

This paper is a preprint (IEEE “accepted” status).

IEEE copyright notice. © 2024 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

DOI. 10.1109/ICCP63557.2024.10793030

Sending CAN Flexible Data-Rate Frames in an

Automatic Manner to Improve Vehicle Diagnose

Processes

Florian-Aurelian Krech, Cristina-Sorina Stângaciu, and Mihai V. Micea

Department of Computer and Information Technology,

Politehnica University of Timisoara,
2, V. Parvan Bvd., Timisoara, Romania

florian.krech@cs.upt.ro, cristina.stangaciu@cs.upt.ro, mihai.micea@cs.upt.ro

Abstract—This paper provides an algorithm for the

Controller Area Network (CAN) protocol, which enables

transmission of CAN single frames and CAN flexible data-rate

frames in an automatic manner. The automotive industry is of

key importance nowadays and, in this context, our research

focuses on autonomous/ automatic diagnosis and predictive

maintenance techniques, which can also be easily extended to

other important areas such as mechanical engineering, robotics,

avionics, healthcare and so on. Our study shows improvements

of up to 14% for validating and interpreting the data with

respect to the response time of the ECU, which is not negligible

for real-life and industrial applications, where time efficiency in

detecting malfunctions is a sensitive issue.

Keywords—CAN FD, automatic diagnosis, predictive

maintenance, fault-tolerant systems, quality control.

I. INTRODUCTION

The driving force behind many of today vehicle

innovations lies in the Electronic Control Units (ECUs).
However, their increased complexity raises the potential for
failures, underscoring the critical need for thorough
functional testing to mitigate risks and uphold
uncompromised quality. As the scope of tasks for test
engineers expands with each innovation, the time, and

resources available for completing these tasks are
diminishing [1]. The only viable solution to this challenge is
to streamline and accelerate the testing process.

A contemporary approach to dynamic testing and analysis
encompasses the entire software development life cycle,
particularly for high-quality software, such as that used in the

automotive sector. Model-based testing emerges as a solution
to address this complexity, offering a method to test software
both during development and post-production to ensure its
quality. Model-Based Testing (MBT) stands as a cornerstone
in software testing, increasingly becoming essential in the
automotive industry for future vehicle designs. This approach

conducts software testing on a model, ensuring
comprehensive, efficient, effective, and reliable testing of the
product [2].

Intelligent manufacturing encompasses various
application areas, one of which is fault diagnosis. A "fault"
refers to any deviation from the expected, acceptable, or

standard behavior within a system. It represents an undesired
alteration or a tolerable malfunction that can impair overall
system performance and potentially result in system failure.
Fault diagnosis comprises fault detection, isolation (FDI),
and occasionally identification processes. It serves as a
valuable tool for monitoring the status of production lines,

aiming to prevent or minimize financial losses associated

with downtime [3]. Common faults encountered in
production lines include incorrect sensor input/output port
connections and component failures, such as motor
malfunctions.

Predictive maintenance plays a crucial role in the
automotive industry and holds significant importance. It has

the potential to enhance both comfort and safety by enabling
early detection, isolation, and prediction of potential failures
[4]. Given the impressive progress in artificial intelligence
technology, there is growing interest in a method for
monitoring and predictive maintenance (PdM) of industrial
equipment performance using production data. PdM is

increasingly recognized as the most efficient solution for
diagnosing equipment defects and assessing remaining
lifespan within smart manufacturing and industrial big data
platforms [5].

The motivation for this work started with the fact that
nowadays CAN flexible data-rates are increasingly used in

predictive maintenance and fault detection in automotive
systems. We propose an algorithm which provides a solution
to improving these processes in an automatic manner, by
increasing the time efficiency with up to 14% in what
concerns the response time of the ECU. Also, for the part of
predictive maintenance, we will show that the malfunction of

the system can be detected in at most 1 second after the initial
request.

