteries", Int. J Energy Res., vol. 42 (10), Wiley, USA, Aug. 2018, pp. (3182 - 3205), ISSN 0363-907X, DOI: 10.1002/er.4095. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 16]  M. Al-Zareer, I. Dincer, M. A. Rosen, "Performance assessment of a new hydrogen cooled prismatic battery pack arrangement for hydrogen hybrid electric vehicles", Energy Conv. Manag., vol. 173, Pergamon-Elsevier Science Ltd., Oxford, UK, Oct. 2018, pp. (303 - 319), ISSN 0196-8904, DOI: 10.1016/j.enconman.2018.07.072. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 15]  W. Hao, J. Xie, F. Wang, "The indentation analysis triggering internal short circuit of lithium-ion pouch battery based on shape function theory", Int. J Energy Res., vol. 42 (11), Wiley, USA, Sep. 2018, pp. (3696 - 3703), ISSN 0363-907X, DOI: 10.1002/er.4109. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 14]  Y. Gao, J. Jiang, C. Zhang, W. Zhang, V. Jiang, "Aging mechanisms under different state-of-charge ranges and the multi indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O-2 cathode", J Power Sources, vol. 400, Elsevier Science B.V., The Netherlands, Oct. 2018, pp. (641 - 651), ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2018.07.018. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 13]  M. Al-Zareer, I. Dincer, M. A. Rosen, "Development and evaluation of a new ammonia boiling based battery thermal management system", Electrochim. Acta, vol. 280, Pergamon-Elsevier Science Ltd., Oxford, UK, Aug. 2018, pp. (340 - 352), ISSN 0013-4686, DOI: 10.1016/j.electacta.2018.05.093. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 12]  X. Liang, N. Baa, J. Zhang, A. Garg, S. Wang, "Evaluation of battery modules state for electric vehicle using artificial neural network and experimental validation", Energy Sci. Eng., vol. 6 (5), Wiley, USA, Oct. 2018, pp. (397 - 407), ISSN 2050-0505, DOI: 10.1002/ese3.214. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 11]  M. H. Lipu, M. Hannan, A. Hussain, M. M. Hoque, P. J. Ker, M. H. M. Saad, A. Ayob, "A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations", J Clean Prod., vol. 205, Elsevier Science B.V., The Netherlands, Dec. 2018, pp. (115 - 133), ISSN 0959-6526, DOI: 10.1016/j.jclepro.2018.09.065. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 10]  M. Al-Zareer, I. Dincer, M. A. Rosen, "Heat transfer modeling of a novel battery thermal management system", Numer. Heat Tranf. A-Appl., vol. 73 (5), Taylor & Francis Ltd., USA, May. 2018, pp. (277 - 290), ISSN 1040-7782, DOI: 10.1080/10407782.2018.1439237. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 9]  K. Yigit, B. Acarkan, "A new ship energy management algorithm to the smart electricity grid system", Int. J Energy Res., vol. 42 (8), Wiley, USA, Jun. 2018, pp. (2741 - 2756), ISSN 0363-907X, DOI: 10.1002/er.4062. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 8]  J. Zhang, B. Li, A. Garg, Y. Liu, "A generic framework for recycling of battery module for electric vehicle by combining the mechanical and chemical procedures", Int. J Energy Res., vol. 42 (10), Wiley, USA, Aug. 2018, pp. (3390 - 3399), ISSN 0363-907X, DOI: 10.1002/er.4077. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 7]  M. Al-Zareer, I. Dincer, M. A. Rosen, "Heat and mass transfer modeling and assessment of a new battery cooling system", Int. J Heat Mass Transf., vol. 126, Pergamon-Elsevier Science Ltd., Oxford, UK, Nov. 2018, pp. (765 - 778), ISSN 0017-9310, DOI: 10.1016/j.ijheatmasstransfer.2018.04.1S7. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 6]  A. R. Mandli, S. Ramachandran, A. Khandelwal, K. Y. Kim, K. S. Hariharan, "Fast computational framework for optimal life management of lithium ion batteries", Int. J Energy Res., vol. 42 (5), Wiley, USA, Apr. 2018, pp. (1973 - 1982), ISSN 0363-907X, DOI: 10.1002/er.3996. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 5]  M. Vatani, P. J. S. Vie, O. Ulleberg, "Cycling Lifetime Prediction Model for Lithium-ion Batteries Based on Artificial Neural Networks", in Proc. PES Innov. Smart Grid Tech. C Europe, ISGT-Europe 2018, IEEE, Sarajevo, Bosnia & Hercegovina, 21-25 Oct., 2018, pp. (1 - 6), ISBN 978-1-5386-4505-5, ISSN 2165-4816, DOI: 10.1109/ISGTEurope.2018.8571814. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 4]  E. Banguero, A. Correcher, A. Perez-Navarro, E. Garcia, "State of health estimation of lead acid battery bank in a renewable energy system by parameter identification with genetic algorithms", in Proc. Int. C Syst. Contr., ICSC 2018, IEEE, Valencia, Spain, 24-26 Oct., 2018, pp. (418 - 423), ISBN 978-1-5386-8537-2, DOI: 10.1109/ICoSC.2018.8587801. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 3]  M. Al-Zareer, l. Dincer, M. A. Rosen, "Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles", J Power Sources, vol. 363, Elsevier Science B.V., The Netherlands, Sep. 2017, pp. (291 - 303), ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2017.07.067. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 2]  X. Zhou, S. Hsieh, B. Peng, D. Hsieh, "Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support vector machi ne with time-resolved thermography", Microelectron. Reliab., vol. 79, Pergamon-Elsevier Science Ltd., Oxford, UK, Dec. 2017, pp. (48 - 58), ISSN 0026-2714, DOI: 10.1016/j.microrel.2017.10.013. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 1]  L. Sanchez, l. Couso, C. Blanco, "A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling", Eng. Appl. Artif. lntell., vol. 64, Pergamon-Elsevier Science Ltd., Oxford, UK, Sep. 2017, pp. (367 - 377), ISSN 0952-1976, DOI: 10.1016/j.engappai.2017.06.029. [Indexed: ISI Web of Science, Thomson Reuters].
 
 
Cited work:
[Jrnl ]
Valentin Stangaciu, Mihai V. Micea, Vladimir I. Cretu, "MAC-Level Communication Time Modeling and Analysis for Real-Time WSNs", Advances in Electrical and Computer Engineering, volume 16, issue 1, Adrian Graur (Eds.), Stefan cel Mare University of Suceava, Romania, Feb., 2016, pp. (35 - 40), ISSN 1582-7445, DOI: 10.4316/AECE.2016.01005. [Online]. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 0.459].
 
[+] Keywords | [+] Abstract | Journal info | AECE Journal Index Record | Full paper
Wireless sensor networks; Real-time systems; Wireless communication; Access protocol; Time measurement
Low-level communication protocols and their timing behavior are essential to developing wireless sensor networks (WSNs) able to provide the support and operating guarantees required by many current real-time applications. Nevertheless, this aspect still remains an issue in the state-of-the-art. In this paper we provide a detailed analysis of a recently proposed MAC-level communication timing model and demonstrate its usability in designing real-time protocols. The results of a large set of measurements are also presented and discussed here, in direct relation to the main time parameters of the analyzed model.
  Cited in 1 paper:
 
  • [Conf 1]  Z. Hamidi-Alaoui, A. Elalaoui, "A WSN-based approach for prioritising emergency vehicles : PPerformance analysis of medium access control", in Proc. Int. C Optimiz. Applic., ICOA 2018, vol. 4, IEEE, Mohammedia, Morocco, 26-27 Apr., 2018, pp. (1 - 6), ISBN 978-1-5386-4225-2, DOI: 10.1109/ICOA.2018.8370581. [Indexed: Scopus, Elsevier].
 
