

This paper is a preprint (IEEE “accepted” status).

IEEE copyright notice. © 2023 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

DOI. 10.1109/ICSTCC59206.2023.10308450

A Comparative Study of Car Tracking Algorithms
for Road Traffic Surveillance Applications

Ana Alexandra Brad
Department of Computer and

Information Technology
Politehnica University of Timisoara

Timisoara, Romania
ana.brad99@gmail.com

Maria Cristina Brad
Department of Computer and

Information Technology
Politehnica University of Timisoara

Timisoara, Romania
maria.brad99@gmail.com

Mihai V. Micea*
Department of Computer and

Information Technology
Politehnica University of Timisoara

Timisoara, Romania
mihai.micea@cs.upt.ro

Abstract—In this paper, we approach the important topic of
video surveillance systems which automatically identify and
track moving vehicles in different environments. A comparative
evaluation has been performed on four algorithms which have
been adapted for counting vehicles. Among these algorithms,
two of them utilize contour detection techniques to accomplish
this task, while the remaining two rely on feature detection
techniques to count vehicles passing through a designated region
of interest using both contour detection and feature detection
techniques. The proposed algorithms have been implemented
and tested on a set of video sequences and an accuracy measure
was computed to determine the most effective algorithm. The
results show that the YOLO-based algorithm has the best
average accuracy, while the Algorithm 1, which is based on
background detection and tracking, has the most consistent
performance.

Keywords—Traffic surveillance, car detection, Haar
Cascades, OpenCV, YOLO

I. INTRODUCTION

Video surveillance and tracking systems provide an
automatic way to identify people, objects, or events of interest
in different types of environments. Typically, these systems
consist of dedicated image/ video capturing devices installed
in the surveilled locations, along with specialized modules and
applications for image sequencing processing, identification
and tracking of the movement, objects and/ or people, as well
as for data recording and event notification. Identifying
moving objects in a video sequence is a fundamental and
critical task in video surveillance, traffic monitoring and
analysis, human detection and tracking.

This article presents and discusses four algorithms which
have been adapted for vehicle detection and counting. Each
algorithm employs a unique approach and utilizes a range of
techniques, including machine learning, to achieve its
objectives. These algorithms can be classified into two
categories: two of them involve tracking of the vehicles and
displaying the current count near their respective centers,
while the other two algorithms count the cars passing through
a predefined, designated region of interest. The former
category, which focuses on tracking the vehicles, employs
contour detection and includes an algorithm that uses YOLO
[1]. On the other hand, the second category of algorithms
utilizes feature detection over a region of interest, one of them
also employing the Haar Cascades method.

However, the issue of calibration occurred due multiple
detection of vehicles or background noise. To address it, each
algorithm has a configuration file containing calibrations for
the respective video. A current constraint is that this process
can only be carried out manually, as it depends on the lighting
conditions and the presence of background noise.

The four vehicle tracking algorithms have been
implemented and tested on a set of video sequences and a
comparative evaluation of their performance and accuracy
have been made, to determine the most effective algorithm.

II. STATE OF THE ART

Moving object detection and tracking in video sequences
continues to be a topic of major importance and interest in the
current scientific and technical literature, with a major impact
on a large variety of applications, including road traffic
surveillance systems [2], [3].

The authors of [4] present a technique for detecting
moving objects by combining Inertial Measurement Unit
(IMU) sensors and instance image segmentation. The
approach includes using a detector to extract feature points
and determining the initial fundamental matrix based on IMU
data. The feature points are classified using the epipolar line,
and the fundamental matrix is iteratively calculated to
minimize classification errors resulting from matching
background feature points. The effectiveness of the proposed
method was verified using real-world acquired sequences and
compared with existing techniques.

In [5], a novel technique for object tracking was
introduced, which addresses issues related to changes in scale
and occlusion. This method employs the Mean Shift
Algorithm [6] to efficiently track the color characteristics of
the object. The approach is not only more efficient than other
methods, but can also detect target occlusion reliably by using
the Bhattacharyya coefficient [7]. By extrapolating an object's
motion during occlusion, the technique can accurately
estimate its position and provide a foundation for tracking
through occlusion.