II. RELATED WORK

Contemporary vehicles come furnished with
approximately 100 ECUs, tasked with overseeing electrical
systems to enhance both driving comfort and safety. For safe
driving, it is imperative that ECUs are supported by a
trustworthy communication network. Controller Area
Network (CAN) emerged as a leading in-vehicle protocol,
acclaimed for its array of benefits. These encompass superior
immunity to electrical disturbances, streamlined wiring, self-
diagnostic features, and swift error correction capabilities [6].
These qualities position the CAN bus as an ideal choice for
the automotive sector. Employing the CAN bus showcases
resilience in network setups, swiftly identifying faults while
preserving system integrity [7]. Moreover, CAN functions as
a message-centric protocol, ensuring efficient
communication.

The CAN communication protocol adopts a CSMA/BA
approach, with CSMA representing Carrier Sense Multiple
Access. This means that every node within the network must
first check for bus inactivity before attempting to transmit a
message (Carrier Sense). CD, or Collision Detection, comes

into play if two nodes initiate transmission simultaneously [8].
In such cases, the nodes identify the collision and take
appropriate measures to manage it, thereby facilitating
effective communication.

The conventional CAN protocol is constrained by its
limited communication bandwidth, reaching up to 1 Mbps,
and its payload size capped at 8 Bytes. This restricts its
suitability for today's intricate automotive electrical/electronic
systems. However, the emergence of CAN with flexible data
rate (CAN-FD) marks a significant improvement. CAN-FD
offers a higher communication bandwidth, scaling up to 8
Mbps for the payload, and boasts an increased payload size of
up to 64 Bytes [9]. These enhancements broaden its
applicability and accommodate the demands of modern
automotive systems.

Some advantages and disadvantages of the CAN protocol
are as follows [10]:

Advantages:
a. Reduces the number of wires, the potential for errors,

and the overall weight
b. Centralized network: simplifies communication

management
c. Flexible transmission: a message can be sent when

the bus is free
d. Robustness: features reliable operation in

challenging environments
Disadvantages:
a. Limited number of nodes: maximum limit is typically

set at 64 nodes
b. Integrity issues: CAN systems may face integrity

issues, leading to concerns regarding data accuracy
and reliability

c. Limited message length and data amount: CAN
imposes constraints on message length and the
amount of data per message

 Both the ECU and the tester need to communicate with
each other on the CAN bus. The ECU should adhere to the
following standards [11]:

• Road vehicles – Unified Diagnostic Services (UDS):
provides a comprehensive specification of diagnostic
services and their parameters, ensuring compatibility
and interoperability between different automotive
diagnostic systems

• Road vehicles – Diagnostic on Controller Area
Network (CAN): specifies the implementation of
UDS on CAN, outlining the adaptation process to
ensure seamless integration of diagnostic

functionalities within the CAN communication
protocol

The CAN protocol operates as a broadcast network,
enabling all ECUs connected to the bus to receive the
signals/messages transmitted. CAN messages come in two
formats: the standard format and the extended format [12].
The extended CAN message format slightly differs from the
standard CAN format due to the inclusion of an additional 18
bits in the arbitration field.

CANoe (Controller Area Network Open Environment),
developed by Vector Private Limited, is a versatile
development and testing tool primarily designed for the
automotive industry. It facilitates the development, analysis,

simulation, testing, and diagnosis of control units and the
networks they form. With its extensive support for various
communication protocols, including CAN, LIN, FlexRay,
and Ethernet. CAPL (Communication Access Programming
Language) is another dedicated software utilized in testing
and environment simulation [13]. As an event-based

program, CAPL offers functionalities such as timers,
handling incoming/outgoing events, and events specific to
CAN.

As automotive fault diagnosis technology advances, the
associated criteria have evolved and become increasingly
standardized. Presently, the diagnosis standards reach beyond

identifying faults alone. They consider the entire vehicle life
cycle, including development, testing, production, and post-
sale maintenance phases. Furthermore, modern diagnosis
systems have expanded their functionalities to include
calibration, testing of ECUs, parameter measurement, and
code upgrading. This comprehensive approach ensures
efficient and effective management of vehicle systems

throughout their lifecycle, enhancing overall performance
and reliability [14] with the use of Vector Tool [15].