 
Cited work:
[Jrnl ]
Mihai Fagadar Cosma, Marwen Nouri, Vladimir I. Cretu, Mihai V. Micea, "A Combined Optical Flow and Graph Cut Approach for Foreground Extraction in Videoconference Applications", Studies in Informatics and Control, volume 21, issue 4, F. G. Filip (Eds.), National Institute for Research and Development in Informatics (ICI), Bucharest, Romania, Dec., 2012, pp. (413 - 422), ISSN 1220-1766. [Online]. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 0.605].
 
[+] Keywords | [+] Abstract | Cover picture | Journal info
Foreground extraction; Videoconference; Optical flow; Graph cut; Motion segmentation; Real-time video processing
Immersive videoconferences have added a new dimension to remote collaboration by bringing participants together in a common virtual space. To achieve this, the conferencing system must extract in real-time the foreground from each incoming video stream and translate it into the shared virtual space. The method presented in this paper differentiates itself in the sense that no prior training or assumptions on the video content are used during foreground extraction. A temporally coherent mask is created based on motion cues obtained from the video stream and is used to provide a set of hard constraints. Based on these constraints, a graph cut algorithm is employed to produce the pixel-accurate foreground segmentation. The obtained results are evaluated using a state-of-the-art perceptual metric to provide an objective assessment of the method accuracy and reliability. Furthermore, the presented approach makes use of parallel execution in order to achieve real-time processing capabilities.
  Cited in 1 paper (with a cummulated IF: 0.605):
 
  • [Jrnl 1]  S. U. Khalid Bukhari, R. Brad, C. Bala-Zamfirescu, "Fast Edge Detection Algorithm for Embedded Systems", Stud. Inform. Control, vol. 23 (2), National Institute for Research and Development in Informatics (ICI), Bucharest, Romania, Jun. 2014, pp. (163 - 170), ISSN 1220-1766. [Indexed: ISI Web of Science, Thomson Reuters].
 
 
Cited work:
[Jrnl ]
Mihai V. Micea, Lucian Ungurean, Gabriel N. Carstoiu, Voicu Groza, "Online State-of-Health Assessment for Battery Management Systems", IEEE Transactions on Instrumentation and Measurement, volume 60, issue 6, IEEE, Jun., 2011, pp. (1997 - 2006), ISSN 0018-9456, DOI: 10.1109/TIM.2011.2115630. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 1.357]. [143].
 
[+] Keywords | [+] Abstract | Cover picture | Journal info | IEEE Index Record (Inspec)
Battery management; Battery-powered device; Nickel-metal hydride (Ni-MH); State-of-health (SoH) prediction
Battery-powered embedded systems have known a rapid evolution in recent years, as nickel-metal hydride (Ni-MH) battery technology has enabled important reductions in size and proportional increases in total capacity over the older nickel-cadmium (Ni-Cd) and lead-acid battery types. This paper addresses the problem of state-of-health (SoH) estimation and prediction for use in resource-constrained Ni-MH-battery-powered embedded systems. We propose a novel SoH prediction methodology, presenting both a theoretical analysis of the estimation algorithm and the detailed description of hardware and software implementation. Two versions of estimation algorithms are proposed, along with the analysis of their performances in terms of prediction accuracy and required processing power, as the SoH prediction is designed to run online, being part of an embedded battery management system.
  Cited in 83 papers (with a cummulated IF: 253.642):
 
