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Abstract—This paper provides an algorithm for the 

Controller Area Network (CAN) protocol, which enables 

transmission of CAN single frames and CAN flexible data-rate 

frames in an automatic manner. The automotive industry is of 

key importance nowadays and, in this context, our research 

focuses on autonomous/ automatic diagnosis and predictive 

maintenance techniques, which can also be easily extended to 

other important areas such as mechanical engineering, robotics, 

avionics, healthcare and so on. Our study shows improvements 

of up to 14% for validating and interpreting the data with 

respect to  the response time of the ECU, which is not negligible 

for real-life and industrial applications, where time efficiency in 

detecting malfunctions is a sensitive issue. 

Keywords—CAN FD, automatic diagnosis, predictive 

maintenance, fault-tolerant systems, quality control. 

I. INTRODUCTION  

The driving force behind many of today vehicle 

innovations lies in the Electronic Control Units (ECUs). 
However, their increased complexity raises the potential for 
failures, underscoring the critical need for thorough 
functional testing to mitigate risks and uphold 
uncompromised quality. As the scope of tasks for test 
engineers expands with each innovation, the time, and 

resources available for completing these tasks are 
diminishing [1]. The only viable solution to this challenge is 
to streamline and accelerate the testing process. 

A contemporary approach to dynamic testing and analysis 
encompasses the entire software development life cycle, 
particularly for high-quality software, such as that used in the 

automotive sector. Model-based testing emerges as a solution 
to address this complexity, offering a method to test software 
both during development and post-production to ensure its 
quality. Model-Based Testing (MBT) stands as a cornerstone 
in software testing, increasingly becoming essential in the 
automotive industry for future vehicle designs. This approach 

conducts software testing on a model, ensuring 
comprehensive, efficient, effective, and reliable testing of the 
product [2]. 

Intelligent manufacturing encompasses various 
application areas, one of which is fault diagnosis. A "fault" 
refers to any deviation from the expected, acceptable, or 

standard behavior within a system. It represents an undesired 
alteration or a tolerable malfunction that can impair overall 
system performance and potentially result in system failure. 
Fault diagnosis comprises fault detection, isolation (FDI), 
and occasionally identification processes. It serves as a 
valuable tool for monitoring the status of production lines, 

aiming to prevent or minimize financial losses associated 

with downtime [3]. Common faults encountered in 
production lines include incorrect sensor input/output port 
connections and component failures, such as motor 
malfunctions. 

Predictive maintenance plays a crucial role in the 
automotive industry and holds significant importance. It has 

the potential to enhance both comfort and safety by enabling 
early detection, isolation, and prediction of potential failures 
[4]. Given the impressive progress in artificial intelligence 
technology, there is growing interest in a method for 
monitoring and predictive maintenance (PdM) of industrial 
equipment performance using production data. PdM is 

increasingly recognized as the most efficient solution for 
diagnosing equipment defects and assessing remaining 
lifespan within smart manufacturing and industrial big data 
platforms [5]. 

The motivation for this work started with the fact that 
nowadays CAN flexible data-rates are increasingly used in 

predictive maintenance and fault detection in automotive 
systems. We propose an algorithm which provides a solution 
to improving these processes in an automatic manner, by 
increasing the time efficiency with up to 14% in what 
concerns the response time of the ECU. Also, for the part of 
predictive maintenance, we will show that the malfunction of 

the system can be detected in at most 1 second after the initial 
request. 

II. RELATED WORK 

Contemporary vehicles come furnished with 
approximately 100 ECUs, tasked with overseeing electrical 
systems to enhance both driving comfort and safety. For safe 
driving, it is imperative that ECUs are supported by a 
trustworthy communication network. Controller Area 
Network (CAN) emerged as a leading in-vehicle protocol, 
acclaimed for its array of benefits. These encompass superior 
immunity to electrical disturbances, streamlined wiring, self-
diagnostic features, and swift error correction capabilities [6]. 
These qualities position the CAN bus as an ideal choice for 
the automotive sector. Employing the CAN bus showcases 
resilience in network setups, swiftly identifying faults while 
preserving system integrity [7]. Moreover, CAN functions as 
a message-centric protocol, ensuring efficient 
communication. 