The existing solution for sending CAN Flexible Data-
Rate Frames is to use the Iterative Generator provided by
CANoe [16]. By using Iterative Generator each time, the user
will need to do all the necessary steps manually to send data

on a specific ID. For sending the data, the user should
perform the following steps: first, the user should establish on
which CAN bus and on which ID, the data should be sent.
After establishing the CAN bus and the ID, the user should
also set the data he wants to transmit according to the
requirement. As a final step, the user should check on CAN

trace if the data was sent accordingly and when the response

Figure 1. Sending a message through the Iterative Generator

Figure 2. Overview of a CAN trace

is received, he should validate if the response received is
according to the requirement. An overview of the existing
solution, where the Iterative Generator is used, can be seen in
Figure 1. For a data length code (DLC) smaller than 8,

CANoe provides a data link library used for sending data,
especially ISOTP frames.

Currently, there are some automation tools for sending
CAN flexible data rates frames like DUT (Device Under
Test) [17], or the Time Partition Testing tool, but some time
efficiency and predictive maintenance issues can be seen in

the literature [18], since when we are working with CAN
flexible data-rates, the order of the messages received is
trivial.

As seen in Figure 1, a message with the DLC equal with
9 is sent on Channel 4. The message, which has a total length
of 12 bytes, can be seen on the raw data section of the capture.

In Figure 2, we can see an overview of the trace when
sending a message via Iterative Generator. As can be seen,
we sent a message with a data length code of 15, meaning 64
bytes message length, and we received 3 other messages from
the ECU as a response to the message we sent, all of them
having message length of 64 bytes.

III. ALGORITHM IMPLEMENTATION

The algorithm we are proposing in this paper can be used
in CAPL browser provided by CANoe.

To create the algorithm, we employed an iterative model
research methodology. As a first iteration step, we started
initially only by sending the frames in an automatic manner,

without being necessary to use the Iterative Generator
provided by CANoe and afterwards we performed some
analysis to identify some advantages and disadvantages of the
initial algorithm. After this step, we adjusted the algorithm to
check for the response received from the ECU without
needing a human intervention for validation. After this step,

we have verified the robustness checks and assessed the
algorithm performance across various conditions, in the end
verifying if the algorithm achieves strong performance on
unseen data and if it aligns with the objectives established
from the very beginning.

The proposed algorithm takes as input the following

parameters:

• the ID we want to send the data to,
• the data we want to send on that specific ID,

• the ID we know the response should come,
• the data we expect to be received,
• a mask of the data that we expect for taking into

account only the bytes we are interested in,
• the number of frames we are expecting since the

maximum amount of data a frame contains is 64
bytes according to specialized literature

• and. finally, a timeout which will be used for waiting
only a specific amount of time for a message.

The algorithm starts by constructing the frames we are

waiting for, starting from the frame ID we give as a parameter
for the response which represents the first frame we expect.
The multi-frame construction starts by considering the
number of frames we are giving as parameter, since it might
be possible that our response might come on multiple frames,
which will cover the case of multi-consecutive frame

response. An example of multi consecutive frame response
can be seen in Figure 2, where we are sending a single frame

request and the response consists of 128 bytes, being the case
where the frames are split since the maximum number of
bytes a frame could contain is 64 bytes.

As a second step, we are transmitting the data via the

specified ID. To transmit the data, we are considering the ID
of the frame we want to send the data, the data length code,
and the proper data. To do this, firstly we are establishing the
protocol data unit of ID, the protocol data unit of the bit rate
switch and the protocol data unit of the extended data length.
If the data length code is smaller than 8, then we set the

protocol data unit equal to the actual value of the data length
code, otherwise we are setting the protocol data unit based on
the following rule Vector provides [19].

An overview of the data length code, with respect to
message length, can be seen in Figure 3.