In the recent years, machine learning based approaches
developed rapidly and became intensively studied and used in
the vehicle detection and tracking area. For instance, object
detection using Haar feature-based cascade classifiers is an
efficient object detection method, proposed in [8]. This is a
machine learning based approach where the Cascade Feature
was trained with positive and negative images, and then used
to detect objects in other images.

Fast Region-based Convolutional Neural Network (Fast
R-CNN) [9], which is considered a benchmark in terms of
accuracy, has relatively low speed. To improve the detection
efficiency, the You Only Look Once (YOLO) method was
proposed in [1]. Compared to the approach adopted by
classical object detection algorithms, YOLO proposes the use
of an end-to-end neural network that makes predictions of
bounding boxes of moving regions and class membership
probabilities simultaneously. The YOLO algorithm works by
dividing the image into N grids, each having a dimensional

region equal to SxS. Each of these N grids is responsible for
detecting and locating the object contained.

The effectiveness of using Deep Neural Network-based
(DNN) background subtraction for detecting moving objects
is the focus of [10]. Although previous research has shown
DNN-based methods outperform traditional background
modeling, the factors contributing to their success are not yet
fully comprehended. The authors of this paper examine how a
DNN behaves by studying feature maps across all layers and
identifying crucial filters that improve detection accuracy.
Their analysis reveals that the DNN leverages subtraction
operations in convolutional layers and thresholding operations
in bias layers, as well as produces filters specific to the scene
that help reduce false positives caused by dynamic
backgrounds.

The categorization of lanes into Normative-Lanes and
Non-Normative-Lanes, and the setting up of corresponding
Regions of Interest (ROIs) for vehicle counting is an
innovative way of counting vehicles [11]. The ROIs are
positioned directly below the camera and set to a length less
than the safe vehicle spacing, with the width of the Non-
Normative-Lane ROI being the same as the distance between
two Normative-Lanes. The authors also explain the use of
detection lines and detection areas to improve the accuracy of
vehicle counting, and the normalization of ROIs for
convenience in research.

III. METHODOLOGY

A. Algorithm 1

The first algorithm, implemented and studied in this work
is based on moving object (vehicle) detection and tracking in
video streams. The method starts with a calibration phase in
which a previously detected background image is converted to
grayscale and then loaded as ground truth. The algorithm then
processes the frames one by one, performing moving object
detection by frame difference, between the current and the
background frames.

The algorithm keeps track of the vehicle positions and
assigns a unique identification number to each vehicle. The
code examines each vehicle's new position for subsequent
frames by comparing it to the prior position. The vehicle is
deemed to remain in the same position and its position is
updated if the new position is within a predetermined distance
threshold [12].

The identification number and the counter of detected
vehicles are also displayed on the video stream, while the
vehicle positions are marked using circles and text labels.

B. Algorithm 2

The second algorithm implements a vehicle counting
method that starts by computing the difference between the
current frame and the background image previously
determined. It then applies the Thresholding, Erosion, and
Dilation image processing operations to the resulting image in
order to enhance the vehicle edges to help establish its
bounding box. The bounding boxes that meet the specified
criteria were marked with circles, and the vehicles which cross
a designated line in the images are counted.

The algorithm displays the marked vehicles and the total
number of vehicles detected on the screen. We also added the
coordinates of the region of interest to determine the location
of the segment used for counting the vehicles.

C. Algorithm 3

This algorithm was adapted from [12] and it involves
detecting objects in the video frame by object recognition. We
have applied a parameter that restricts the position of cars
below a specified y-coordinate.

For each frame of the video, the algorithm detects any cars
in the specified region of interest using the YOLO object
recognition method [1]. It determines the coordinates of the
center of the cars in each frame and calculates the distance
between them to determine if it is the same car:

ܦ ൌ ට൫ܥଶሺݔሻ െ ሻ൯ݔଵሺܥ
ଶ
െ ൫ܥଶሺݕሻ െ ሻ൯ݕଵሺܥ

ଶ
 (1)

where D is the computed distance, and C1(x, y) and C2(x, y)
are the centers of the cars.