  • [Jrnl 83]  L. Deng, W. Shen, H. Wang, S. Wang, "A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery", Neural Comput. Appl., vol. 33 (6), Springer, USA, Mar. 2021, pp. (2035 - 2046), ISSN 0941-0643, DOI: 10.1007/s00521-020-05105-0. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 82]  A. A. Chellal, J. Goncalves, J. Lima, V. Pinto, H. Megnafi, "Design of an Embedded Energy Management System for Li-Po Batteries Based on a DCC-EKF Approach for Use in Mobile Robots", Machines, vol. 9 (12), MDPI AG., Basel, Switzerland, Dec. 2021, ISSN 2075-1702, DOI: 10.3390/machines9120313. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 81]  E. Vanem, C. B. Salucci, A. Bakdi, O. A. Alnes, "Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems", J Energy Storage, vol. 43, Elsevier Science B.V., The Netherlands, Nov. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103158. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 80]  D. Lin, Y. Zhang, X. Zhao, Y. Tang, Z. Dai, . et al., "Early Prediction of Remaining Useful Life for Grid-Scale Battery Energy Storage System", J Energy Eng. - ASCE, vol. 147 (6), ASCE, USA, Dec. 2021, ISSN 0733-9402, DOI: 10.1061/(ASCE)EY.1943-7897.0000800. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 79]  J. Li, M. Ye, K. Gao, S. Jiao, X. Xu, "State estimation of lithium polymer battery based on Kalman filter", Ionics, vol. 27 (9), Springer Heidelberg, Germany, Sep. 2021, pp. (3909 - 3918), ISSN 0947-7047, DOI: 10.1007/s11581-021-04165-z. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 78]  Z. Fei, F. Yang, K. Tsui, L. Li, Z. Zhang, "Early prediction of battery lifetime via a machine learning based framework", Energy, vol. 225, Pergamon-Elsevier Science Ltd., Oxford, UK, Jun. 2021, ISSN 0360-5442, DOI: 10.1016/j.energy.2021.120205. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 77]  S. Li, H. Fang, B. Shi, "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression", Reliab. Eng. Syst. Saf., vol. 210, Elsevier Science B.V., The Netherlands, Jun. 2021, ISSN 0951-8320, DOI: 10.1016/j.ress.2021.107542. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 76]  M. El-Dalahmeh, M. Al-Greer, M. El-Dalahmeh, M. Short, "Smooth particle filter-based likelihood approximations for remaining useful life prediction of Lithium-ion batteries", IET Smart Grid, vol. 4 (2), Wiley, USA, Apr. 2021, pp. (151 - 161), ISSN 2515-2947, DOI: 10.1049/stg2.12013. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 75]  M. Johnen, S. Pitzen, U. Kamps, M. Kateri, . et al., "Modeling long-term capacity degradation of lithium-ion batteries", J Energy Storage, vol. 34, Elsevier Science B.V., The Netherlands, Feb. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2020.102011. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 74]  X. Liu, H. Zhang, Y. He, X. Zheng, G. Zeng, "Prognostics of Lithium-ion Batteries Based on IMM-UPF", Hunan Daxue Xuebao, vol. 47 (2), Hunan University, China, 2020, pp. (102 - 109), ISSN 1674-2974, DOI: 10.16339/j.cnki.hdxbzkb.2020.02.014. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 73]  W. Zhou, S. Bao, F. Xu, C. Zhao, "Remaining useful life prediction of lithium-ion batteries using a fusion method based on wasserstein gan", J China Univ. Post Telecom., vol. 27 (1), Beijing University of Posts and Telecommunications, China, 2020, pp. (1 - 9), ISSN 1005-8885, DOI: 10.19682/j.cnki.1005-8885.2020.0004. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 72]  B. Duan, Q. Zhang, F. Geng, C. Zhang, "Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter", Int. J Energy Res., vol. 44 (3), Wiley, USA, Mar. 2020, pp. (1724 - 1734), ISSN 0363-907X, DOI: 10.1002/er.5002. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 71]  H. Lin, C. Wei, H. Chen, "Cell quality measurement using cloud computing in case of NiCd/NiMH battery study", Adv. Compos. Lett., vol. 29, Sage Publications, UK, Feb. 2020, ISSN 0963-6935, DOI: 10.1177 /2633366X19898193. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 70]  F. Yang, D. Wang, F. Xu, Z. Huang, K. Tsui, "Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model", J Power Sources, vol. 476, Elsevier Science B.V., The Netherlands, Nov. 2020, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2020.228654. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 69]  P. Tagade, K. S. Hariharan, S. Ramachandran, . et al., "Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis", J Power Sources, vol. 445, Elsevier Science B.V., The Netherlands, Jan. 2020, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2019.227281. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 68]  C. Lin, J. Cabrera, F. Yang, M. Ling, K. Tsui, S. Bae, "Battery state of health modeling and remaining useful life prediction through time series model", Appl. Energy, vol. 275, Elsevier Science, Oxford, UK, Oct. 2020, ISSN 0306-2619, DOI: 10.1016/j.apenergy.2020.115338. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 67]  Y. Zhou, M. Huang, M. Pecht, "Remaining useful life estimation of lithium-ion cells based on k-nearest neighbor regression with differential evolution optimization", J Clean Prod., vol. 249, Elsevier Science B.V., The Netherlands, Mar. 2020, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2019.119409. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 66]  X. Hu, L. Xu, X. Lin, M. Pecht, "Battery Lifetime Prognostics", Joule, vol. 4 (2), Cell Press, USA, Feb. 2020, pp. (310 - 346), ISSN 2542-4351, DOI: 10.1016/j.joule.2019.11.018. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 65]  K. Pugalenthi, H. Park, N. Raghavan, "Piecewise Model-Based Online Prognosis of Lithium-ion Batteries Using Particle Filters", IEEE Access, vol. 8, IEEE, USA, 2020, pp. (153508 - 153516), ISSN 2169-3536, DOI: 10.1109/ACCESS.2020.3017810. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 64]  Y. Chen, Y. He, Z. Li, L. Chen, C. Zhang, "Remaining Useful Life Prediction and State of Health Diagnosis of Lithium-ion Battery Based on Second-Order Central Difference Particle Filter", IEEE Access, vol. 8, IEEE, USA, 2020, pp. (37305 - 37313), ISSN 2169-3536, DOI: 10.1109/ACCESS.2020.2974401. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Conf 63]  T. Tang, H. Yuan, J. Zhu, "RUL prediction of lithium batteries based on DLUKF algorithm", in Proc. IEEE C Ind. Electr. Appl., ICIEA, vol. 15, IEEE, Online, 09-13 Nov., 2020, pp. (1756 - 1761), ISBN 978-1-7281-5169-4, ISSN 2156-2318. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 62]  Z. Wu, M. Shang, D. Shen, S. Qi, "SOC Estimation of Battery by MS-AUKF Algorithm and BPNN", Proc. Chinese Soc. Electr. Eng., vol. 39 (21), Chinese Society for Electrical Engineering, China, 2019, pp. (6336 - 6343), ISSN 0258-8013, DOI: 10.13334/j.0258-8013.pcsee.181720. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 61]  V. Ma, Y. Chen, X. Zhou, H. Chen, "Remaining Useful Life Prediction of Lithium-ion Battery Based on Gauss-Hermite Particle Filter", IEEE Trans. Control Syst. Technol., vol. 27 (4), IEEE, USA, Jul. 2019, pp. (1788 - 1795), ISSN 1063-6536, DOI: 10.1109/TCST.2018.2819965. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 60]  Y. Wang, S. Tseng, B. H. Lindqvist, K. Tsui, "End of performance prediction of lithium-ion batteries", J Qual. Technol., vol. 51 (2), Taylor & Francis Ltd., USA, Apr. 2019, pp. (198 - 213), ISSN 0022-4065, DOI: 10.1080/00224065.2018.1541388. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 59]  F. Yang, X. Song, G. Dong, K. Tsui, "A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries", Energy, vol. 171, Pergamon-Elsevier Science Ltd., Oxford, UK, Mar. 2019, pp. (1173 - 1182), ISSN 0360-5442, DOI: 10.1016/j.energy.2019.01.083. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 58]  Z. Wu, M. Shang, D. Shen, S. Qi, "SOC estimation for batteries using MS-AUKF and neural network", J Renew. Sustain. Energy, vol. 11 (2), American Institute of Physics, USA, Mar. 2019, pp. (1 - 8), ISSN 1941-7012, DOI: 10.1063/1.5064479. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 57]  S. l. Liu, X. Dong, Y. Zhang, "A New State of Charge Estimation Method for Lithium-ion Battery Based on the Fractional Order Model", IEEE Access, vol. 7, IEEE, USA, 2019, pp. (122949 - 122954), ISSN 2169-3536, DOI: 10.1109/ACCESS.2019.2932142. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 56]  Z. Xiao, H. Fang, "Remaining useful life prediction of lithium-ion battery based on unscented kalman filter and back propagation neural network", in Proc. Data Driven Contr. Learn. Syst. C, DDCLS 2019, vol. 8, IEEE, China, 24-27 May., 2019, pp. (47 - 52), ISBN 978-1-7281-1454-5, DOI: 10.1109/DDCLS.2019.8908952. [Indexed: Scopus, Elsevier].
 
  • [BChp 55]  A. S. Liinas, A. Ginart, J. M. p. Velni, "Battery storage", in Fault Diagnosis for Robust Inverter Power Drives, IET, UK, Jan., 2018, pp. (253 - 270), ISBN 978-1-78561-411-8. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 54]  P. Leijen, D. A. Steyn-Ross, N. Kularatna, "Use of Effective Capacitance Variation as a Measure of State-of-Health in a Series-Connected Automotive Battery Pack", IEEE Trans. Veh. Technol., vol. 67, IEEE, USA, Mar. 2018, pp. (1961 - 1968), ISSN 0018-9545, DOI: 10.1109/TVT.2017.2733002. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 53]  M. Mishra, J. Martinsson, M. Rantatalo, K. Goebel, "Bayesian hierarchical model-based prognostics for lithium-ion batteries", Reliab. Eng. Syst. Saf., vol. 172, Elsevier Science B.V., The Netherlands, Apr. 2018, pp. (25 - 35), ISSN 0951-8320, DOI: 10.1016/j.ress.2017.11.020. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 52]  M. H. Lipu, M. Hannan, A. Hussain, M. M. Hoque, P. J. Ker, M. H. M. Saad, A. Ayob, "A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations", J Clean Prod., vol. 205, Elsevier Science B.V., The Netherlands, Dec. 2018, pp. (115 - 133), ISSN 0959-6526, DOI: 10.1016/j.jclepro.2018.09.065. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 51]  Y. Zhou, M. Huang, "On-board Capacity Estimation of Lithium-ion Batteries Based on Charge Phase", J Electr. Eng. Technol., vol. 13 (2), KOREAN INST ELECTR ENG, South Korea, Mar. 2018, pp. (733 - 741), ISSN 1975-0102, DOI: 10.5370/JEET.2018.13.2.733. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 50]  E. Tsioumas, N. Jabbour, C. Mademlis, "Estimation of the battery health by monitoring the electric motor drive performance in a building application", in Proc. Int. C Electr. Machines, ICEM 2018, vol. 23, IEEE, Greece, 03-06 Sep., 2018, pp. (1848 - 1854), ISBN 978-1-5386-2477-7, DOI: 10.1109/ICELMACH.2018.8506993. [Indexed: Scopus, Elsevier].
 
