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Abstract—In this paper, we approach the important topic of 
video surveillance systems which automatically identify and 
track moving vehicles in different environments. A comparative 
evaluation has been performed on four algorithms which have 
been adapted for counting vehicles. Among these algorithms, 
two of them utilize contour detection techniques to accomplish 
this task, while the remaining two rely on feature detection 
techniques to count vehicles passing through a designated region 
of interest using both contour detection and feature detection 
techniques. The proposed algorithms have been implemented 
and tested on a set of video sequences and an accuracy measure 
was computed to determine the most effective algorithm. The 
results show that the YOLO-based algorithm has the best 
average accuracy, while the Algorithm 1, which is based on 
background detection and tracking, has the most consistent 
performance. 
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I. INTRODUCTION 

Video surveillance and tracking systems provide an 
automatic way to identify people, objects, or events of interest 
in different types of environments. Typically, these systems 
consist of dedicated image/ video capturing devices installed 
in the surveilled locations, along with specialized modules and 
applications for image sequencing processing, identification 
and tracking of the movement, objects and/ or people, as well 
as for data recording and event notification. Identifying 
moving objects in a video sequence is a fundamental and 
critical task in video surveillance, traffic monitoring and 
analysis, human detection and tracking. 

This article presents and discusses four algorithms which 
have been adapted for vehicle detection and counting. Each 
algorithm employs a unique approach and utilizes a range of 
techniques, including machine learning, to achieve its 
objectives. These algorithms can be classified into two 
categories: two of them involve tracking of the vehicles and 
displaying the current count near their respective centers, 
while the other two algorithms count the cars passing through 
a predefined, designated region of interest. The former 
category, which focuses on tracking the vehicles, employs 
contour detection and includes an algorithm that uses YOLO 
[1]. On the other hand, the second category of algorithms 
utilizes feature detection over a region of interest, one of them 
also employing the Haar Cascades method. 

However, the issue of calibration occurred due multiple 
detection of vehicles or background noise. To address it, each 
algorithm has a configuration file containing calibrations for 
the respective video. A current constraint is that this process 
can only be carried out manually, as it depends on the lighting 
conditions and the presence of background noise. 

The four vehicle tracking algorithms have been 
implemented and tested on a set of video sequences and a 
comparative evaluation of their performance and accuracy 
have been made, to determine the most effective algorithm. 

II. STATE OF THE ART 

Moving object detection and tracking in video sequences 
continues to be a topic of major importance and interest in the 
current scientific and technical literature, with a major impact 
on a large variety of applications, including road traffic 
surveillance systems [2], [3]. 

The authors of [4] present a technique for detecting 
moving objects by combining Inertial Measurement Unit 
(IMU) sensors and instance image segmentation. The 
approach includes using a detector to extract feature points 
and determining the initial fundamental matrix based on IMU 
data. The feature points are classified using the epipolar line, 
and the fundamental matrix is iteratively calculated to 
minimize classification errors resulting from matching 
background feature points. The effectiveness of the proposed 
method was verified using real-world acquired sequences and 
compared with existing techniques.  

In [5], a novel technique for object tracking was 
introduced, which addresses issues related to changes in scale 
and occlusion. This method employs the Mean Shift 
Algorithm [6] to efficiently track the color characteristics of 
the object. The approach is not only more efficient than other 
methods, but can also detect target occlusion reliably by using 
the Bhattacharyya coefficient [7]. By extrapolating an object's 
motion during occlusion, the technique can accurately 
estimate its position and provide a foundation for tracking 
through occlusion. 

In the recent years, machine learning based approaches 
developed rapidly and became intensively studied and used in 
the vehicle detection and tracking area. For instance, object 
detection using Haar feature-based cascade classifiers is an 
efficient object detection method, proposed in [8]. This is a 
machine learning based approach where the Cascade Feature 
was trained with positive and negative images, and then used 
to detect objects in other images. 

Fast Region-based Convolutional Neural Network (Fast 
R-CNN) [9], which is considered a benchmark in terms of 
accuracy, has relatively low speed. To improve the detection 
efficiency, the You Only Look Once (YOLO) method was 
proposed in [1]. Compared to the approach adopted by 
classical object detection algorithms, YOLO proposes the use 
of an end-to-end neural network that makes predictions of 
bounding boxes of moving regions and class membership 
probabilities simultaneously. The YOLO algorithm works by 
dividing the image into N grids, each having a dimensional 



region equal to SxS. Each of these N grids is responsible for 
detecting and locating the object contained. 