While keeping track of the coordinates of the center of
each detected car, the algorithm also assigns it a unique
identification number which is shown on the screen next to
each vehicle. It then also displays the count of detected cars.

D. Algorithm 4

The fourth algorithm uses the Haar Cascade Classifier [8]
to detect moving vehicles. A set of important parameters are
implemented in our adaptation of this algorithm, such as:

 the minimum and maximum width and height of the
bounding rectangle,

 the coordinates of the crossing line,
 the allowed offset value for the line.

The pre-trained classifier was applied to each frame in
order to detect the cars and a bounding box was drawn for each
recognition.

The process then calculates the coordinates of the center
of detected cars, stores them in a list and checks if the center
is within the allowed offset range of the crossing line. If it is
the case, a counter is incremented, and the coordinates are
removed from the list. The counter keeps track of the total
number of cars that have passed through the line.

Finally, the algorithm displays the current frame with the
detected cars and the current counter value.

IV. RESULTS

The four car tracking algorithms have been implemented
in Python language, using the PyCharm environment,
developed by JetBrains [13]. The processing architecture is
based on an Intel Core i5-4590 CPU with a frequency of
3.30GHz, 8.00GB RAM and a 64-bit Operating System.

Three distinct test sets have been used to evaluate the car
tracking algorithms. The first video sequence [14] contains
vehicles driving on a highway and passing under a bridge, on
which the camera is located. The frames have been captured
by a stationary camera, during daytime, with high-contrast.

The second test sequence [15] contains a two-way
highway surrounded by a green field and a forest. 20 seconds
were used of out this footage. For simplicity reasons, only the
left lane was taken into account in this sequence in all of the
three cases. The footage was captured during daytime and can
be described as stationary.

TS3, the third video sequence [16], has been acquired on
a Los Angeles highway during dawn. To avoid the errors in
the testing process due to the movement of the video camera
at the end of the sequence, that particular part was cut out and
only the first 13 seconds were used.

For each of the four considered algorithms, the squares
surrounding the vehicles were adjusted in each of the specific
files read at the beginning of each code sequence. Therefore,
the algorithm was adapted to detect vehicles of the particular
dimensions of each specific case.

The algorithms, while powerful and versatile, do have
certain limitations. One such example is their limited
applicability to trucks. Trucks pose unique challenges due to
their size and the algorithms have not been fine-tuned on
truck-related data.

Another limitation of the algorithms is their inability to
handle videos with significant shakiness or instability. As a
result, during the testing phases, the algorithms were
predominantly assessed using segments of videos that
demonstrated stability. The environment surrounding the
objects of interest also poses challenges for the algorithms.
For instance, in videos where there is grass or other moving
elements, the algorithms might mistakenly interpret the
motion of the grass as movement of cars. To address this issue,
specific instructions are included in the configuration files
guiding the algorithm to focus on specific regions of the video
when searching for cars. This approach aims to enhance the
accuracy and reliability of the algorithms' object detection
capabilities by reducing false positives associated with
environmental motion.

The need to specify the maximum and minimum size of
vehicles in the configuration files for each video is another
issue of the studied algorithms. This requirement arises
because these algorithms rely on predefined size constraints to
identify and classify objects as vehicles accurately. To make
object detection algorithms more flexible and efficient in real-
world circumstances where vehicle sizes might change
greatly, it can be a continuous area of study and development
to overcome the limitations of static size constraints.

A further limitation associated with the algorithms is the
reliance on a configuration file for each video, specifically
requiring the inclusion of coordinates for the region of interest
and an offset value of said region, in the case of Algorithm 2
and 4. The need for manual configuration may be time-
consuming and resource-intensive to create or update
configuration files for numerous videos, especially in
situations where a large number of videos need to be
processed. Additionally, relying on manual inputs for the
region of interest coordinates and offset introduces the
possibility of human error or inconsistencies. Variations in
how individuals define and input these values could impact
the algorithm's performance and introduce inaccuracies.