The CAN communication protocol adopts a CSMA/BA 
approach, with CSMA representing Carrier Sense Multiple 
Access. This means that every node within the network must 
first check for bus inactivity before attempting to transmit a 
message (Carrier Sense). CD, or Collision Detection, comes 



into play if two nodes initiate transmission simultaneously [8]. 
In such cases, the nodes identify the collision and take 
appropriate measures to manage it, thereby facilitating 
effective communication. 

The conventional CAN protocol is constrained by its 
limited communication bandwidth, reaching up to 1 Mbps, 
and its payload size capped at 8 Bytes. This restricts its 
suitability for today's intricate automotive electrical/electronic 
systems. However, the emergence of CAN with flexible data 
rate (CAN-FD) marks a significant improvement. CAN-FD 
offers a higher communication bandwidth, scaling up to 8 
Mbps for the payload, and boasts an increased payload size of 
up to 64 Bytes [9]. These enhancements broaden its 
applicability and accommodate the demands of modern 
automotive systems. 

Some advantages and disadvantages of the CAN protocol 
are as follows [10]: 

Advantages: 
a. Reduces the number of wires, the potential for errors, 

and the overall weight 
b. Centralized network: simplifies communication 

management 
c. Flexible transmission:  a message can be sent when 

the bus is free 
d. Robustness: features reliable operation in 

challenging environments 
Disadvantages: 
a. Limited number of nodes: maximum limit is typically 

set at 64 nodes 
b. Integrity issues: CAN systems may face integrity 

issues, leading to concerns regarding data accuracy 
and reliability 

c. Limited message length and data amount: CAN 
imposes constraints on message length and the 
amount of data per message 

 Both the ECU and the tester need to communicate with 
each other on the CAN bus. The ECU should adhere to the 
following standards [11]: 

• Road vehicles – Unified Diagnostic Services (UDS): 
provides a comprehensive specification of diagnostic 
services and their parameters, ensuring compatibility 
and interoperability between different automotive 
diagnostic systems 

• Road vehicles – Diagnostic on Controller Area 
Network (CAN): specifies the implementation of 
UDS on CAN, outlining the adaptation process to 
ensure seamless integration of diagnostic 

functionalities within the CAN communication 
protocol 

The CAN protocol operates as a broadcast network, 
enabling all ECUs connected to the bus to receive the 
signals/messages transmitted. CAN messages come in two 
formats: the standard format and the extended format [12]. 
The extended CAN message format slightly differs from the 
standard CAN format due to the inclusion of an additional 18 
bits in the arbitration field. 

CANoe (Controller Area Network Open Environment), 
developed by Vector Private Limited, is a versatile 
development and testing tool primarily designed for the 
automotive industry. It facilitates the development, analysis, 

simulation, testing, and diagnosis of control units and the 
networks they form. With its extensive support for various 
communication protocols, including CAN, LIN, FlexRay, 
and Ethernet. CAPL (Communication Access Programming 
Language) is another dedicated software utilized in testing 
and environment simulation [13]. As an event-based 

program, CAPL offers functionalities such as timers, 
handling incoming/outgoing events, and events specific to 
CAN. 

As automotive fault diagnosis technology advances, the 
associated criteria have evolved and become increasingly 
standardized. Presently, the diagnosis standards reach beyond 

identifying faults alone. They consider the entire vehicle life 
cycle, including development, testing, production, and post-
sale maintenance phases. Furthermore, modern diagnosis 
systems have expanded their functionalities to include 
calibration, testing of ECUs, parameter measurement, and 
code upgrading. This comprehensive approach ensures 
efficient and effective management of vehicle systems 

throughout their lifecycle, enhancing overall performance 
and reliability [14] with the use of Vector Tool [15]. 

