This paper is a preprint (IEEE “accepted” status).

IEEE copyright notice. © 2024 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

DOI. 10.1109/ISETC63109.2024.10797341

Simulating Human Physical Behavior using Unreal
Engine Full Body Inverse Kinematics

Alexandru-Mihai Pescaru
Department of Computer and Information Technology
Politehnica University Timisoara
V. Parvan 2, 300223 Timisoara, Romania
alexandru.pescaru@cs.upt.ro

Traian-Radu Plosca
Department of Automation and Applied Informatics
Politehnica University Timisoara
V. Parvan 2, 300223 Timisoara, Romania
traian.plosca@aut.upt.ro

Abstract—Extracting, analyzing, and simulating human physi-
cal behavior have proven to be challenging tasks for researchers
all over the world for many years. If developed successfully, they
can generate important results that will contribute to progress
in many fields. These results can change many people’s lives,
aiding in a handful of domains, such as security, medicine,
autonomous robots, and many more. A direct outcome is to
obtain the data necessary to train and validate advanced neural
network models implied by many of today’s solutions. We propose
here an approach that uses Unreal Engine 5 to reproduce
the movements characteristic to normal human behavior in a
simulated environment, considering restrictions of body joints.
This method can be used to aid in creating flawless body
animation, both procedural and Al generated. It can be included
in healthcare-related body simulations, video game development,
and in some other fields involving research on physical human
or animal behavior.

Index Terms—visual simulation, behavior analysis, range of
motion, inverse kinematics, robotics, video games.

I. INTRODUCTION

Powered by recent advances in hardware and machine
learning technology, the development of revolutionary tools
that can be used in security, automotive, medicine, and other
domains has become a priority for researchers all over the
world. Great effort was focused on the analysis and simulation
of human physical behavior, which has become a hot topic in
the last decade. The reproduction of human behavior can be a
difficult task, due to varied responses when different subjects
are faced with similar scenarios. This problem has basically
two solutions, either to consider a common observed response
or to train a model based on analyzing a huge amount of data.
Most of the algorithms used in behavior simulation imply at
some point a machine learning model, either to extract or
to analyze behavior, or for both. In all scenarios, training
and validating such complex models involve a lot of data.
Therefore, one of the most challenging issues in this case is
how to obtain the necessary data in a short time and at a
reasonable cost.

Razvan Adrian Bertici
Department XIII Pulmonology

“Victor Babes” University of Medicine and Pharmacy Timisoara

Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
razvan.bertici @umft.ro

Mihai Victor Micea

Department of Computer and Information Technology

Politehnica University Timisoara
V. Parvan 2, 300223 Timisoara, Romania
mihai.micea@cs.upt.ro

Moreover, considering such advanced artificial intelligence
models trained, the problem of testing and validation of
applications still remains. In many cases, it implies expensive
objects and machinery. Especially in the early stages of
research, testing algorithms on robots, or even dummies, can
be costly due to higher rates of errors and failures. Therefore,
testing an algorithm or the continuous training of an artificial
neural network can be done cheaper when using a simulation
environment that can mimic the real-life behavior of entities
involved in the scenario. Developing such simulators is also
a challenging task, especially when we consider algorithms
that process images or video sequences. A commonly adopted
solution in this case is to implement a simulator based on game
engine software that can produce graphics that are faithful to
reality, such as Unreal Engine [1] or Unity [2].

Our research is focused on the possibility of integrating
Unreal Engine version 5 into a human physical behavior sim-
ulator. It is a game engine developed by Epic Games known for
its variety of features, photorealistic graphics capabilities, and
advanced optimizations. We choose this version determined by
the integration of Full Body Inverse Kinematics (FBIK). FBIK
was implemented in Unreal Engine 5 based on the PowerlK
[3] plugin available in the previous version and offers the
possibility to apply inverse kinematics on a chain of bones,
without a limit for the chain length, or even on multiple chains
with a common linking point.

II. RELATED WORK

There are multiple approaches used to simulate human
natural movements, but they differ hardly in results. They
spread from manual character animation based on the repro-
duction of an observed behavior of a real entity to retargeting
animations aiming to simulate the movement by reusing it
between characters. The common approach is to produce a
character in a virtual world that moves quasi-naturally and
use it for film production, video games, robotics, medical

applications, and in general in domains that require behavior
analysis and simulation.