The total number of detected vehicles was counted. These
values have been compared with the expert observed values,
defining the number of vehicles present in the sequence, the
number of undetected vehicles, and the number of duplicate
cars. The accuracy was computed as follows:

ܣ ൌ ିಾିಶ

∙ 100		ሾ%ሿ (2)

where VT is the number of existing vehicles (ground truth),
VM is the number of undetected (missed) vehicles and VE is the
number or erroneous or duplicate detections.

The evaluation results are presented in the figures and
tables below, as follows: Fig. 1 to 3 and Table I for the first
car tracking algorithm, Fig. 4 and Table II for Algorithm 2,
Fig. 5 and Table III for the third algorithm, and Fig. 6 and
Table IV for Algorithm 4, respectively.

Fig. 1. Graphical results for Algorithm 1 on the first test sequence

Fig. 2. Display results for Algorithm 1 on the second test sequence (TS2)

Fig. 3. Display results for Algorithm 1 on TS3

TABLE I. ACCURACY EVALUATION OF ALGORITHM 1

Metrics Test Sequences
TS1 TS2 TS3

Number of cars (VT) 53 11 28
Number of detected cars 50 9 30
Number of undetected cars (VM) 4 2 2
Number of duplicate cars (VE) 1 0 4
Accuracy (A) 90.57% 81.82% 78.57%

Fig. 4. Display results for Algorithm 2 on TS1

TABLE II. ACCURACY EVALUATION OF THE SECOND ALGORITHM

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 47 12 23
Number of undetected cars (VM) 6 1 6
Number of duplicate cars (VE) 0 2 1
Accuracy (A) 88.68% 72.72% 75.00%

Fig. 5. Display results for Algorithm 3 on the first test sequence

TABLE III. ACCURACY RESULTS FOR ALGORITHM 3

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 55 12 36
Number of undetected cars (VM) 0 0 0
Number of duplicate cars (VE) 2 1 8
Accuracy (A) 96.23% 90.91% 71.43%

Fig. 6. Display results for Algorithm 4 on TS1

TABLE IV. ACCURACY EVALUATION OF THE FORTH ALGORITHM

Metrics Test Sequences
 TS1 TS2 TS3
Number of cars (VT) 53 11 28
Number of detected cars 46 10 27
Number of undetected cars (VM) 14 3 3
Number of duplicate cars (VE) 7 2 7
Accuracy (A) 60.38% 54.55% 64.28%

For instance, in the case of test sequence TS1 on
Algorithm1, the outcomes are highly favorable, with only 4
out of 53 vehicles going undetected, and only one car being
double-counted. The resulting accuracy is 90.57%.

The first sequence overall has the highest percentages
when it comes to accuracy, as the camera hardly moved at all
and the contrast is good. There are no trees on the edges, which
have a great influence on determining the background. This is
why the cars are very well delimited from the rest of the
background.

On the second test sequence, the accuracy obtained was
over 72% for the first three algorithms and almost 55% for the
last one. In this case, it is the oblique sun light that causes the
detection rate to drop. There are cases where two cars overpass
each other while some of the tested algorithms detect them as
a single one, thus missing several cars. The accuracy of the
first algorithm was 81.82%, less than in case of the first test
sequence. For Algorithm 2, the accuracy was only 72.72%;
one car has not been detected and two cars were detected as
duplicated. The third algorithm detects the vehicles with an
accuracy of 90.91%. The Haar Cascade algorithm had an
accuracy of 54.55%.

The third test sequence is the most unstable in terms of
camera position. This is one of the reasons why not all
vehicles were correctly detected. The first algorithm achieves
an accuracy of 78.57%, the second 75%, the third 71.43% and
the fourth 64.28%.

A synthesis of the accuracy comparison of the four studied
algorithms is presented in Table V.