Figure 3. DLC with respect to data field bytes.

When we want to transmit the data, we are also validating

the input. For example, if we are setting the data length code
(DLC) to 9 and the message length is different from 12, then
we are raising the error of a wrong input DLC used. The input
validation is computed based on the data that can be seen in
Figure 3.

We also considered the case when we need to send some

consecutive frames. In that case, if we are sending a message
with data length code greater than 64, we are splitting the
message. If we want to send a message with a length of 128,
we are splitting the message into 2 parts, the first part
containing a 64 bytes message length, followed by a frame
increased by 1, with the rest of the bytes we want to send the

message.
For the part of response, initially, we are using the

predefined function TestWaitForAllJoinedEvents which
waits for the current set of joined events.

Since there is a chance of working with multiple frames,
we are considering the number of frames the response should

contain and we are performing the same steps for each frame.
As a first step, we have used the predefined function

testGetWaitEventMsgData, which calls up the message
content.

Once a message is received, we start decrementing the
number of frames we are expecting each time, as can be seen

in Figure 4.
If a response to the initial request was received, we start

to analyze the response considering the ID via which the
response was received, the data length code and the proper
data received. If the data length code is also greater than 8,
then we apply the same procedure as in the previously

mentioned case, where we send the data, accordingly, based
on the correspondence between the data length code and the
data filled bytes.

Figure 4. Overview of the algorithm

The response received is stored and compared to the bytes
we are expecting, considering the byte array with the
expected response we are giving as input and the mask with
the corresponding bytes that should be the same. If the

message is the same as the one, we are expecting, then there
will be a passed test case, otherwise the test will fail, by
mentioning that the response is not received as expected, also
given as input. An overview of the entire algorithm can be
seen in Figure 4.

IV. MAIN RESULTS OBTAINED

Compared to the method provided by Vector, our
algorithm is sending and receiving the response with an
improvement of around 14% for multi-frame messages, in
what concerns the interpretation and validation of the data
with respect to the responding time of the ECU. Another
important factor we considered, is the order of the messages

that are received since we are solving the issue of multi-
frames messages, and based on this factor, an improvement
of at least 50% in terms of accuracy and efficiency is
remarked as depicted in Figure 6, where it can be seen that if
an unexpected message is received, the algorithm will detect
the deviations from the specifications and will show the

malfunction of the system, compared to other tools used
during research, where an issue encountered by using Device
Under Test tool was that an unexpected flow control from the
ECU was corrupting the test results. The response is
evaluated as can be seen in Figure 5 and Figure 6.

 As can be seen in Figure 5, the test report generated

contains all the data we are interested in, like the ID used for
sending the data, the data length code and the data we want
to send according to the requirement. For the response
message, we can see that is automatically retrieved and stored
in the test report, taking into account also the ID on which the

frame was received, the data length code, the data received
and also the byte array we are expected and the mask of the
interested bytes, since, as we can see in Figure 5, the test
report is passed. The data length code used in Figure 5 for

testing the algorithm is 15.
Figure 6 illustrates a failed test report due to a timeout

event. To accommodate such cases, our algorithm
incorporates an additional 1-second buffer extension to
ensure thoroughness. This extension allows for a
comprehensive check to confirm if a message is received and

if so, whether it aligns with the anticipated transmission.
However, if there occurs a system malfunctions, it will be
flagged and indicated in the report.

The algorithm was tested on hundreds of datasets, and
each time our algorithm showed an improvement of at least
12% in what concerns the responding time of the ECU to

validate the expected response. The tests performed contains
only multi-consecutive frames, where Table 1 shows the
necessary time to send and validate the expected response.
The timing difference in Table 1 consists of the task involved
in generating the answer.

Initial

procedure (ms)

Using this

algorithm (ms)

Time difference

(%)

0.056357 0.048998 13.05%

0.071958 0.060531 15.88%

0.068742 0.060312 12.25%

0.097856 0.081372 16.84%

0.082354 0.071523 13.15%

0.078936 0.067639 14.31%

0.099546 0.087142 12.45%

0.107146 0.090675 15.37%

Table 1. Time measurement for different scenarios

Figure 7. Overview of the CAN trace

Figure 5. Overview of a passed test report.

