[Jrnl 1] | Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks |
![]() | Author(s): Ungurean, Lucian; Micea, Mihai Victor; Carstoiu, Gabriel In: International Journal of Energy Research Volume 44, Issue 8 Editor(s): Dincer, Ibrahim Publisher: Wiley USA, Jun. 2020 Pages: 6767 - 6777, ISSN 0363-907X, DOI: 10.1002/er.5413 Indexed: ISI Web of Science, Thomson Reuters (WOS: 000524334200001), IF: 5.164 109 |
20 | Citations in total (with a cummulated IF: 100.325) |
[Jrnl 20] | Zheng Chen, Hongqian Zhao, Yuanjian Zhang, Shiquan Shen, Jiangwei Shen, Yonggang Liu, "State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network", Journal of Power Sources, volume 521, section 230892, Elsevier Science B.V., The Netherlands, Dec., 2021, ISSN 0378-7753, DOI: 10.1016/j.jpowsour.2021.230892. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 9.794]. |
[Jrnl 19] | Xing Shu, Shiquan Shen, Jiangwei Shen, Yuanjian Zhang, et al., "State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives", iScience, volume 24, issue 11, section 103265, Cell Press, USA, Nov., 2021, ISSN 2589-0042, DOI: 10.1016/j.isci.2021.103265. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 6.107]. |
[Jrnl 18] | Erik Vanem, Clara B. Salucci, Azzeddine Bakdi, Oystein A. Alnes, "Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems", Journal of Energy Storage, volume 43, section 103158, Elsevier Science B.V., The Netherlands, Nov., 2021, ISSN 2352-152X, DOI: 10.1016/j.est.2021.103158. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 8.907]. |
[Jrnl 17] | Liang Zhang, Shunli Wang, Chuanyun Zou, et al., "A novel streamlined particle-unscented Kalman filtering method for the available energy prediction of lithium-ion batteries considering the time-varying temperature-current influence", International Journal of Energy Research, volume 45, issue 12, Wiley, USA, Oct., 2021, pp. (17858 - 17877), ISSN 0363-907X, DOI: 10.1002/er.6930. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 16] | A.R. Yuliani, A. Ramdan, V. Zilvan, A.A. Supianto, D. Krisnandi, R.S. Yuwana, D. Prajitno, H. Pardede, "Remaining Useful Life Prediction of Lithium-Ion Battery Based on LSTM and GRU", International Conference on Computer, Control, Informatics and Its Applications, ACM, USA, Oct., 2021, pp. (21 - 25), ISBN 978-1-4503-8524-4, DOI: 10.1145/3489088.3489092. [Indexed: Scopus, Elsevier]. [IF: 4.672]. |
[Jrnl 15] | Maheshwari Adaikkappan, Nageswari Sathiyamoorthy, "Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review", International Journal of Energy Research, volume 46, issue 3, Wiley, USA, Oct., 2021, pp. (2141 - 2165), ISSN 0363-907X, DOI: 10.1002/er.7339. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 14] | Xin Lai, Yunfeng Huang, Huanghui Gu, et al., "Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries", Energy Storage Materials, volume 40, Elsevier Science B.V., The Netherlands, Sep., 2021, pp. (96 - 123), ISSN 2405-8297, DOI: 10.1016/j.ensm.2021.05.010. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 20.831]. |
[Jrnl 13] | Reza Rouhi Ardeshiri, Chengbin Ma, "Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach", International Journal of Energy Research, volume 45, issue 11, Wiley, USA, Sep., 2021, pp. (16633 - 16648), ISSN 0363-907X, DOI: 10.1002/er.6910. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 12] | Yankai Hou, Zhaosheng Zhang, Peng Liu, Chunbao Song, Zhenpo Wang, "Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles", Advances in Mechanical Engineering, volume 13, issue 7, section 1.68781E+16, Sage Publications, London, UK, Jul., 2021, ISSN 1687-8132, DOI: 10.1177/16878140211027735. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 1.566]. |