  • [Conf 49]  Z. Li, H. Fang, Z. Xiao, "A novel hybrid model based on ensemble strategy for lithium-ion battery residual life prediction", in Proc. Chinese Autom. Congr., CAC 2018, IEEE, Xian, China, 30 Nov. - 02 Dec., 2018, pp. (2084 - 2089), ISBN 978-1-7281-1312-8. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 48]  D. D. Sharma, "Receding Horizon Control Strategy for Energy Storage Devices Incorporating Capacity Loss", in Proc. Uttar Pradesh Sec. Int. C Electric., Electron. and Comput. Eng., UPCON 2018, IEEE, Gorakhpur, India, 02-04 Nov., 2018, pp. (1010 - 1015), ISBN 97B-1-53B6-5002-8, DOI: 10.1109/UPCON.2018.8596892. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 47]  S. Liu, N. Cui, Y. Li, C. Zhang, "Modeling and State of Charge Estimation of Lithium-Ion Battery Based on Theory of Fractional Order for Electric Vehicle", T China Electrotech. Soc., vol. 32 (4), Chinese Machine Press, China, Apr. 2017, pp. (189 - 195), ISSN 1000-6753. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 46]  X. Tan, J. Qiu, J. Luo, Q. Li, K. Lu, "Health State Assessment Technology of Equipments Based on Health State-General Test", J Vibr. Meas. Diagnos., vol. 37 (5), Nanjing University of Aeronautics an Astronautics, China, May. 2017, pp. (886 - 891), ISSN 1004-6801, DOI: 10.16450/j.cnki.issn.1004-6801.2017.05.005. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 45]  H. Yuan, L. Dung, "Offline State-of-Health Estimation for High-Power Lithium-Ion Batteries Using Three-Point Impedance Extraction Method", IEEE Trans. Veh. Technol., vol. 66 (3), IEEE, USA, Mar. 2017, pp. (2019 - 2032), ISSN 0018-9545, DOI: 10.1109/TVT.2016.2572163. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 44]  F. Yang, D. Wang, Y. Xing, K. Tsui, "Prognostics of Li(NiMnCo)O-2-based lithium-ion batteries using a novel battery degradation model", Microelectron. Reliab., vol. 70, Pergamon-Elsevier Science Ltd., Oxford, UK, Mar. 2017, pp. (70 - 78), ISSN 0026-2714, DOI: 10.1016/j.microrel.2017.02.002. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 43]  S. Liu, N. Cui, C. Zhang, "An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries", Energies, vol. 10 (9), MDPI AG., Basel, Switzerland, Sep. 2017, ISSN 1996-1073, DOI: 10.3390/en10091345. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 42]  Y. Cui, J. Yang, C. Du, P. Zuo, Y. Gao, X. Cheng, Y. Ma, G. Yin, "Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts", Electrochim. Acta, vol. 255, Pergamon-Elsevier Science Ltd., Oxford, UK, Nov. 2017, pp. (83 - 91), ISSN 0013-4686, DOI: 10.1016/j.electacta.2017.09.151. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 41]  Z. Zeng, F. Di Maio, E. Zio, R. Kang, "A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods", Proc. Inst. Mech. Eng. Part O-J Risk Reliab., vol. 231 (1), Sage Publications, London, UK, Dec. 2017, pp. (36 - 52), ISSN 1748-006X, DOI: 10.1177/1748006X16683321. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 40]  A. Salazar, C. Restrepo, Y. Gao, J. M. Velni, A. Ginart, "An online LiFePO4 battery impedance estimation method for grid-tied residential energy storage systems", in Proc. Energ. Convers. Congr. Expo., ECCE 2017, IEEE, Cincinnati, USA, Oct., 2017, pp. (980 - 986), ISBN 978-1-5090-2998-3, DOI: 10.1109/ECCE.2017.8095892. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 39]  D. D. Sharma, "Optimal Day Ahead Strategy Based on Capacity Loss for Battery Energy Storage System", in Proc. Int. C Power Syst., ICPS 2017, vol. 7, IEEE, Pune, India, 21-23 Dec., 2017, pp. (545 - 549), ISBN 978-1-5386-1789-2. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 38]  M. Rajalingam, M. Karthikeyan, V. Diwakar, "Electric vehicle battery current prediction based on driving parameters", in Proc. IEEE Transport. Electrif. C, ITEC-India 2017, IEEE, Pune, India, 13-15 Dec., 2017, pp. (1 - 4), ISBN 978-1-5386-2668-9, DOI: 10.1109/ITEC-India.2017.8333882. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 37]  D. Wang, F. Yang, K. Tsui, Q. Zhou, S. J. Bae, "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter", IEEE Trans. Instrum. Meas., vol. 65 (6), IEEE, USA, Jun. 2016, pp. (1282 - 1291), ISSN 0018-9456, DOI: 10.1109/TIM.2016.2534258. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 36]  C. Ozkurt, F. Camci, V. Atamuradov, C. Odorry, "Integration of sampling based battery state of health estimation method in electric vehicles", Appl. Energy, vol. 175, Elsevier Science, Oxford, UK, Aug. 2016, pp. (356 - 367), ISSN 0306-2619, DOI: 10.1016/j.apenergy.2016.05.037. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 35]  X. Xu, Z. Li, N. Chen, "A Hierarchical Model for Lithium-Ion Battery Degradation Prediction", IEEE Trans. Reliab., vol. 65 (1), IEEE, USA, Mar. 2016, pp. (310 - 325), ISSN 0018-9529, DOI: 10.1109/TR.2015.2451074. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 34]  S. Saponara, L. Fanucci, F. Bernardo, A. Falciani, "Predictive Diagnosis of High-Power Transformer Faults by Networking Vibration Measuring Nodes With Integrated Signal Processing", IEEE Trans. Instrum. Meas., vol. 65 (8), IEEE, USA, Aug. 2016, pp. (1749 - 1760), ISSN 0018-9456, DOI: 10.1109/TIM.2016.2552658. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 33]  S. Saponara, "Distributed Measuring System for Predictive Diagnosis of Uninterruptible Power Supplies in Safety-Critical Applications", Energies, vol. 9 (5), MDPI AG., Basel, Switzerland, May. 2016, pp. (1 - 18), ISSN 1996-1073, DOI: 10.3390/en9050327. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 32]  S. Saponara, "An Actuator Control Unit for Safety-Critical Mechatronic Applications with Embedded Energy Storage Backup", Energies, vol. 9 (3), MDPI AG., Basel, Switzerland, Mar. 2016, pp. (1 - 13), ISSN 1996-1073, DOI: 10.3390/en9030213. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 31]  F. Di Maio, P. Turati, E. Zio, "Prediction capability assessment of data-driven prognostic methods for railway applications", in Proc. European C Prognostic Health Manag. Soc., PHM 2016, May., 2016.
 