TABLE V. COMPARISON OF ACCURACY EVALUATION OF THE
CONSIDERED ALGORITHMS

Test Sequence Car Tracking Algorithm
1 2 3 4

TS1 90.57% 88.68% 96.23% 60.38%
TS2 81.82% 72.72% 90.91% 54.55%
TS3 78.57% 75.00% 71.43% 64.28%

Average Accuracy 83.65% 78.80% 86.19% 59.74%

V. CONCLUSIONS

In this paper, we have tested and evaluated four vehicle
detection algorithms, two of them performing object tracking
and the other two counting the cars which move through an
area of interest. The first algorithm processes a region
extracted with contour detection techniques, whereas the third
one tracks shapes recognized by the YOLO machine learning
algorithm. Both of these algorithms track moving objects. The
other two algorithms use contour detection for the moving
region or the recognition of known shapes using Haar
Cascades.

TABLE V presents the results of the accuracy comparison
of the four algorithms. The average accuracy for the first
algorithm is 83.65%. This algorithm achieves the most
consistent accuracy in all the three test sequences (over 78%).
The average for the second algorithm in terms of accuracy is
78.8%, almost 5 percent lower than the first.

The YOLO-based algorithm achieves over 90% accuracy
in the first two cases and, marginally a better average overall
accuracy than Algorithm 1, but drops significantly in the case
of TS3 test video sequence, due to the camera movement,
which complicates object tracking. The fourth algorithm has
the lowest accuracy, at an average of 59.74%.

REFERENCES
[1] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection", in Proc. 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, 779-788, 2016.

[2] A. Crouzil, L. Khoudour, P. Valiere, D.N. Truong Cong, "Automatic
Vehicle Counting System for Traffic Monitoring", Journal of
Electronic Imaging, 25 (5), 1-12, 2016.

[3] C. Stauffer, W.E.L. Grimson, "Adaptive Background Mixture Models
for Real-Time Tracking”, in Proc. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 246-252, 1999.

[4] S. Jung, Y. Cho, K. Lee, M. Chang, "Moving Object Detection with
Single Moving Camera and IMU Sensor using Mask R-CNN Instance
Image Segmentation", International Journal of Precision Engineering
and Manufacturing, 22 (6), 1049-1059, 2021.

[5] A. Dulai, T. Stathak, "Mean shift tracking through scale and
occlusion", IET signal processing, 6 (5), 534-540, 2012.

[6] D. Demirovic, "An implementation of the mean shift algorithm", Image
Processing On Line, 9, 251-268, 2019.

[7] T. Guillerme, N. Cooper, "Effects of missing data on topological
inference using a Total Evidence approach", Molecular Phylogenetics
and Evolution, 94, 146-158, 2016.

[8] P. Viola, M. Jones, "Rapid Object Detection using a Boosted Cascade
of Simple Features", in Proc. 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR, 2001.

[9] R. Girshick, "Fast R-CNN", in Proceedings of the IEEE International
Conference on Computer Vision, ICCV, 1440-1448, 2015.

[10] T. Minematsu, A. Shimada, H. Uchiyama, R. Taniguchi, "Analytics of
Deep Neural Network-Based Background Subtraction", Journal of
Imaging, 4 (6), 78, 2018.

[11] S. Kumari, D. Agrawal, "Video Based Vehicle Detection and Tracking
using Image Processing", International Journal of Research
Publication and Reviews, 3 (8), 735-742, 2022.

[12] S. Canu, "Object tracking from scratch - OpenCV and Python",
pysource, 2021, [Online: https://pysource.com/2021/10/05/object-
tracking-from-scratch-opencv-and-python/, Last accessed: Jan. 2023].

[13] * * *, "PyCharm Reference", JetBrains s.r.o., 2021, [Online:
https://www.jetbrains.com/help/pycharm/ui-reference.html, Last
accessed: Jan. 2023].

[14] * * *, https://github.com/MicrocontrollersAndMore/OpenCV_3_Car_
Counting_Cpp/blob/master/CarsDrivingUnderBridge.mp4, [Last
accessed: Jan. 2023].

[15] * * *, https://pixabay.com/videos/los-angeles-traffic-california-road-
53125/, [Last accessed: Jan. 2023].

[16] * * *, https://github.com/ahmetozlu/vehicle_counting/blob/master/src/
HSCC%20Interstate%20Highway%20Surveillance%20System%20-
%20TEST%20VIDEO.mp4, [Last accessed: Jan. 2023].