The existing solution for sending CAN Flexible Data-
Rate Frames is to use the Iterative Generator provided by 
CANoe [16]. By using Iterative Generator each time, the user 
will need to do all the necessary steps manually to send data 

on a specific ID. For sending the data, the user should 
perform the following steps: first, the user should establish on 
which CAN bus and on which ID, the data should be sent. 
After establishing the CAN bus and the ID, the user should 
also set the data he wants to transmit according to the 
requirement. As a final step, the user should check on CAN 

trace if the data was sent accordingly and when the response 

 

Figure 1. Sending a message through the Iterative Generator 
 

 

Figure 2. Overview of a CAN trace 



is received, he should validate if the response received is 
according to the requirement. An overview of the existing 
solution, where the Iterative Generator is used, can be seen in 
Figure 1. For a data length code (DLC) smaller than 8, 

CANoe provides a data link library used for sending data, 
especially ISOTP frames.  

Currently, there are some automation tools for sending 
CAN flexible data rates frames like DUT (Device Under 
Test) [17], or the Time Partition Testing tool, but some time 
efficiency and predictive maintenance issues can be seen in 

the literature [18], since when we are working with CAN 
flexible data-rates, the order of the messages received is 
trivial. 

As seen in Figure 1, a message with the DLC equal with 
9 is sent on Channel 4. The message, which has a total length 
of 12 bytes, can be seen on the raw data section of the capture. 

In Figure 2, we can see an overview of the trace when 
sending a message via Iterative Generator. As can be seen, 
we sent a message with a data length code of 15, meaning 64 
bytes message length, and we received 3 other messages from 
the ECU as a response to the message we sent, all of them 
having message length of 64 bytes. 

III. ALGORITHM IMPLEMENTATION 

The algorithm we are proposing in this paper can be used 
in CAPL browser provided by CANoe. 

To create the algorithm, we employed an iterative model 
research methodology. As a first iteration step, we started 
initially only by sending the frames in an automatic manner, 

without being necessary to use the Iterative Generator 
provided by CANoe and afterwards we performed some 
analysis to identify some advantages and disadvantages of the 
initial algorithm. After this step, we adjusted the algorithm to 
check for the response received from the ECU without 
needing a human intervention for validation. After this step, 

we have verified the robustness checks and assessed the 
algorithm performance across various conditions, in the end 
verifying if the algorithm achieves strong performance on 
unseen data and if it aligns with the objectives established 
from the very beginning. 

The proposed algorithm takes as input the following 

parameters: 

• the ID we want to send the data to,  
• the data we want to send on that specific ID,  

• the ID we know the response should come,  
• the data we expect to be received,  
• a mask of the data that we expect for taking into 

account only the bytes we are interested in,  
• the number of frames we are expecting since the 

maximum amount of data a frame contains is 64 
bytes according to specialized literature   

• and. finally, a timeout which will be used for waiting 
only a specific amount of time for a message. 

The algorithm starts by constructing the frames we are 

waiting for, starting from the frame ID we give as a parameter 
for the response which represents the first frame we expect. 
The multi-frame construction starts by considering the 
number of frames we are giving as parameter, since it might 
be possible that our response might come on multiple frames, 
which will cover the case of multi-consecutive frame 

response. An example of multi consecutive frame response 
can be seen in Figure 2, where we are sending a single frame 

request and the response consists of 128 bytes, being the case 
where the frames are split since the maximum number of 
bytes a frame could contain is 64 bytes.  

As a second step, we are transmitting the data via the 

specified ID. To transmit the data, we are considering the ID 
of the frame we want to send the data, the data length code, 
and the proper data. To do this, firstly we are establishing the 
protocol data unit of ID, the protocol data unit of the bit rate 
switch and the protocol data unit of the extended data length. 
If the data length code is smaller than 8, then we set the 

protocol data unit equal to the actual value of the data length 
code, otherwise we are setting the protocol data unit based on 
the following rule Vector provides [19].  

An overview of the data length code, with respect to 
message length, can be seen in Figure 3. 