  • [Conf 30]  L. V. Hartmann, E. C. T. Macedo, Y. P. M. Rodrigues, J. M. Villanueva, C. Vidal, "Network-Capable Smart Batteries for Smart Grid and Battery Management Systems", in Proc. IEEE Instrum. Meas. Tech. C, I2MTC 2016, IEEE, Taipei, TW, 23-26 May., 2016, pp. (624 - 629), ISBN 978-1-4673-9220-4. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 29]  C. R. Lashway, G. Constant, J. Theogene, O. Mohammed, "A Real-time Circuit Topology for Battery Impedance Monitoring", in Proc. IEEE SoutheastCon C, SOUTHEASTCON 2016, IEEE, USA, 30 Mar. - 03 Apr., 2016, pp. (1 - 6), ISBN 978-1-5090-2246-5, ISSN 1558-058X. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 28]  M. Garcia-Plaza, D. Serrano-Jimenez, J. Eloy-Garcia Carrasco, J. Alonso-Martinez, "A Ni-Cd battery model considering state of charge and hysteresis effects", J Power Sources, vol. 275, Elsevier Science B.V., The Netherlands, Feb. 2015, pp. (595 - 604), ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2014.11.031. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 27]  F. Camci, C. Ozkurt, O. Toker, V. Atamuradov, "Sampling based State of Health estimation methodology for Li-ion batteries", J Power Sources, vol. 278, Elsevier Science B.V., The Netherlands, Mar. 2015, pp. (668 - 674), ISSN 0378-7753, DOI: doi:10.1016/j.jpowsour.2014.12.119. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 26]  M. Marracci, B. Tellini, M. Catelani, L. Ciani, "Ultracapacitor Degradation State Diagnosis via Electrochemical Impedance Spectroscopy", IEEE Trans. Instrum. Meas., vol. 64 (7), IEEE, USA, Jul. 2015, pp. (1916 - 1921), ISSN 0018-9456, DOI: 10.1109/TIM.2014.2367772. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 25]  B. Sun, J. Jiang, F. Zheng, W. Zhao, B. Y. Liaw, H. Ruan, Z. Han, W. Zhang, "Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis", J Power Sources, vol. 282, Elsevier Science B.V., The Netherlands, Mar. 2015, pp. (146 - 157), ISSN 0378-7753, DOI: doi:10.1016/j.jpowsour.2015.01.106. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 24]  M. Guida, F. Postiglione, G. Pulcini, "A Random-Effects Model for Long-Term Degradation Analysis of Solid Oxide Fuel Cells", Reliab. Eng. Syst. Saf., vol. 140, Elsevier Science B.V., The Netherlands, Aug. 2015, pp. (88 - 98), ISSN 0951-8320, DOI: 10.1016/j.ress.2015.03.036. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 23]  K. Tseng, J. Liang, W. Chang, S. Huang, "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries", Energies, vol. 8 (4), MDPI AG., Basel, Switzerland, Apr. 2015, pp. (2889 - 2907), ISSN 1996-1073, DOI: 10.3390/en8042889. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 22]  C. Hua, Y. Fang, P. Li, "Charge Equalisation for Series-Connected LiFePO4 Battery Strings", IET Power Electron., vol. 8 (6), IET, Hertford, UK, Jun. 2015, pp. (1017 - 1025), ISSN 1755-4535 , DOI: 10.1049/iet-pel.2014.0567 . [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 21]  J. Yu, "State-of-Health Monitoring and Prediction of Lithium-Ion Battery Using Probabilistic Indication and State-Space Model", IEEE Trans. Instrum. Meas., vol. 64 (11), IEEE, USA, Nov. 2015, pp. (2937 - 2949), ISSN 0018-9456, DOI: 10.1109/TIM.2015.2444237. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 20]  H. Yang, Y. Qiu, X. Guo, "Prediction of State-of-Health for Nickel-Metal Hydride Batteries by a Curve Model Based on Charge-Discharge Tests", Energies, vol. 8 (11), MDPI AG., Basel, Switzerland, Nov. 2015, pp. (12474 - 12487), ISSN 1996-1073, DOI: 10.3390/en81112322. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 19]  B. Balagopal, M. Chow, "The state of the art approaches to estimate the state of health (SOH) and state of function (SOF) of lithium Ion batteries", in Proc. IEEE Int. C Ind. Informatics, INDIN 2015, IEEE, Cambridge, UK, 22-24 Jul., 2015, pp. (1302 - 1307), ISBN 978-1-4799-6649-3, DOI: 10.1109/INDIN.2015.7281923. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 18]  D. Kim, T. Goh, M. Park, M. Seo, S. W. Kim, "Grey prediction method for forecasting the capacity of lithium-ion batteries", in Proc. Int. C Control Autom. Syst., ICCAS 2015, IEEE, Busan, South Korea, 13-16 Oct., 2015, pp. (1010 - 1012), ISBN 978-8-9932-1509-0, ISSN 2093-7121. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [BChp 17]  N. Kularatna, "Dynamics, models, and management of rechargeable batteries", in Energy Storage Devices for Electronic Systems: Rechargeable Batteries and Supercapacitors, sect. 3, Elsevier Science B.V., The Netherlands, Nov., 2014, pp. (63 - 135), ISBN 978-012-407-947-2, DOI: 10.1016/B978-0-12-407947-2.00003-1. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 16]  A. Moldovan, S. Weibelzahl, C. Hava Muntean, "Energy-Aware Mobile Learning:Opportunities and Challenges", IEEE Commun. Surv. Tutor., vol. 16 (1), IEEE, USA, Feb. 2014, pp. (234 - 265), ISSN 1553-877X, DOI: 10.1109/SURV.2013.071913.00194. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 15]  W. Waag, C. Fleischer, D. U. Sauer, "Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles", J Power Sources, vol. 258, Elsevier Science B.V., The Netherlands, Jul. 2014, pp. (321 - 339), ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2014.02.064. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 14]  G. Ablay, "Online Condition Monitoring of Battery Systems With a Nonlinear Estimator", IEEE Trans. Energy Convers., vol. 29 (1), IEEE, USA, Mar. 2014, pp. (232 - 239), ISSN 0885-8969, DOI: 10.1109/TEC.2013.2291812. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 13]  L. C. Stevanatto, V. J. Brusamarello, S. Tairov, "Parameter Identification and Analysis of Uncertainties in Measurements of Lead-Acid Batteries", IEEE Trans. Instrum. Meas., vol. 63 (4), IEEE, USA, Apr. 2014, pp. (761 - 768), ISSN 0018-9456, DOI: 10.1109/TIM.2013.2283545. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 12]  M. Landi, G. Gross, "Measurement Techniques for Online Battery State of Health Estimation in Vehicle-to-Grid Applications", IEEE Trans. Instrum. Meas., vol. 63 (5), IEEE, USA, May. 2014, pp. (1224 - 1234), ISSN 0018-9456, DOI: 10.1109/TIM.2013.2292318. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 11]  J. Yu, "Health Degradation Detection and Monitoring of Lithium-Ion Battery Based on Adaptive Learning Method", IEEE Trans. Instrum. Meas., vol. 63 (7), IEEE, USA, Jul. 2014, pp. (1709 - 1721), ISSN 0018-9456, DOI: 10.1109/TIM.2013.2293234. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 10]  S. Nejad, D. T. Gladwin, D. A. Stone, "A microcontroller-based state-of-health estimator for lithium-ion batteries", in Proc. IET Int. C Power Elecron., Machines, Drives, PEMD 2014, vol. 7, IET, Manchester, UK, 08-10 Apr., 2014, pp. (1 - 6), ISBN 978-1-84919-815-8, DOI: 10.1049/cp.2014.0519. [Indexed: Scopus, Elsevier].
 
  • [Conf 9]  W. Rugang, Y. Zhongliang, K. Qibin, "Introduction of a new Intelligent Battery", in Proc. IEEE Int. Telecom. Energ. C, INTELEC 2014, IEEE, Vancouver, Canada, 28 Sep. - 02 Oct., 2014, pp. (1 - 6), DOI: 10.1109/INTLEC.2014.6972146. [Indexed: Scopus, Elsevier].
 
  • [Conf 8]  M. Catelani, L. Ciani, M. Marracci, B. Tellini, "Frequency dependent failure region definition for supercapacitors", in Proc. IEEE Instrum. Meas. Tech. C, I2MTC 2014, IEEE, Montevideo, Uruguay, 12-15 May., 2014, pp. (1021 - 1025), ISBN 978-1-4673-6386-0, DOI: 10.1109/I2MTC.2014.6860897. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 7]  C. Hua, P. Li, Y. Fang, "Study of a Charge-Discharge Equalizer", in Proc. Int. C Inf. Sci., Electron. Ellectric. Eng., ISEEE 2014, IEEE, Sapporo, Japan, 26-28 Apr., 2014, pp. (565 - 568), ISBN 978-1-4799-3196-5, DOI: 10.1109/InfoSEEE.2014.6948177. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 6]  M. Shahriari, M. Farrokhi, "Online State-of-Health Estimation of VRLA Batteries Using State of Charge", IEEE Trans. Ind. Electron., vol. 60 (1), IEEE, USA, Jan. 2013, pp. (191 - 202), ISSN 0278-0046, DOI: 10.1109/TIE.2012.2186771. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 5]  Y. Xing, E. W. M. Ma, K. Tsui, M. Pecht, "An ensemble model for predicting the remaining useful performance of lithium-ion batteries", Microelectron. Reliab., vol. 53 (6), Pergamon-Elsevier Science Ltd., Oxford, UK, Jun. 2013, pp. (811 - 820), ISSN 0026-2714, DOI: 10.1016/j.microrel.2012.12.003. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 4]  M. Yatsui, H. Bai, N. Cramer, X. Zheng, M. Azhinehfar, D. Mead, "Evaluation of the impact of the different charging algorithms on the lead-acid batteries lifetime", in Proc. IEEE Transport. Electrification C and Expo, ITEC 2012, IEEE, Dearborn, USA, 18-20 Jun., 2012, pp. (1 - 4), ISBN 978-1-4673-1407-7, DOI: 10.1109/ITEC.2012.6243444. [Indexed: Scopus, Elsevier].
 