Creating manual animations is not an easy task. An artist
needs years of experience to achieve realistic and good looking
results. Important research was spent in developing techniques
to help artists. Zhang et al. [4] propose an automatic method
to analyze a 3D animation designed to assist the creator.
The methodology starts by analyzing the artist’s work, and
then proposes corrections and improvements. The algorithm
is targeting especially students who are learning to animate in
3D, helping them to achieve faster and better results. Mourot
[5] identifies the same difficulties in manual 3D animation. He
proposes an algorithm which can analyze the 3D animation
scene and adjust joint transforms when needed. The tools pro-
vided consider the position and orientation of joints and, based
on real-world information extracted, try to correct different
aspects of the animation. The algorithm solved issues such as
incorrect joint transforms or incorrect foot placement.

Creating the animation from scratch requires time and con-
sumes important resources. Therefore, generating or reusing
animations proved to be helpful approaches to faster and
cheaper development. Many investigations have been con-
ducted in this direction over the years [6]. Most recent methods
use machine learning as an important development tool that
proves to solve many problems that are too complex for a
procedural approach. Lin and Lee [7] propose a method to
analyze the pose in 2D videos and generate 3D animations
using deep learning. The animation is generated on the basis of
a sequence of trajectories. Another method is proposed in [8]
for animation retargeting. They use a vision language model
that analyzes both the skeleton and the mesh of the source to
complete the task.

In addition to their original purpose, game engines are
widely used in simulation behavior research. A well-known
example is the Microsoft AirSim developed by Microsoft that
is used to easily implement simulators based on its flying
physics support. Many researchers also used Unity and Unreal
Engine [9] for a variety of reasons, such as their out-of-the-
box rendering capabilities, advanced physics simulation, and
easy-to-use architectures.

Starke et al. [10] integrated Unity3D into a robot simulator.
They developed a FBIK system to simulate robotic arm
movement and to easily control robots, either by Al or by
using hardware gadgets. Lam et al. [11] are researching the
possibility of developing a large-scale metaverse application, a
place where people express themselves in a virtual space. They
developed a system that could extract and reproduce human
movement for avatars using Axis Studio for motion capture,
and Unity3D to model the metaverse.

III. ARTICULATED BODY MOTION

An important challenge in the simulation of articulated
body motion is represented by the large number of degrees of
freedom considering all segments of the limbs. To cope with
this problem, most solutions use a model of the body built
around a framework of a kinematic chain, as seen in Fig. 1.a.

Fig. 1. Articulated body as a kinetic chain.

The chain consists of 15 to 17 segments, depending on the
inclusion of the wrists. Up to six degrees of freedom result
from translation and rotation, and three degrees of freedom
from shoulder and hip joints. The clavicle joints are given two
degrees of freedom since we do not consider here rotation on
their own axis, and an extra degree from the remaining joints
considered as hinges. Therefore, we can consider up to 29
degrees of freedom.

The problem of describing the articulated body motion can
be represented using a transformation of a linear body frame
to map a specific body pose and a motion vector representing
the velocities of body segments. As an example, we take an
arm represented by three segments and two joins as depicted
in Fig. 1.b. Each joint defines an axis of rotation described by
a 3D unit vector w; along the axis and a point g; on the axis.

This hinge joint can be modeled by a twist &; (1). A rotation
of angle 6, around the joint axis can be expressed as %% [12].

& = [_“’1 - ‘“} (M

w1

For a set of k segments, the k%" joint position is described
by a twist £ and a rotation angle 6. The velocity of each
segment k in the kinematic chain is described by a twist vector
V., which represents a linear combination of segments twists
and angular velocities (2).

Vi =601+ &0+ -+ &0, 2

For an arbitrary point g. in the k" segment, the motion
vector can be expressed as (3).

A~ . A~ . A~ .
sz[é (1) 8 8:| {§191+§292+"'+§k9k (3)

Based on that geometric calculation, heuristic methods for
inverse kinematics, such as the one implemented by Un-
real Engine, will estimate the joint updates to produce the
animation. The technique is known as forward and back-
ward reaching inverse kinematics algorithm and shows good
performance with relatively low computational requirements
[13]. It consists of two consecutive phases in an iterative
forward-backward manner. An important advantage is the
global optimization applied to all joints in one step.

IV. THE PROPOSED APPROACH

In this paper, we propose a methodology for integrating
Unreal Engine 5 in a human physical behavior simulator.
A rigged mesh animated using Unreal Engine 5 Control
Rig objects and FBIK is employed in motion reproduction.
In addition, a low poly mesh was created and rigged for
testing and enhanced visual feedback. The skeleton used in
the experiments was modeled after the standard proposed by
Unreal in their tutorial. We adopt the original layout and
naming convention but adapt it to our mesh dimensions. Fig.
2 presents the model, imported into Unreal Engine 5.