 

 
Figure 3. DLC with respect to data field bytes. 

 
When we want to transmit the data, we are also validating 

the input. For example, if we are setting the data length code 
(DLC) to 9 and the message length is different from 12, then 
we are raising the error of a wrong input DLC used. The input 
validation is computed based on the data that can be seen in 
Figure 3. 

We also considered the case when we need to send some 

consecutive frames. In that case, if we are sending a message 
with data length code greater than 64, we are splitting the 
message. If we want to send a message with a length of 128, 
we are splitting the message into 2 parts, the first part 
containing a 64 bytes message length, followed by a frame 
increased by 1, with the rest of the bytes we want to send the 

message. 
For the part of response, initially, we are using the 

predefined function TestWaitForAllJoinedEvents which 
waits for the current set of joined events. 

Since there is a chance of working with multiple frames, 
we are considering the number of frames the response should 

contain and we are performing the same steps for each frame. 
As a first step, we have used the predefined function 

testGetWaitEventMsgData, which calls up the message 
content. 

Once a message is received, we start decrementing the 
number of frames we are expecting each time, as can be seen 

in Figure 4. 
If a response to the initial request was received, we start 

to analyze the response considering the ID via which the 
response was received, the data length code and the proper 
data received. If the data length code is also greater than 8, 
then we apply the same procedure as in the previously 

mentioned case, where we send the data, accordingly, based 
on the correspondence between the data length code and the 
data filled bytes. 



 

 

Figure 4. Overview of the algorithm  



The response received is stored and compared to the bytes 
we are expecting, considering the byte array with the 
expected response we are giving as input and the mask with 
the corresponding bytes that should be the same. If the 

message is the same as the one, we are expecting, then there 
will be a passed test case, otherwise the test will fail, by 
mentioning that the response is not received as expected, also 
given as input. An overview of the entire algorithm can be 
seen in Figure 4. 

IV. MAIN RESULTS OBTAINED 

Compared to the method provided by Vector, our 
algorithm is sending and receiving the response with an 
improvement of around 14% for multi-frame messages, in 
what concerns the interpretation and validation of the data 
with respect to the responding time of the ECU. Another 
important factor we considered, is the order of the messages 

that are received since we are solving the issue of multi-
frames messages, and based on this factor, an improvement 
of at least 50% in terms of accuracy and efficiency is 
remarked as depicted in Figure 6, where it can be seen that if 
an unexpected message is received, the algorithm will detect 
the deviations from the specifications and will show the 

malfunction of the system, compared to other tools used 
during research, where an issue encountered by using  Device 
Under Test tool was that an unexpected flow control from the 
ECU was corrupting the test results. The response is 
evaluated as can be seen in Figure 5 and Figure 6. 

 As can be seen in Figure 5, the test report generated 

contains all the data we are interested in, like the ID used for 
sending the data, the data length code and the data we want 
to send according to the requirement. For the response 
message, we can see that is automatically retrieved and stored 
in the test report, taking into account also the ID on which the 

frame was received, the data length code, the data received 
and also the byte array we are expected and the mask of the 
interested bytes, since, as we can see in Figure 5, the test 
report is passed. The data length code used in Figure 5 for 

testing the algorithm is 15. 
Figure 6 illustrates a failed test report due to a timeout 

event.  To accommodate such cases, our algorithm 
incorporates an additional 1-second buffer extension to 
ensure thoroughness. This extension allows for a 
comprehensive check to confirm if a message is received and 

if so, whether it aligns with the anticipated transmission. 
However, if there occurs a system malfunctions, it will be 
flagged and indicated in the report. 

The algorithm was tested on hundreds of datasets, and 
each time our algorithm showed an improvement of at least 
12% in what concerns the responding time of the ECU to 

validate the expected response. The tests performed contains 
only multi-consecutive frames, where Table 1 shows the 
necessary time to send and validate the expected response. 
The timing difference in Table 1 consists of the task involved 
in generating the answer. 
 