Figure 6. Overview of a failed test report

As another advantage of the algorithm is the fact that the
message is also available on the trace, like in the case of
Iterative Generator, to have a traceability of the CAN
messages. An overview of the message presented in Figure 5,

can be seen on trace in Figure 7.
In terms of automation, the response will be automatically

generated in the test report and if the response received is
different of the response we are waiting for from the very
beginning, then we can deduce automatically that something
is wrong without being necessarily to check the response by

a human, like in the case of initial algorithm.
As can be seen in Figure 8, the time difference between

the moment when we are transmitting the request versus the
time, we are receiving the response is 0.05633 seconds in the
case we are using the existing method, while, by using our
algorithm, the time difference between the moment we are

sending versus the time difference between the moment we
are receiving is 0.048998 seconds (see Figure 5). A graphical
representation of the data measured is depicted in Figure 8.

Figure 8. Request vs response of the ECU in both cases

Figure 8 shows that the algorithm we propose does not
affect the time performance of the ECU, since we received
the response 0.007332 seconds faster than with the initial
method. In Figure 8, we represented just a positive case when
we are validating our algorithm for a specific scenario. Other
tests were performed, and we found that each time, the

proposed algorithm was better in terms of time efficiency
compared to Device Under Test tool or Iterative Generator,
as seen in Figure 9. The tests performed were positive cases,
where we received the response from the ECU as expected,
in the amount of time according to the requirement.

Figure 9. Overview of different tests performed.

Since this algorithm works with extended CAN frames,

an overview of the data length code that we considered with
respect to data field bytes can be seen in Figure 10. The

abscissa axis represents the data length code used for CAN
protocol, while the ordinate axis, represents the number of
bytes a message should have with respect to the data length
code.

Figure 10. Data field bytes we considered vs data length code.

There are some cases when we are receiving a different

message compared to the one, we are expecting. In this case,
the malfunction of the system is also detected, with a time

difference of 1 second, as can be seen in Figure 11. The time
we are waiting for the response to be received is as mentioned
in the requirement. An example of such a case, when a
different response compared to the one, we expect, can be
seen in Figure 6.

Figure 11. Message not received as expected.

V. CONCLUSIONS

In this paper, an algorithm for automatically transmission

of single frames vs multi frames was developed, for
diagnosing automotive systems over the CAN busses, using
the Vector CANoe environment.

Our algorithm improves the automatic diagnose
efficiency by streamlining the process, reducing the costs,
and optimizing the resources to achieve better results.

Since we also considered the important factor of dealing
with multi-frame cases, more exactly the order of the
messages received from the ECU, the improvements brought
are quality control, for detecting deviations from
specifications, and predictive maintenance, since we are
minimizing the downtimes.

As another, improvement, our study shows differences of
about 14% for interpretation and validation of data
considering the responding time of the ECU, which is not
negligible for the automotive industry, where time efficiency
in detecting malfunctions is a sensitive issue.

The algorithm scales efficiently, maintaining consistent

performance as the dataset size grows. Test with hundreds of

datasets exhibits only a slight increase in the processing time,
validating the data, and indicating strong scalability. The
algorithm complexity is O(n) since it grows linearly with the
size of the input.