Control Rig objects support multiple nodes of different
types, such as IK nodes and FBIK nodes. Therefore, multiple
layouts were developed and tested to see how the model
behaves. The reference node used in our work was FBIK.
Experiments using such nodes were conducted to find the most
realistic generated movement. Few additional experiments
were performed with other types of nodes for comparison,
involved movements of the head and neck. We learned that
using a single FBIK instance that controls the entire skeleton
can cause important problems, such as random and unnatural
movements of the bones. Better results were obtained when
we used multiple FBIK instances. We conclude that they can
create better reproduction of natural movement in case of using
the current implementation of FBIK in Unreal Engine 5.

The resulting layout developed to test our approach is made
up of four control groups described below:

o A group for the legs. This group contains two FBIK
chains that start in the pelvis and end at the toe bone
for both legs. Each chain has the hip bone as the root
for the FBIK chains, which model the leg and the tight
bones.

o A group for each arm. Each FBIK controls a chain of four
bones, having the root as the right clavicle, the respective
as the left clavicle, and ending with the metacarpals for
each arm.

o A group for the spine. It is controlled using a Distribute
Rotation node. This node takes a rotation and distributes
it among bones in the chain. The chain is composed of
the spine, together with the neck and head bones. The
default function used to implement rotation is linear.

To simulate natural movements, free of mesh clipping,
jarring movements, or issues derived from the shaking of mesh
parts, we reviewed medical studies [14]-[16] on the range of

Fig. 2. The skeleton model with the placeholder mesh.

motion of aligned joints. The primary concern was the upper
extremities due to their magnitude and variety of motion,
which include flexion, extension, supination, pronation, ab-
duction, and adduction. Based on these studies, the improved
model movements were smooth and free from significant
clipping problems and other aforementioned issues of previous
iterations.

V. EXPERIMENTAL ANALYSIS

For the experimental analysis, we develop a prototype fol-
lowing the presented approach implementing a small character
based video game. It includes a Control Rig with FBIK used
to generate procedural animations of humanoid characters.
The physical behavior of the characters was implemented as
a set of scripts inspired by Unreal documentation, where a
dinosaur model is proposed as an example of FBIK integra-
tion. We adapted this solution for humanoid characters by
making the necessary adjustments to simulate persons walk
and run activities, and by adding the possibility to vary the
walking speed. The implementation considers the relationship
between the speed of the person and the dynamics and the
horizontal displacement of the feet. Additional control is used
at the pelvis level to simulate crouching, jumping, and other
movements that involve the whole body. The FBIK support
control over the coordinates of all other control points.

To simulate the movement of hands, we adopted a solution
based on directional targeting inspired by games like Mordhau
and Bannerlord. This type of mechanics is specific to combat
actions controlled using a mouse or joystick. The hand moves
in a plane on the chosen trajectory, which is described relative
to the origin of the character and the direction the camera is
looking.

Our prototype uses ten control points per character. Of the
first eight points, two correspond to horizontal trajectories,
four to diagonal trajectories, and two to vertical movements.
Additionally, a stab motion requires only two additional points
since it always occurs on the same trajectory on the right
side of the body. Each hand can traverse the trajectories in
both directions by changing the orientation, except for the
vertical and stabbing movements, where it makes sense only
in one direction. The localization of control points is shown
in 3, where the red marks represent the extremities of the
trajectories, the blue marks indicate the margin on the right
side, the green delimits the left side and the yellow is used
for pelvic control. The orientation of the hand is determined
by the starting and ending positions, and is interpolated on the
trajectory between the two points, as described in Algorithml.

For subjective evaluation, we used three virtual cameras
to observe the experiments. A first-person camera, which
captures what the character sees, a camera positioned in front
of the character and a camera that captures the simulation from
behind. This allowed us to conduct a comprehensive visual
analysis of the trajectories of the hands and to appreciate
the smoothness of the trajectories. Two categories of hand
movement were evaluated, a hit and a reposition. The hit

Algorithm 1 Hand movement simulation

. p1 < Translation of the starting point

: 71 < Rotation of the starting point

: p3 < Translation of the finish point

ro < Rotation of the finish point

. et < Elapsed time

g1 + Quaternion(py X pa, 0)

gz <+ Quaternion(py X pa, acos(pi - p2))
. @ + Interpolate(qy, gz,et)

. 1 < Interpolate(|pi]|, |pa|,et)

. véc « Scale(pi, i+ |pi])

. translation < RotateV ector(véc, §)

. rotation « interpolate(ry, ro, et)

