Filtre afisare

Reset Filters to Default:

Reset All Filters

Detail Level:

Time Interval (Years):

From: To: Set Time Interval
Raport al citarilor
 
 
Lucrarea citata
[Jrnl 1]Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks
(Metoda de predictie online a starii de operare a bateriilor cu ioni de litiu, bazata pe retele neuronale GRU)
Autor(i): Ungurean, Lucian; Micea, Mihai Victor; Carstoiu, Gabriel
In: International Journal of Energy Research
Volumul 44, Numarul 8
Editor(i): Dincer, Ibrahim
Publicat de: Wiley
USA, Jun. 2020
Pagini: 6767 - 6777, ISSN 0363-907X, DOI: 10.1002/er.5413
Indexat in: ISI Web of Science, Thomson Reuters (WOS: 000524334200001), IF: 5.164
109
 [+] Keywords | [+] Abstract | Journal info | TOP (#1) Journal, "Science - NUCLEAR SCIENCE & TECHNOLOGY" Section | UEFISCDI PRECISI Prize
Battery management system; Gated recurrent unit; Lithium-ion battery; Long-short term memory; Online state prediction; Recurrent neural networks; State of health
Online state of health {SOH) prediction of lithium-ion batteries remains a very important problem in assessing the safety and reliability of batterypowered systems. Deep learning techniques based on recurrent neural networks with memory, such as the long short-term memory {LSTM) and gated recurrent unit {GRU), have very promising advantages, when compared to other SOH estimation algorithms. This work addresses the battery SOH prediction based on GRU. A complete BMS is presented along with the internal structure and configuration parameters. The neural network was highly optimized by adaptive moment estimation {Adam) algorithm. Experimental data show very good estimation results for different temperature values, not only at room value. Comparisons performed against other relevant estimation methods highlight the performance of the recursive neural network algorithms such as GRU and LSTM, with the exception ofthe battery regeneration points. Compared to LSTM, the GRU algorithm gives slightly higher estimation errors, but within similar prediction error range, while needing significantly fewer parameters {about 25% fewer), thus making it a very suitable candidate for embedded implementations.
20 Citari in total (cu un IF cumulat: 100.325)
 