Initial 

procedure (ms) 

Using this 

algorithm (ms) 

Time difference 

(%) 

0.056357 0.048998 13.05% 

0.071958 0.060531 15.88% 

0.068742 0.060312 12.25% 

0.097856 0.081372 16.84% 

0.082354 0.071523 13.15% 

0.078936 0.067639 14.31% 

0.099546 0.087142 12.45% 

0.107146 0.090675 15.37% 

Table 1. Time measurement for different scenarios 

 

Figure 7. Overview of the CAN trace 

 

Figure 5. Overview of a passed test report. 
 

 

Figure 6. Overview of a failed test report 

 



As another advantage of the algorithm is the fact that the 
message is also available on the trace, like in the case of 
Iterative Generator, to have a traceability of the CAN 
messages. An overview of the message presented in Figure 5, 

can be seen on trace in Figure 7. 
In terms of automation, the response will be automatically 

generated in the test report and if the response received is 
different of the response we are waiting for from the very 
beginning, then we can deduce automatically that something 
is wrong without being necessarily to check the response by 

a human, like in the case of initial algorithm. 
As can be seen in Figure 8, the time difference between 

the moment when we are transmitting the request versus the 
time, we are receiving the response is 0.05633 seconds in the 
case we are using the existing method, while, by using our 
algorithm, the time difference between the moment we are 

sending versus the time difference between the moment we 
are receiving is 0.048998 seconds (see Figure 5). A graphical 
representation of the data measured is depicted in Figure 8. 

 

 
Figure 8. Request vs response of the ECU in both cases 

 

Figure 8 shows that the algorithm we propose does not 
affect the time performance of the ECU, since we received 
the response 0.007332 seconds faster than with the initial 
method. In Figure 8, we represented just a positive case when 
we are validating our algorithm for a specific scenario. Other 
tests were performed, and we found that each time, the 

proposed algorithm was better in terms of time efficiency 
compared to Device Under Test tool or Iterative Generator, 
as seen in Figure 9. The tests performed were positive cases, 
where we received the response from the ECU as expected, 
in the amount of time according to the requirement. 

 

 
Figure 9. Overview of different tests performed. 

 
Since this algorithm works with extended CAN frames, 

an overview of the data length code that we considered with 
respect to data field bytes can be seen in Figure 10. The 

abscissa axis represents the data length code used for CAN 
protocol, while the ordinate axis, represents the number of 
bytes a message should have with respect to the data length 
code. 

 

 
Figure 10. Data field bytes we considered vs data length code. 

 
There are some cases when we are receiving a different 

message compared to the one, we are expecting. In this case, 
the malfunction of the system is also detected, with a time 

difference of 1 second, as can be seen in Figure 11. The time 
we are waiting for the response to be received is as mentioned 
in the requirement. An example of such a case, when a 
different response compared to the one, we expect, can be 
seen in Figure 6. 

 

 
Figure 11. Message not received as expected. 

V. CONCLUSIONS 

In this paper, an algorithm for automatically transmission 

of single frames vs multi frames was developed, for 
diagnosing automotive systems over the CAN busses, using 
the Vector CANoe environment. 

Our algorithm improves the automatic diagnose 
efficiency by streamlining the process, reducing the costs, 
and optimizing the resources to achieve better results. 

Since we also considered the important factor of dealing 
with multi-frame cases, more exactly the order of the 
messages received from the ECU, the improvements brought 
are quality control, for detecting deviations from 
specifications, and predictive maintenance, since we are 
minimizing the downtimes. 

As another, improvement, our study shows differences of 
about 14% for interpretation and validation of data 
considering the responding time of the ECU, which is not 
negligible for the automotive industry, where time efficiency 
in detecting malfunctions is a sensitive issue. 

The algorithm scales efficiently, maintaining consistent 

performance as the dataset size grows. Test with hundreds of 



datasets exhibits only a slight increase in the processing time, 
validating the data, and indicating strong scalability. The 
algorithm complexity is O(n) since it grows linearly with the 
size of the input. 
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