  • [Conf 3]  C. Chen, M. Pecht, "Prognostics of lithium-ion batteries using model-based and data-driven methods", in Proc. IEEE C Prognostics Syst. Health Manag., PHM 2012, IEEE, Beijing, China, 23-25 May., 2012, pp. (1 - 6), ISBN 978-1-4577-1909-7, ISSN 2166-563X, DOI: 10.1109/PHM.2012.6228850. [Indexed: Scopus, Elsevier].
 
  • [Conf 2]  Y. Xing, E. W. M. Ma, K. Tsui, M. Pecht, "A Case Study on Battery Life Prediction Using Particle Filtering", in Proc. IEEE C Prognostics Syst. Health Manag., PHM 2012, IEEE, Beijing, China, 23-25 May., 2012, pp. (1 - 6), ISBN 978-1-4577-1909-7, ISSN 2166-563X, DOI: 10.1109/PHM.2012.6228847. [Indexed: Scopus, Elsevier].
 
  • [Conf 1]  Y. Xing, E. W. M. Ma, K. Tsui, M. Pecht, "Influence of Parameter Initialization on Battery Life Prediction for Online Applications", in Proc. 13-rd Int. C Electron. Packaging Tech. High Density Packaging, ICEPT-HDP 2012, IEEE, Guilin, China, 13-16 Aug., 2012, pp. (1043 - 1047), ISBN 978-1-4673-1681-1. [Indexed: ISI Web of Science, Thomson Reuters].
 
 
Cited work:
[Jrnl ]
Mihai V. Micea, Gabriel N. Carstoiu, Lucian Ungurean, Dan Chiciudean, Vladimir I. Cretu, Voicu Groza, "PARSECS: A Predictable Data Communication System for Smart Sensors and Hard Real-Time Applications", IEEE Transactions on Instrumentation and Measurement, volume 59, issue 11, IEEE, Nov., 2010, pp. (2968 - 2981), ISSN 0018-9456, DOI: 10.1109/TIM.2010.2046363. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 1.214]. [12].
 
[+] Keywords | [+] Abstract | Cover picture | Journal info | IEEE Index Record (Inspec)
Communication protocols; Hard real-time (HRT); Predictability; Serial peripheral interface (SPI); Smart sensors; Time triggered
This paper studies the problem of data communication protocols for multiprocessor smart sensors and embedded applications with hard real-time (HRT) or critical requirements. We propose a time-triggered communication interface and set of protocols, called Predictable ARchitecture for Sensor Communication Systems (PARSECS), specifically designed to sustain, at low costs and complexity, the predictable operation of such HRT systems. The general interface architecture, data format, and communication protocols are discussed, along with a case study-the implementation of PARSECS on the full-duplex serial peripheral interface for the COllaborative Robotic Environment-the Timisoara eXperiment (CORE-TX) smart sensors platform. Its predictability, timeliness, and overall performance evaluation and validation are presented in detail based on experimental results and measurements. A comparative study with some of the most prominent systems in the field is also provided.
  Cited in 4 papers (with a cummulated IF: 2.614):
 
  • [Jrnl 4]  H. Lin, C. Wei, H. Chen, "Cell quality measurement using cloud computing in case of NiCd/NiMH battery study", Adv. Compos. Lett., vol. 29, Sage Publications, UK, Feb. 2020, ISSN 0963-6935, DOI: 10.1177 /2633366X19898193. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [Jrnl 3]  J. Rivera-Mejia, J. E. Villafuerte-Arroyo, J. Vega-Pineda, R. Sandoval-Rodriguez, "Comparison of Compensation Algorithms for Smart Sensors With Approach to Real-Time or Dynamic Applications", IEEE Sens. J, vol. 15 (12), IEEE, USA, Dec. 2015, pp. (7071 - 7080), ISSN 1530-437X, DOI: 10.1109/JSEN.2015.2469279. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 2]  J. Rivera-Mejia, J. E. Villafuerte-Arroyo, J. Vega-Pineda, "Evaluation of the Progressive Polynomial Compensation Algorithm for Dynamic or Real-Time Applications", in Proc. 30-th IEEE Instrum. Meas. Tech. C, I2MTC 2013, IEEE, Minneapolis, USA, 06-09 May., 2013, pp. (861 - 865), ISBN 978-1-4673-4621-4, ISSN 1091-5281, DOI: 10.1109/I2MTC.2013.6555537. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 1]  M. Nahas, "Applying Eight-to-Eleven Modulation to reduce message-length variations in distributed embedded systems using the Controller Area Network (CAN) protocol", Canadian J Electrical Electron. Eng., vol. 2 (7), AM Publishers Corporation, Canada, Jul. 2011, pp. (282 - 293), ISSN 1923-0540.
 
 
Cited work:
[Jrnl ]
Mihai V. Micea, Andrei Stancovici, Dan Chiciudean, Constantin Filote, "Indoor Inter-Robot Distance Measurement in Collaborative Systems", Advances in Electrical and Computer Engineering, volume 10, issue 3, Adrian Graur (Eds.), Stefan cel Mare University of Suceava, Romania, Aug., 2010, pp. (21 - 26), ISSN 1582-7445, DOI: 10.4316/AECE.2010.03004. [Online]. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 0.555]. [16].
 
[+] Keywords | [+] Abstract | Journal info | AECE Journal Index Record | Full paper
Collaborative system; Distance measurement; Indoor communication; Mobile robots; Sonar
This paper focuses on the problem of autonomous distance calculation between multiple mobile robots in collaborative systems. We propose and discuss two distinct methods, specifically developed under important design and functional constraints, such as the speed of operation, accuracy, energy and cost efficiency. Moreover, the methods are designed to be applied to indoor robotic systems and are independent of fixed landmarks. The measurement results, performed on the CORE-TX case study, show that the proposed solutions meet the design requirements previously specified.
  Cited in 7 papers (with a cummulated IF: 3.709):
 
  • [Jrnl 7]  J. S. Gaggatur, G. Banerjee, "Time of arrival measurement for indoor distance monitoring in 130-nm CMOS", Measurement, vol. 146, Elsevier Science Ltd., Oxon, UK, Nov. 2019, pp. (372 - 379), ISSN 0263-2241, DOI: 10.1016/j.measurement.2019.02.091. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 6]  A. G. Dimitriou, N. Fachantidis, O. Milios, P. Perlantidis, A. Morgado-Estevez, F. L. Zacarias, J. L. Aparicio, "Bridging Mindstorms with Arduino for the Exploration of the Internet of Things and Swarm Behaviors in Robotics", in Proc. Interactive Mob. Commun. Technol. Learning, IMCL 2017, vol. 725, Springer, The Netherlands, Dec., 2017, pp. (593 - 600), ISBN 978-3-319-75174-0, DOI: 10.1007/978-3-319-75175-7_58. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 5]  N. Jia, "Research on Indoor Robot based on Monocular Vision", in Proc. Int. C Intell. Human-Machine Syst. Cyber., IHMSC 2017, IEEE, Hangzhou, China, 26-27 Aug., 2017, pp. (337 - 340), ISBN 978-1-5386-3022-8, ISSN 2157-8982, DOI: 10.1109/IHMSC.2017.83. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 4]  G. Venkata Swaroop, G. Murugaboopathi, "WDT-CH: Watch Dog Timer Cluster Head Node based Sensor node - Master operations in Wireless Mobile Ad-Hoc Networks (WMAN)", Indian J Sci. Tech., vol. 9 (36), ISEE & IPL, India, Sep. 2016, pp. (1 - 10), ISSN 0974-6846, DOI: 10.17485/ijst/2016/v9i36/92866.
 