The effectiveness of using Deep Neural Network-based 
(DNN) background subtraction for detecting moving objects 
is the focus of [10]. Although previous research has shown 
DNN-based methods outperform traditional background 
modeling, the factors contributing to their success are not yet 
fully comprehended. The authors of this paper examine how a 
DNN behaves by studying feature maps across all layers and 
identifying crucial filters that improve detection accuracy. 
Their analysis reveals that the DNN leverages subtraction 
operations in convolutional layers and thresholding operations 
in bias layers, as well as produces filters specific to the scene 
that help reduce false positives caused by dynamic 
backgrounds. 

The categorization of lanes into Normative-Lanes and 
Non-Normative-Lanes, and the setting up of corresponding 
Regions of Interest (ROIs) for vehicle counting is an 
innovative way of counting vehicles [11]. The ROIs are 
positioned directly below the camera and set to a length less 
than the safe vehicle spacing, with the width of the Non-
Normative-Lane ROI being the same as the distance between 
two Normative-Lanes. The authors also explain the use of 
detection lines and detection areas to improve the accuracy of 
vehicle counting, and the normalization of ROIs for 
convenience in research. 

III. METHODOLOGY 

A. Algorithm 1 

The first algorithm, implemented and studied in this work 
is based on moving object (vehicle) detection and tracking in 
video streams. The method starts with a calibration phase in 
which a previously detected background image is converted to 
grayscale and then loaded as ground truth. The algorithm then 
processes the frames one by one, performing moving object 
detection by frame difference, between the current and the 
background frames.  

The algorithm keeps track of the vehicle positions and 
assigns a unique identification number to each vehicle. The 
code examines each vehicle's new position for subsequent 
frames by comparing it to the prior position. The vehicle is 
deemed to remain in the same position and its position is 
updated if the new position is within a predetermined distance 
threshold [12]. 

The identification number and the counter of detected 
vehicles are also displayed on the video stream, while the 
vehicle positions are marked using circles and text labels. 

B. Algorithm 2 

The second algorithm implements a vehicle counting 
method that starts by computing the difference between the 
current frame and the background image previously 
determined. It then applies the Thresholding, Erosion, and 
Dilation image processing operations to the resulting image in 
order to enhance the vehicle edges to help establish its 
bounding box. The bounding boxes that meet the specified 
criteria were marked with circles, and the vehicles which cross 
a designated line in the images are counted. 

The algorithm displays the marked vehicles and the total 
number of vehicles detected on the screen. We also added the 
coordinates of the region of interest to determine the location 
of the segment used for counting the vehicles. 

C. Algorithm 3 

This algorithm was adapted from [12] and it involves 
detecting objects in the video frame by object recognition. We 
have applied a parameter that restricts the position of cars 
below a specified y-coordinate. 

For each frame of the video, the algorithm detects any cars 
in the specified region of interest using the YOLO object 
recognition method [1]. It determines the coordinates of the 
center of the cars in each frame and calculates the distance 
between them to determine if it is the same car: 
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where D is the computed distance, and C1(x, y) and C2(x, y) 
are the centers of the cars. 

While keeping track of the coordinates of the center of 
each detected car, the algorithm also assigns it a unique 
identification number which is shown on the screen next to 
each vehicle. It then also displays the count of detected cars. 

D. Algorithm 4 

The fourth algorithm uses the Haar Cascade Classifier [8] 
to detect moving vehicles. A set of important parameters are 
implemented in our adaptation of this algorithm, such as: 

 the minimum and maximum width and height of the 
bounding rectangle, 

 the coordinates of the crossing line,  
 the allowed offset value for the line. 

The pre-trained classifier was applied to each frame in 
order to detect the cars and a bounding box was drawn for each 
recognition. 

The process then calculates the coordinates of the center 
of detected cars, stores them in a list and checks if the center 
is within the allowed offset range of the crossing line. If it is 
the case, a counter is incremented, and the coordinates are 
removed from the list. The counter keeps track of the total 
number of cars that have passed through the line. 

Finally, the algorithm displays the current frame with the 
detected cars and the current counter value. 