 
Publicatiile care o citeaza
[Jrnl 20]Z. Chen, H. Zhao, Y. Zhang, S. Shen, J. Shen, Y. Liu, "State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network", J Power Sources, vol. 521, Elsevier Science B.V., The Netherlands, Dec. 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2021.230892. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 19]X. Shu, S. Shen, J. Shen, Y. Zhang, . et al., "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", Iscience, vol. 24 (11), Cell Press, USA, Nov. 2021, ISSN 2589-0042, DOI: 10.1016/j.isci.2021.103265. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 18]E. Vanem, C. B. Salucci, A. Bakdi, O. A. Alnes, "Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems", J Energy Storage, vol. 43, Elsevier Science B.V., The Netherlands, Nov. 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103158. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 17]L. Zhang, S. Wang, C. Zou, . et al., "A novel streamlined particle-unscented Kalman filtering method for the available energy prediction of lithium-ion batteries considering the time-varying temperature-current influence", Int. J Energy Res., vol. 45 (12), Wiley, USA, Oct. 2021, pp. (17858 - 17877), ISSN 0363-907X, DOI: 10.1002/er.6930. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 16]A. Yuliani, A. Ramdan, V. Zilvan, A. Supianto, D. Krisnandi, R. Yuwana, D. Prajitno, H. Pardede, "Remaining Useful Life Prediction of Lithium-Ion Battery Based on LSTM and GRU", Int. C Comput. Contr. Informatics Applic., ACM, USA, Oct. 2021, pp. (21 - 25), ISBN 978-1-4503-8524-4, DOI: 10.1145/3489088.3489092. [Indexed: Scopus, Elsevier].
[Jrnl 15]M. Adaikkappan, N. Sathiyamoorthy, "Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review", Int. J Energy Res., vol. 46 (3), Wiley, USA, Oct. 2021, pp. (2141 - 2165), ISSN 0363-907X, DOI: 10.1002/er.7339. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 14]X. Lai, Y. Huang, H. Gu, . et al., "Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries", Energy Storage Mater., vol. 40, Elsevier Science B.V., The Netherlands, Sep. 2021, pp. (96 - 123), ISSN 2405-8297, DOI: 10.1016/j.ensm.2021.05.010. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 13]R. Rouhi Ardeshiri, C. Ma, "Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach", Int. J Energy Res., vol. 45 (11), Wiley, USA, Sep. 2021, pp. (16633 - 16648), ISSN 0363-907X, DOI: 10.1002/er.6910. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 12]Y. Hou, Z. Zhang, P. Liu, C. Song, Z. Wang, "Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles", Adv. Mech. Eng., vol. 13 (7), Sage Publications, London, UK, Jul. 2021, ISSN 1687-8132, DOI: 10.1177/16878140211027735. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 11]L. Zheng, Y. Hou, T. Zhang, X. Pan, "Performance prediction of fuel cells using long short-term memory recurrent neural network", Int. J Energy Res., vol. 45 (6), Wiley, USA, May. 2021, pp. (9141 - 9161), ISSN 0363-907X, DOI: 10.1002/er.6443. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 10]M. S. H. Lipu, M. A. Hannan, T. F. Karim, . et al., "Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook", J Clean Prod., vol. 292, Elsevier Science B.V., The Netherlands, Apr. 2021, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2021.126044. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 9]C. Jiang, Y. Mao, V. Chai, M. Yu, "Day-ahead renewable scenario forecasts based on generative adversarial networks", Int. J Energy Res., vol. 45 (5), Wiley, USA, Apr. 2021, pp. (7572 - 7587), ISSN 0363-907X, DOI: 10.1002/er.6340. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 8]K. Kaur, A. Garg, X. Cui, S. Singh, B. K. Panigrahi, "Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (3113 - 3128), ISSN 0363-907X, DOI: 10.1002/er.6005. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 7]A. Chmielewski, J. Mozaryn, P. Piorkowski, J. Dybala, "Comparison of hybrid recurrent neural networks anddual-polarizationmodels of valve regulated lead acid battery", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (2560 - 2580), ISSN 0363-907X, DOI: 10.1002/er.5947. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 6]C. Huang, Y. Shen, Y. Chen, H. Chen, "A novel hybrid deep neural network model for short-term electricity price forecasting", Int. J Energy Res., vol. 45 (2), Wiley, USA, Feb. 2021, pp. (2511 - 2532), ISSN 0363-907X, DOI: 10.1002/er.5945. [Indexed: ISI Web of Science, Clarivate Analytics].
[Jrnl 5]A. Kim, S. Lee, "Online State of Health Estimation of Batteries under Varying Discharging Current Based on a Long Short Term Memory", Int. C Ubiquitous Inf. Manag. Commun., IEEE, USA, Jan. 2021, ISBN 9-780-7381-0508-6, DOI: 10.1109/IMCOM51814.2021.9377368. [Indexed: Scopus, Elsevier].
[Jrnl 4]K. Yang, X. Wang, "Abnormal identification of lubricating oil parameters and evaluation of physical and chemical properties based on machine learning", IOP C Ser. Mater. Sci. Eng., vol. 1043 (5), IOP Publishing Ltd., USA, 2021, ISSN 1757-8981, DOI: 10.1088/1757-899X/1043/5/052053. [Indexed: Scopus, Elsevier].
[Jrnl 3]L. Yao, S. Xu, A. Tang, . et al., "A review of lithium-ion battery state of health estimation and prediction methods", World Electr. Veh. J, vol. 12 (3), MDPI AG., Basel, Switzerland, 2021, ISSN 2032-6653, DOI: 10.3390/wevj12030113. [Indexed: Scopus, Elsevier].
[Jrnl 2]S. Wang, Y. S. Fan, C. Fernandez, C. Yu, W. Cao, Z. Chen, "Battery System Modeling", Batt. Syst. Modeling, Elsevier, The Netherlands, 2021, pp. (1 - 347), ISBN 9-780-3239-0472-8, DOI: 10.1016/B978-0-323-90472-8.09993-5. [Indexed: Scopus, Elsevier].
[Jrnl 1]R. Li, H. Zhang, W. Li, X. Zhao, Y. Zhou, "Toward group applications: A critical review of the classification strategies of lithium-ion batteries", World Electr. Veh. J, vol. 11 (3), MDPI AG., Basel, Switzerland, 2020, pp. (1 - 23), ISSN 2032-6653, DOI: 10.3390/wevj11030058. [Indexed: Scopus, Elsevier].