  • [Jrnl 3]  I. Ahmed, I. b. Aris, M. H. Marhaban, A. J. Ishak, "Wireless Energy Monitoring in Biped Robot Based on Xbee RF Module", Australian J Basic Applied Sci., vol. 10 (11), AENSI Publisher, Amman, Jordan, May. 2016, pp. (228 - 235), ISSN 1991-8178.
 
  • [Jrnl 2]  B. R. Munirathinam, "Watch Dog Timer Node (WDTN) based Sensor Node - Master Operations in Wireless Sensor Networks (WSN) ", Asian J Res. Social Sci. Humanities, vol. 6 (9), Asian Research Consortium, India, Sep. 2016, pp. (2176 - 2190), ISSN 2249-7315.
 
  • [Jrnl 1]  W. K. Lai, C. Fan, C. Shieh, "Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks", KSII Trans. Internet Inf. Syst., vol. 8 (4), Korean Society for Internet Information (KSII), South Korea, Apr. 2014, pp. (1237 - 1255), ISSN 1976-7277, DOI: 10.3837/tiis.2014.04.005. [Indexed: ISI Web of Science, Thomson Reuters].
 
 
Cited work:
[Jrnl ]
Artur M. Kuczapski, Mihai V. Micea, Laurentiu A. Maniu, Vladimir I. Cretu, "Efficient Generation of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling", Information Technology and Control, volume 39, issue 1, Rimantas Seinauskas, Dalius Rubliauskas, Laimutis Telksnys (Eds.), Kaunas University of Technology, Kaunas, Lithuania, 2010, pp. (32 - 37), ISSN 1392-124X. [Online]. [Indexed: ISI Web of Science, Thomson Reuters]. [IF: 0.88]. [44].
 
[+] Keywords | [+] Abstract | Cover picture | Journal info
Genetic algorithms; Job-shop scheduling; Initial populations; Chromosomes
This paper presents an efficient method of enhancing genetic algorithms (GAs) for solving the Job-Shop Scheduling Problem (JSSP), by generating near optimal initial populations. Since the choice of the initial population has a high impact on the speed of the evolution and the quality of the final results, we focused on generating its individuals using genetically evolved priority dispatching rules. Our experiments show a significant increase in quality and speed of scheduling with GAs, and in some cases the evolved priority rules alone determined better solutions then the GA itself. The analyzed reference GA uses Giffler & Thompson (GT) heuristic and priority lists. To speed up the generation of priority rules, we have used a weighted sum of priority rules formula that revealed significantly better performances than Genetic Programming (GP). For evaluation of the proposed algorithm, the well known benchmark data sets from Fisher & Thompson (F&T) and Laurence Kramer (LA) have been used.
  Cited in 28 papers (with a cummulated IF: 26.297):
 
  • [Jrnl 28]  M. Habib Zahmani, B. Atmani, "Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation", J Sched., vol. 24 (2), Springer, USA, Apr. 2021, pp. (175 - 196), ISSN 1094-6136, DOI: 10.1007/s10951-020-00664-5. [Indexed: ISI Web of Science, Clarivate Analytics].
 
  • [BChp 27]  S. Nguyen, M. Zhang, M. Johnston, K. C. Tan, "Genetic Programming for Job Shop Scheduling", in Studies in Computational Intelligence, vol. 779, Springer, The Netherlands, 2019, pp. (143 - 167), ISSN 1860-949X, DOI: 10.1007 /978-3-319-91341-4_8. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 26]  I. Vlasic, M. Durasevic, D. Jakobovic, "Improving genetic algorithm performance by population initialisation with dispatching rules", Comput. lnd. Eng., vol. 137, Pergamon-Elsevier Science Ltd., Oxford, UK, Nov. 2019, pp. (1 - 15), ISSN 0045-7906, DOI: 10.1016/j.cie.2019.106030. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 25]  J. Zhang, G. Ding, Y. Zou, S. Qin, J. Fu, "Review of job shop scheduling research and its new perspectives under Industry 4.0", J Intell. Manuf., vol. 30 (4), Springer, The Netherlands, Apr. 2019, pp. (1809 - 1830), ISSN 0956-5515, DOI: 10.1007/s10845-017-1350-2. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 24]  V. Guliashki, L. Kirilov, "Algorithm Generating Initial Population of Schedules for Population-Based Algorithms Solving Flexible Job Shop Problems", C. R. Acad. Bulg. Sci., vol. 72 (6), Publ. House Bulgarian Acad. Sci., Sofia, BG, 2019, pp. (699 - 710), ISSN 1310-1331, DOI: 10.7546/CRABS.2019.06.01. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 23]  S. Yu, "Differential Evolution Quantum Particle Swarm Optimization for Solving Job-shop Scheduling Problem", in Proc. Chinese Contr. Decision C, CCDC 2019, IEEE, China, 03-05 Jun., 2019, pp. (559 - 564), ISBN 978-1-7281-0105-7, DOI: 10.1109/CCDC.2019.8833361. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 22]  S. Shukor, I. Shaheed, S. Abdullah, "Population initialisation methods for fuzzy job-shop scheduling problems: Issues and future trends", Int J Adv. Sci. Eng. Inf. Technol., vol. 8 (4), Insight Society, Padang, Indonesia, Aug. 2018, pp. (1820 - 1828), ISSN 2088-5334. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 21]  L. A. Son, H. Aoki, T. Suzuki, "Evaluation of Driver Distraction with Changes in Gaze Direction Based on a Vestibulo-Ocular Reflex Model", J Transport. Tech., vol. 7, Scientific Research Publishing, Wuhan, China, Jul. 2017, pp. (336 - 350), ISSN 2160-0473, DOI: 10.4236/jtts.2017.73022.
 
  • [Jrnl 20]  S. Nguyen, Y. Mei, M. Zhang, "Genetic programming for production scheduling: a survey with a unified framework", Complex Intell. Syst., vol. 3 (1), Springer Heidelberg, Heidelberg, GE, Mar. 2017, pp. (41 - 66), ISSN 2199-4536, DOI: 10.1007/s40747-017-0036-x. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 19]  V. S. Jorapur, V. S. Puranik, A. S. Deshpande, M. Sharma, "A Promising Initial Population Based Genetic Algorithm for Job Shop Scheduling Problem", J Soft. Eng. Applic., vol. 9, Scientific Research Publishing, Wuhan, China, May. 2016, pp. (208 - 214), ISSN 1945-3116.
 
  • [Jrnl 18]  I. M. Shaheed, A. S. Syaimak, B. N. Erna, "An empirical analysis of the relationship between the initialization method performance and the convergence speed of a meta-heuristic for Fuzzy Job-Shop scheduling problems", J Theor. Applied Inf. Tech., vol. 93 (2), Little Lion Scientific, Islamabad, Pakistan, Nov. 2016, pp. (297 - 311), ISSN 1992-8645. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 17]  M. Abdolrazzagh-Nezhad, E. B. Nababan, N. S. Jaddi, H. M. Sarim, "Electromagnetic-like mechanism for job-shop scheduling by novel heuristic initialization", J Theor. Applied Inf. Tech., vol. 93 (1), Little Lion Scientific, Islamabad, Pakistan, Nov. 2016, pp. (174 - 184), ISSN 1992-8645. [Indexed: Scopus, Elsevier].
 