IV. RESULTS 

The four car tracking algorithms have been implemented 
in Python language, using the PyCharm environment, 
developed by JetBrains [13]. The processing architecture is 
based on an Intel Core i5-4590 CPU with a frequency of 
3.30GHz, 8.00GB RAM and a 64-bit Operating System. 

Three distinct test sets have been used to evaluate the car 
tracking algorithms. The first video sequence [14] contains 
vehicles driving on a highway and passing under a bridge, on 
which the camera is located. The frames have been captured 
by a stationary camera, during daytime, with high-contrast. 

The second test sequence [15] contains a two-way 
highway surrounded by a green field and a forest. 20 seconds 
were used of out this footage. For simplicity reasons, only the 
left lane was taken into account in this sequence in all of the 
three cases. The footage was captured during daytime and can 
be described as stationary. 



TS3, the third video sequence [16], has been acquired on 
a Los Angeles highway during dawn. To avoid the errors in 
the testing process due to the movement of the video camera 
at the end of the sequence, that particular part was cut out and 
only the first 13 seconds were used. 

For each of the four considered algorithms, the squares 
surrounding the vehicles were adjusted in each of the specific 
files read at the beginning of each code sequence. Therefore, 
the algorithm was adapted to detect vehicles of the particular 
dimensions of each specific case. 

The algorithms, while powerful and versatile, do have 
certain limitations. One such example is their limited 
applicability to trucks. Trucks pose unique challenges due to 
their size and the algorithms have not been fine-tuned on 
truck-related data. 

Another limitation of the algorithms is their inability to 
handle videos with significant shakiness or instability. As a 
result, during the testing phases, the algorithms were 
predominantly assessed using segments of videos that 
demonstrated stability. The environment surrounding the 
objects of interest also poses challenges for the algorithms. 
For instance, in videos where there is grass or other moving 
elements, the algorithms might mistakenly interpret the 
motion of the grass as movement of cars. To address this issue, 
specific instructions are included in the configuration files 
guiding the algorithm to focus on specific regions of the video 
when searching for cars. This approach aims to enhance the 
accuracy and reliability of the algorithms' object detection 
capabilities by reducing false positives associated with 
environmental motion. 

The need to specify the maximum and minimum size of 
vehicles in the configuration files for each video is another 
issue of the studied algorithms. This requirement arises 
because these algorithms rely on predefined size constraints to 
identify and classify objects as vehicles accurately. To make 
object detection algorithms more flexible and efficient in real-
world circumstances where vehicle sizes might change 
greatly, it can be a continuous area of study and development 
to overcome the limitations of static size constraints. 

A further limitation associated with the algorithms is the 
reliance on a configuration file for each video, specifically 
requiring the inclusion of coordinates for the region of interest 
and an offset value of said region, in the case of Algorithm 2 
and 4. The need for manual configuration may be time-
consuming and resource-intensive to create or update 
configuration files for numerous videos, especially in 
situations where a large number of videos need to be 
processed. Additionally, relying on manual inputs for the 
region of interest coordinates and offset introduces the 
possibility of human error or inconsistencies. Variations in 
how individuals define and input these values could impact 
the algorithm's performance and introduce inaccuracies. 

The total number of detected vehicles was counted. These 
values have been compared with the expert observed values, 
defining the number of vehicles present in the sequence, the 
number of undetected vehicles, and the number of duplicate 
cars. The accuracy was computed as follows: 
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where VT is the number of existing vehicles (ground truth), 
VM is the number of undetected (missed) vehicles and VE is the 
number or erroneous or duplicate detections. 

The evaluation results are presented in the figures and 
tables below, as follows: Fig. 1 to 3 and Table I for the first 
car tracking algorithm, Fig. 4 and Table II for Algorithm 2, 
Fig. 5 and Table III for the third algorithm, and Fig. 6 and 
Table IV for Algorithm 4, respectively. 