. * Apply the translation and the rotation to the hand

—_— e =
W N = O

represents any movements on any trajectory, vertical, horizon-
tal, diagonal, and trust. Reposition refers to a translation of
the hand from the current position to the starting position
of the next action. This occurs when the next movement
develops in another plane or direction than where the hand is at
the moment. We employ three evaluators and the unanimous
conclusion was “perfectly natural” and “no motion artifacts
observed”. Finally, we conduct a performance test on an AMD
Ryzen 3700x PC with 32 RAM and a Radeon RX7900-
GRE involving simulation of scenes consisting of 1 to 180
characters. The results are presented in Fig. 4 and demonstrate
a quasi-linear rendering performance with the number of
characters.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed an approach based on Unreal
Engine 5 to simulate human physical behavior. Our method-
ology uses the FBIK in the Control Rig objects. Multiple
FBIK nodes control different parts of the body for natural
movement simulation. A prototype was developed based on an
animated character. It was used to analyze the performance of
the simulator and assess the naturalness of limb movements in
a subjective visual evaluation. In future development, we plan
to integrate this prototype with a medical application to study
the effect of bone injuries on joint mobility.

Fig. 3. The mesh and layout for the experiment.

Rendering time per frame

t{ms)
PR opa oo

-

o w o s h & m

w

1 30 60 180

No of simulated characters

— REndering time per frame

Fig. 4. Simulation rendering performance from crowd scenes (time/frame)

REFERENCES

[1] Epic Games, “Unreal [Online]. Available:

https://www.unrealengine.com

[2] J. K. Haas, “A history of the unity game engine,” Worcester Polytechnic

Institute, 2014.

[3] Power Animated, Epic Games, “Power ik.”

https://poweranimated.github.io

Y. Zhang, “Adjustment design of motion rhythm of 3d animation based

on feature extraction and recognition,” in 2020 IEEE Conference on
Telecommunications, Optics and Computer Science, 2020, pp. 121-124.
[5] L. Mourot, “Deep learning for skeletal character animation : topology
editing, retargeting and cleaning,” Theses, Université de Rennes, May
2023. [Online]. Available: https://theses.hal.science/tel-04219725

[6] L. Mourot, L. Hoyet, FE L. Clerc, F. Schnitzler, and
P. Hellier, “A survey on deep learning for skeleton-based human
animation,” CoRR, vol. abs/2110.06901, 2021. [Online]. Available:
https://arxiv.org/abs/2110.06901

[71 J. Lin and G. H. Lee, “Trajectory space factorization for deep

video-based 3d human pose estimation,” 2019. [Online]. Available:
https://arxiv.org/abs/1908.08289

[8] H. Zhang, Z. Chen, H. Xu, L. Hao, X. Wu, S. Xu,

Z. Zhang, Y. Wang, and R. Xiong, “Semantics-aware motion

retargeting with vision-language models,” 2024. [Online]. Available:

https://arxiv.org/abs/2312.01964

A. Jungherr and D. B. Schlarb, “The extended reach of game engine

companies: How companies like epic games and unity technologies

provide platforms for extended reality applications and the metaverse,”

Social Media + Society, vol. 8, no. 2, p. 20563051221107641, 2022.

[Online]. Available: https://doi.org/10.1177/20563051221107641

[10] S. Starke, N. Hendrich, and J. Zhang, “Memetic evolution for generic
full-body inverse kinematics in robotics and animation,” IEEE Transac-
tions on Evolutionary Computation, vol. 23, no. 3, pp. 406-420, 2019.

[11] K. Y. Lam, L. Yang, A. Alhilal, L.-H. Lee, G. Tyson, and P. Hui,
“Human-avatar interaction in metaverse: Framework for full-body
interaction,” in Proceedings of the 4th ACM International Conference
on Multimedia in Asia, ser. MMAsia ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3551626.3564936

[12] M. RM., L. Z, and S. S.S., “A mathematical introduction to robotic
manipulation,” CRC Press, 1994.

[13] A. A, C. Y, and L. J.,, “Extending fabrik with model constraints,”
Computer Animation and Virtual Worlds, vol. 27, no. 1, pp. 35-57,
2016.

[14] M. F. Rybski, “Range of motion,” in Kinesiology for Occupational
Therapy. Routledge, 2024, pp. 37-65.

[15] D. H. Gates, L. S. Walters, J. Cowley, J. M. Wilken, and L. Resnik,
“Range of Motion Requirements for Upper-Limb Activities of Daily
Living,” The American Journal of Occupational Therapy, vol. 70, no. 1,
pp. 7001350010p1-7001350010p10, 12 2015. [Online]. Available:
https://doi.org/10.5014/aj0t.2016.015487

[16] J. Aizawa, T. Masuda, T. Koyama, K. Nakamaru, K. Isozaki,
A. Okawa, and S. Morita, “Three-dimensional motion of the upper
extremity joints during various activities of daily living,” Journal of
Biomechanics, vol. 43, no. 15, pp. 2915-2922, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021929010003878

engine 5.

[Online]. Awvailable:

[4

=

[9

—