REFERENCES

[1] Adrian Bogorin-Predescu, Aurel Mihail Țîțu, Nicoleta –Mădălina Niță,

Victor-Leonard Domnariu, “MODELING OF THE AUTOMATI C

TESTING PROCESS OF ELECTRONIC CONTROL UNITS IN THE

AUTOMOTIVE INDUSTRY”, International Journal of Mechatronics

and Applied Mechanics, 2022

[2] M. A. Khan, A. Jadoon, K. M. S. Haq, S. Mumtaz and J. Rodrigues,

"An Overview of Resilient and Automatic Model-Based Testing

Approaches for Automotive Industry," 2019 IEEE International

Conference on Communications Workshops

[3] Liyu Wang, Jack Hodges, Dan Yu, Ronald S. Fearing, “Automatic

modelling and fault diagnosis of car production lines based on first -

principle qualitative mechanics and semantic web technology”,

Advanced Engineering Informatics 2021

[4] N. Soltanipour, S. Rahrovani, J. Martinsson and R. Westlund, "Chassis

Hardware Fault Diagnostics with Hidden Markov Model Based

Clustering," 2020 IEEE 23rd International Conference on Intelligent

Transportation Systems (ITSC)

[5] R. H. Kim, S. H. Oh and J. G. Kim, "Development of DNN-based

diagnostic platform for self-diagnosis of electric vehicle automatic

transmission controller production equipment," 2022 IEEE Ninth

International Conference on Communications and Electronics (ICCE)

[6] M. Bozdal, M. Samie and I. Jennions, "A Survey on CAN Bus Protocol:

Attacks, Challenges, and Potential Solutions," 2018 International

Conference on Computing, Electronics & Communications

Engineering (iCCECE), Southend, UK

[7] S. G. Patil and V. R. Ratnaparkhe, "CAN Protocol–Application in

Automation Electronics," 2020 International Conference on Smart

Innovations in Design, Environment, Management, Planning and

Computing (ICSIDEMPC), Aurangabad, India, 2020

[8] R. Khamamkar, A. Jadhav, S. Thoke and G. Chaple, "Smart Vehicle

Safety Monitoring System Using CAN Protocol," 2018 IEEE Punecon,

Pune, India, 2018

[9] R. De Andrade, K. N. Hodel, J. F. Justo, A. M. Laganá, M. M. Santos

and Z. Gu, "Analytical and Experimental Performance Evaluations of

CAN-FD Bus," in IEEE Access, vol. 6, pp. 21287-21295, 2018

[10] Spencer G, Mateus F, Torres P, Dionísio R, Martins R. Design of CAN

Bus Communication Interfaces for Forestry Machines. Computers.

2021; 10(11):144. https://doi.org/10.3390/computers10110144

[11] M. Wajape and N. B. Elamana, "Study of ISO 14229-1 and ISO 15765-

3 and implementation in EMS ECU for EEPROM for UDS

application," 2014 IEEE International Conference on Vehicular

Electronics and Safety, Hyderabad, India, 2014

[12] Oladimeji D, Rasheed A, Varol C, Baza M, Alshahrani H, Baz A.

CANAttack: Assessing Vulnerabilities within Controller Area

Network. Sensors. 2023; 23(19):8223.

https://doi.org/10.3390/s23198223

[13] D. Georgescu and L. Stanciu, "Designing and Implementing a Solution

to Manipulate Signals in Automated Testing Using CANoe," 2018

IEEE 12th International Symposium on Applied Computational

Intelligence and Informatics (SACI), Timisoara, Romania, 2018

[14] R. G. Lazar and C. F. Caruntu, "Simulator for the Automotive

Diagnosis System on CAN using Vector CANoe Environment," 2020

24th International Conference on System Theory, Control and

Computing (ICSTCC), Sinaia, Romania, 2020

[15] Vector Informatik GmbH, CANoe - User Manual, 7th ed., Vector,

Stuttgart, Germany

[16] Vector Informatik GmbH, CANoe - CANoe Product Information

[17] V. Gajul, J. K. D. Mishra and S. Tavhare, "Automation solution for

Software Testing of CAN based ECUs," 2021 Fourth International

Conference on Electrical, Computer and Communication
Technologies (ICECCT), Erode, India, 2021

[18] D. E. McFeely, "The process and challenges of a high-speed DUT

board project," Proceedings. International Test Conference,

Baltimore, MD, USA, 2002

[19] Vector Informatik GmbH, CANoe – Introduction to CAN