  • [Jrnl 16]  J. Branke, . Su Nguyen, C. W. Pickardt, M. Zhang, "Automated Design of Production Scheduling Heuristics: A Review", IEEE Trans. Evol. Comput., vol. 20 (1), IEEE, USA, Feb. 2016, pp. (110 - 124), ISSN 1089-778X, DOI: 10.1109/TEVC.2015.2429314. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 15]  B. Waschneck, T. Bauernhansl, T. Altenmuller, A. Kyek, "Production Scheduling in Complex Job Shops from an Industrie 4.0 Perspective: A Review and Challenges in the Semiconductor Industry", in Proc. SAMI@ iKNOW 2016, SAMI@ iKNOW 2016, Graz, AT, 18-19 Oct., 2016, pp. (1 - 12), ISSN 1613-0073. [Indexed: Scopus, Elsevier].
 
  • [Conf 14]  A. Masood, Y. Mei, G. Chen, M. Zhang, "Many-Objective Genetic Programming for Job-Shop Scheduling", in Proc. IEEE Congress Evol. Comput., CEC 2016, IEEE, Vancouver, Canada, 24-29 Jul., 2016, pp. (1 - 8), ISBN 978-1-5090-0622-9. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 13]  J. Li, G. Chen, J. Li, R. Wang, "Availability Evaluation and Design Optimization of Multi-state Weighted k-out-of-n Systems", in Proc. IEEE Prognostics Syst. Health Manag. C, PHM-CHENGDU 2016, IEEE, Chengdu, China, 19-21 Oct., 2016, pp. (1 - 6), ISBN 978-1-5090-2778-1, ISSN 2166-5656, DOI: 10.1109/PHM.2016.7819791. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 12]  A. Turkyilmaz, S. Bulkan, "A hybrid algorithm for total tardiness minimisation in flexible job shop: genetic algorithm with parallel VNS execution", Int. J Prod. Res., vol. 53 (6), Taylor & Francis Ltd., Oxon, UK, Mar. 2015, pp. (1832 - 1848), ISSN 0020-7543, DOI: 10.1080/00207543.2014.962113. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 11]  S. Abdullah, M. Abdolrazzagh-Nezhad, "Fuzzy job-shop scheduling problems: A review", Inform. Sciences, vol. 278, Elsevier Science B.V., The Netherlands, Sep. 2014, pp. (380 - 407), ISSN 0020-0255, DOI: 10.1016/j.ins.2014.03.060. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 10]  M. Abdolrazzagh-Nezhad, S. Abdullah, "Robust Intelligent Construction Procedure for Job-Shop Scheduling", Inf. Tech. Control, vol. 43 (3), Kaunas University of Technology, Kaunas, Lithuania, Sep. 2014, pp. (217 - 229), ISSN 1392-124X, DOI: 10.5755/j01.itc.43.3.3536. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 9]  G. Foster, C. Turner, S. Ferguson, J. Donndelinger, "Creating targeted initial populations for genetic product searches in heterogeneous markets", Eng. Optimiz., vol. 46 (12), Taylor & Francis Ltd., Oxon, UK, Dec. 2014, pp. (1729 - 1747), ISSN 0305-215X, DOI: 10.1080/0305215X.2013.861458. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 8]  T. T. Dang, "Combination of dispatching rules and prediction for solving multi-objective scheduling problems", Int. J Prod. Res., vol. 51 (17), Taylor & Francis Ltd., Oxon, UK, Sep. 2013, pp. (5180 - 5194), ISSN 0020-7543, DOI: 10.1080/00207543.2013.793857. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 7]  N. Nedic, G. Svenda, "Workflow Management System for DMS", Inf. Tech. Control, vol. 42 (4), Kaunas University of Technology, Kaunas, Lithuania, 2013, pp. (373 - 385), ISSN 1392-124X, DOI: 10.5755/j01.itc.42.4.4546. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 6]  Y. Liu, S. Sun, S. Yang, C. Chuang, "Application of genetic algorithm in production scheduling: A case study on the food processing business", Inform. J, vol. 15 (12 C), International Information Institute, Koganei, JP, Jan. 2012, pp. (6063 - 6075), ISSN 1343-4500. [Indexed: Scopus, Elsevier].
 
  • [Conf 5]  A. A. Boushaala, M. A. Shouman, S. Esheem, "Genetic Algorithm based on Some Heuristic Rules for Job Shop Scheduling Problem", in Proc. 3-rd Int. C Ind. Engl. Oper. Manag., IEOM 2012, IEOM Society, Istanbul, Turkey, 03-06 Jul., 2012, pp. (280 - 288), ISBN 978-0-9855497-0-1.
 
  • [Jrnl 4]  H. Cao, L. Jia, G. Si, Y. Zhang, "A Variable Selection Method for Pulverizing Capability Prediction of Tumbling Mill Based on Improved Hybrid Genetic Algorithm", Inf. Tech. Control, vol. 40 (3), Kaunas University of Technology, Kaunas, Lithuania, 2011, pp. (210 - 217), ISSN 1392-124X. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 3]  R. Milimonfared, R. M. Marian, Z. Hajiabolhasani, "A Genetic Algorithm Approach for Modelling and Optimisation of MAJSP - Part II: GA operators and results", in Proc. IEEE Int. C Ind. Eng. and Eng. Manag., IEEM 2011, IEEE, Singapore, 06-09 Dec., 2011, pp. (1279 - 1283), ISBN 978-1-4577-0740-7, ISSN 2157-3611, DOI: 10.1109/IEEM.2011.6118122. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Jrnl 2]  N. Nedic, S. Vukmirovic, A. Erdeljan, L. Imre, D. Capko, "A Genetic Algorithm Approach for Utility Management System Workflow Scheduling", Inf. Tech. Control, vol. 39 (4), Kaunas University of Technology, Kaunas, Lithuania, 2010, pp. (310 - 316), ISSN 1392-124X. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Conf 1]  Y. C. Liu, S. M. Yang, C. Y. Chuang, "On the Improvement of Binary Genetic Algorithms with Experienced Priority Rules in Project Scheduling", in Proc. Int. C Logistics Transp. and Int. C Business Econ., ICLT_ICBE 2010, UP Organizer and Publication Co., Queenstown, New Zealand, 16-18 Dec., 2010, pp. (1 - 7), ISBN 978-974-11-1350-7.
 
 
Cited work:
[Jrnl ]
Jrnl
Marius Marcu, Dacian Tudor, Sebastian Fuicu, Silvia Copil-Crisan, Florin Maticu, Mihai V. Micea, "Power Efficiency Study of Multi-threading Applications for Multi-core Mobile Systems", WSEAS Transactions on Computers, volume 7, issue 12, World Scientific and Engineering Academy and Society (WSEAS), Wisconsin, USA, Dec., 2008, pp. (1875 - 1885), ISSN 1109-2750. [Indexed: Compendex, Elsevier, Inc.]. [11].
 
[+] Keywords | [+] Abstract | Journal Table of Contents | ACM Index Record
Power consumption; Multi-threading; Multi-core; Mobile applications; Power profiling
One constant in computing which is true also for mobile computing is the continue requirement for greater performance. Every performance advance in mobile processors leads to another level of greater performance demands from newest mobile applications. However, on battery powered devices performance is strictly limited by the battery capacity, therefore energy efficient applications and systems have to be developed. The power consumption problem of mobile systems is in general a very complex one and remained very actual for quite a long time. In this paper we aim to define a software execution framework for mobile systems in order to characterize the power consumption profile of multi-threading mobile applications. Study results for different thread libraries, multi-core processors and multithreaded parallelized applications are also presented.
  Cited in 7 papers (with a cummulated IF: 1.765):
 
  • [Jrnl 7]  S. Li, S. Mishra, "Optimizing power consumption in multicore smartphones", J Parallel Distrib. Comput., vol. 95, Academic Press Inc. Elsevier Science, USA, Sep. 2016, pp. (124 - 137), ISSN 0743-7315, DOI: 10.1016/j.jpdc.2016.02.004. [Indexed: ISI Web of Science, Thomson Reuters].
 
  • [Ptnt 6]