[Jrnl 11] | Lu Zheng, Yongping Hou, Tao Zhang, Xiangmin Pan, "Performance prediction of fuel cells using long short-term memory recurrent neural network", International Journal of Energy Research, volume 45, issue 6, Wiley, USA, May., 2021, pp. (9141 - 9161), ISSN 0363-907X, DOI: 10.1002/er.6443. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 10] | M. S. H. Lipu, M. A. Hannan, Tahia F. Karim, et al., "Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook", Journal of Cleaner Production, volume 292, section 126044, Elsevier Science B.V., The Netherlands, Apr., 2021, ISSN 0959-6526, DOI: 10.1016/j.jclepro.2021.126044. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 11.072]. |
[Jrnl 9] | Congmei Jiang, Yongfang Mao, Vi Chai, Mingbiao Yu, "Day-ahead renewable scenario forecasts based on generative adversarial networks", International Journal of Energy Research, volume 45, issue 5, Wiley, USA, Apr., 2021, pp. (7572 - 7587), ISSN 0363-907X, DOI: 10.1002/er.6340. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 8] | Kirandeep Kaur, Akhil Garg, Xujian Cui, Surinder Singh, Bijaya K. Panigrahi, "Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles", International Journal of Energy Research, volume 45, issue 2, Wiley, USA, Feb., 2021, pp. (3113 - 3128), ISSN 0363-907X, DOI: 10.1002/er.6005. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 7] | Adrian Chmielewski, Jakub Mozaryn, Piotr Piorkowski, Jacek Dybala, "Comparison of hybrid recurrent neural networks anddual-polarizationmodels of valve regulated lead acid battery", International Journal of Energy Research, volume 45, issue 2, Wiley, USA, Feb., 2021, pp. (2560 - 2580), ISSN 0363-907X, DOI: 10.1002/er.5947. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 6] | Chiou-Jye Huang, Yamin Shen, Yung-Hsiang Chen, Hsin-Chuan Chen, "A novel hybrid deep neural network model for short-term electricity price forecasting", International Journal of Energy Research, volume 45, issue 2, Wiley, USA, Feb., 2021, pp. (2511 - 2532), ISSN 0363-907X, DOI: 10.1002/er.5945. [Indexed: ISI Web of Science, Clarivate Analytics]. [IF: 4.672]. |
[Jrnl 5] | A. Kim, S. Lee, "Online State of Health Estimation of Batteries under Varying Discharging Current Based on a Long Short Term Memory", International Conference on Ubiquitous Information Management and Communication, section 9377368, IEEE, USA, Jan., 2021, ISBN 9-780-7381-0508-6, DOI: 10.1109/IMCOM51814.2021.9377368. [Indexed: Scopus, Elsevier]. |
[Jrnl 4] | K. Yang, X. Wang, "Abnormal identification of lubricating oil parameters and evaluation of physical and chemical properties based on machine learning", IOP Conference Series: Materials Science and Engineering, volume 1043, issue 5, section 52053, IOP Publishing Ltd., USA, 2021, ISSN 1757-8981, DOI: 10.1088/1757-899X/1043/5/052053. [Indexed: Scopus, Elsevier]. |
[Jrnl 3] | L. Yao, S. Xu, A. Tang, et al., "A review of lithium-ion battery state of health estimation and prediction methods", World Electric Vehicle Journal, volume 12, issue 3, section 113, MDPI AG., Basel, Switzerland, 2021, ISSN 2032-6653, DOI: 10.3390/wevj12030113. [Indexed: Scopus, Elsevier]. |
[Jrnl 2] | S. Wang, Y.: S. Fan, C. Fernandez, C. Yu, W. Cao, Z. Chen, "Battery System Modeling", Elsevier, The Netherlands, 2021, pp. (1 - 347), ISBN 9-780-3239-0472-8, DOI: 10.1016/B978-0-323-90472-8.09993-5. [Indexed: Scopus, Elsevier]. |
[Jrnl 1] | R. Li, H. Zhang, W. Li, X. Zhao, Y. Zhou, "Toward group applications: A critical review of the classification strategies of lithium-ion batteries", World Electric Vehicle Journal, volume 11, issue 3, section 58, MDPI AG., Basel, Switzerland, 2020, pp. (1 - 23), ISSN 2032-6653, DOI: 10.3390/wevj11030058. [Indexed: Scopus, Elsevier]. |