 
Fig. 1. Graphical results for Algorithm 1 on the first test sequence 

  
Fig. 2. Display results for Algorithm 1 on the second test sequence (TS2) 

  
Fig. 3. Display results for Algorithm 1 on TS3 

TABLE I.  ACCURACY EVALUATION  OF ALGORITHM 1  

Metrics Test Sequences
TS1 TS2 TS3

Number of cars (VT) 53 11 28
Number of detected cars 50 9 30
Number of undetected cars (VM) 4 2 2
Number of duplicate cars (VE) 1 0 4
Accuracy (A) 90.57% 81.82% 78.57%

 

  
Fig. 4. Display results for Algorithm 2 on TS1 



TABLE II.  ACCURACY EVALUATION OF THE SECOND ALGORITHM 

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 47 12 23
Number of undetected cars (VM) 6 1 6
Number of duplicate cars (VE) 0 2 1
Accuracy (A) 88.68% 72.72% 75.00%

 

 
Fig. 5. Display results for Algorithm 3 on the first test sequence 

TABLE III.  ACCURACY RESULTS FOR ALGORITHM 3 

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 55 12 36
Number of undetected cars (VM) 0 0 0
Number of duplicate cars (VE) 2 1 8
Accuracy (A) 96.23% 90.91% 71.43%
 

 
Fig. 6. Display results for Algorithm 4 on TS1 

TABLE IV.  ACCURACY EVALUATION OF THE FORTH ALGORITHM 

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 46 10 27
Number of undetected cars (VM) 14 3 3
Number of duplicate cars (VE) 7 2 7
Accuracy (A) 60.38% 54.55% 64.28%
 

For instance, in the case of test sequence TS1 on 
Algorithm1, the outcomes are highly favorable, with only 4 
out of 53 vehicles going undetected, and only one car being 
double-counted. The resulting accuracy is 90.57%. 

The first sequence overall has the highest percentages 
when it comes to accuracy, as the camera hardly moved at all 
and the contrast is good. There are no trees on the edges, which 
have a great influence on determining the background. This is 
why the cars are very well delimited from the rest of the 
background. 

On the second test sequence, the accuracy obtained was 
over 72% for the first three algorithms and almost 55% for the 
last one. In this case, it is the oblique sun light that causes the 
detection rate to drop. There are cases where two cars overpass 
each other while some of the tested algorithms detect them as 
a single one, thus missing several cars. The accuracy of the 
first algorithm was 81.82%, less than in case of the first test 
sequence. For Algorithm 2, the accuracy was only 72.72%; 
one car has not been detected and two cars were detected as 
duplicated. The third algorithm detects the vehicles with an 
accuracy of 90.91%. The Haar Cascade algorithm had an 
accuracy of 54.55%. 

The third test sequence is the most unstable in terms of 
camera position. This is one of the reasons why not all 
vehicles were correctly detected. The first algorithm achieves 
an accuracy of 78.57%, the second 75%, the third 71.43% and 
the fourth 64.28%. 

A synthesis of the accuracy comparison of the four studied 
algorithms is presented in Table V. 

TABLE V.  COMPARISON OF ACCURACY EVALUATION OF THE 
CONSIDERED ALGORITHMS 

Test Sequence Car Tracking Algorithm 
1 2 3 4

TS1 90.57% 88.68% 96.23% 60.38%
TS2 81.82% 72.72% 90.91% 54.55%
TS3 78.57% 75.00% 71.43% 64.28% 

Average Accuracy 83.65% 78.80% 86.19% 59.74%
 

V. CONCLUSIONS 

In this paper, we have tested and evaluated four vehicle 
detection algorithms, two of them performing object tracking 
and the other two counting the cars which move through an 
area of interest. The first algorithm processes a region 
extracted with contour detection techniques, whereas the third 
one tracks shapes recognized by the YOLO machine learning 
algorithm.  Both of these algorithms track moving objects. The 
other two algorithms use contour detection for the moving 
region or the recognition of known shapes using Haar 
Cascades. 

TABLE V presents the results of the accuracy comparison 
of the four algorithms. The average accuracy for the first 
algorithm is 83.65%. This algorithm achieves the most 
consistent accuracy in all the three test sequences (over 78%). 
The average for the second algorithm in terms of accuracy is 
78.8%, almost 5 percent lower than the first. 

The YOLO-based algorithm achieves over 90% accuracy 
in the first two cases and, marginally a better average overall 
accuracy than Algorithm 1, but drops significantly in the case 
of TS3 test video sequence, due to the camera movement, 
which complicates object tracking. The fourth algorithm has 
the lowest accuracy, at an average of 59.74%. 
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