
 

 

 

 

 

This paper is a preprint (IEEE “accepted” status). 

IEEE copyright notice. © 2022 IEEE. Personal use of this material is permitted. 
Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 

DOI. 10.1109/SACI55618.2022.9919550 



Energy Consumption Analysis for Raspberry Pi
Based Smart Mirrors and Proposed Solutions

Alexandru Rat
Faculty of Automation and Computers

Politechnica University of Timisoara
Timisoara, Romania

alexandru.rat2@student.upt.ro

Cristina Stangaciu
Computers and Information Technology Department

Politechnica University of Timisoara
Timisoara, Romania

cristina.stangaciu@cs.upt.ro

Mihai Micea
Computers and Information Technology Department

Politechnica University of Timisoara
Timisoara, Romania

mihai.micea@cs.upt.ro

Abstract—This article presents an analysis regarding energy
consumption of a type of smart devices, namely smart mirrors
using a reference implementation based on Raspberry Pi and
providing features like Internet connectivity, access to different
applications, voice command and geolocation. This paper includes
a comparative study between different software implementations
and configurations proposed for the smart mirror.

Index Terms—IoT device, embedded system, energy consump-
tion

I. INTRODUCTION

In the era of technology and information, the Internet of

Things (IoT) plays a huge role in the evolution of applications

from various high demand fields like 5G, electrical industry,

smart cities, healthcare or even education [1]. Smart sensors

communicate wirelessly and via the internet without needed

human intervention to serve automated intelligent applications.

Home and industrial automation, healthcare, transportation and

logistics are just a few of the domains that benefit from the

existence of the interconnected devices. Our homes can be

called smart when they have a range of smart devices that can

be controlled remotely or work independently for automating

house maintenance. The system becomes more complex when

IoT is combined with those devices. The internet connectivity

widens the possibilities of development and communication.

Thus, the standard of living of the user is improved with the

help of interacting computing systems and embedded systems

[2].

Such is the case of smart mirrors. Every day we spend time

in front of a mirror, so a mirror that can respond to our need for

information can thrill anyone. [3] A normal mirror is improved

into a smart mirror and can facilitate the awareness of the user

towards various functions.

On the other hand, along with the start of the 2021 energy

crisis, the problem of building energy efficient devices was

given a higher importance [4], even though the endeavors for

reducing energy consumption in smart homes are not new [5].

Now that the climatic changes start to become more appar-

ent, people are starting to be more aware of buying energy

efficient products. When choosing a product, the end user is

also looking at reducing the long term cost alongside the initial

cost of purchase.

Such is the case in the IoT domain. The choice of a user

regarding the equipped features is influenced by the power

consumption of those features. In the case of a smart mirror,

users want to be able to control the IoT device remotely and

without a remote controller. One obvious solution is using

what nature gave us, our voice [6] [7].

The implementation of voice recognition comes at a price.

This translates into increased demand for hardware and com-

putational power, which further results in increased power

consumption.

This research focuses on the analysis of power usage of a

smart mirror when having implemented features that require

speech recognition against the ones that do not have such

features.

There is a need for a better understanding of what power

consumption impact, the capability of speech recognition has

on IoT devices. The conclusion of this research should mirror

the balancing between the benefits added by speech recogni-

tion and the downsides of increased power consumption.

II. RELATED WORK

When referring to a smart mirror that belongs to the IoT

domain, we think of a hardware-software bind that offers

various functionalities, comes in different designs and is

based on several technologies. The most frequently found

implementation is done using a Raspberry Pi microcontroller

and a LCD/LED monitor behind a two-way acrylic mirror. The

purpose differs from mirror to mirror: the software can fetch

information such as weather, time, date and location, process

this information and format it in a user-friendly manner to

display it on the monitor [8] or it can aim for greater scopes,

such as medical or academic studies [9].



Some smart mirrors work in two modes: a normal mirror,

which keeps the smart system into a standby mode, thus, when

not used, it can conserve resources and energy; while in active

mode, the mirror is updating and displaying relevant data to

the user [10].

The functionalities of a smart mirror are defined by their

capacity to interact with the environment around them, either

by direct or indirect connection. The direct connection refers to

a hard-wired connection through which the system can collect

data or operate some actuators: microphone for voice instruc-

tions, humidity sensor for measuring humidity, IR receivers

for short distance remote controlling. The indirect connection

refers to an internet connection through which communication

to the outside is done: most smart mirrors have a webpage

approach based on different APIs used to fetch data [8]. Some

types of smart mirror also have home assistance functions,

being input controlled [9].

A study done for the IoT based smart mirrors [8] divided

the smart mirrors into 5 major categories based on the field

that they are used: general, medical, fashion, academic and

sports. Each field has its own characteristics: energy-saving

functionalities, facial and mood recognition, augmented reality

etc.

Regarding the implementation of smart mirrors, a significant

number of them are Raspberry Pi based systems [2], thus a

study on this type of architecture seems to be highly relevant.

III. PROPOSED SOLUTION

The proposed solution for this research project is based

on the development of a smart mirror device capable of the

following tasks:

• show current date and time

• connect to the internet to a IP geolocation provider for

retrieving the current location of the mirror

• based on the retrieved current location, retrieve the cur-

rent weather status and weather forecast and display it in

an intelligible manner

• provide the capability of voice recognition to support

certain type of request (“tell time”, “tell date”, “tell

weather”)

The interface is meant to be easy to understand and make

its usage straightforward. It should be out-of-the box available

and plug-and-play as in figure 1.

From the hardware point of view, the system runs on a

Raspberry Pi 3B+ development board because it has a variety

of advantages. The choice was made based on the state of the

art and its capability to integrate all the requirements for the

project.

First, it had to offer the processing power directly pro-

portional with the needed specifications. It has to withstand

consistent, close to real time, voice recognition along with

constant weather status update.

Second, since approximately half of the functionality is to

display an eye pleasing interface and most of the mirrors come

in larger dimensions, it had to support larger resolution output.

Fig. 1. Smart mirror interface.

Thus, a HDMI port became a requirement. More than that,

the interface had to be developed on a modern operating

system compatible with the development board, either on

Windows 10 IoT (here the programming language is C#, based

on .Net Core) or on Raspberry Pi OS (former Raspbian with

the main programming language being Python, or any other

compatible Linux based OS). The decisive characteristic for

the final choice of the OS was the already included voice

recognition library integrated in the core of Windows.

IV. EXPERIMENTAL RESULTS

While the Raspberry Pi 3B+ can be powered via a Mi-

croUSB cable, for the power consumption test the board has

to be powered via an external power source, so that an ampere

meter can be connected in series to measure the drawn current.

The ampere meter is a KEITHLEY DMM7510 which is a

high-resolution 7 digit precision graphical sampling digital

multimeter. It collects samples at a very high sample rate

(40Hz) and creates a CSV file that is later processed and

interpreted to draw conclusions. The samples contain data

regarding power consumption over time.

The +5V of the power source is connected to a 5V pin

of the Raspberry Pi through the KEITHLEY ampere meter

to measure the current flow. The GND pin from the power

source is connected to a GND pin from the Raspberry Pi.

The schematic from figure 2 and figure 3 shows how the

connections are done.

After the system is completely assembled from hardware

and software point of view, it is time for measurements to be

done. There are 2 large test cases to be done that can be split

into 4 smaller ones:

• original system runs on Windows 10 IoT and voice

recognition feature is disabled

• original system runs on Windows 10 IoT and voice

recognition feature is enabled



Fig. 2. Hardware schema for measuring power consumption.

Fig. 3. Hardware photo for measuring power consumption.

• similar application runs on Raspberry Pi OS with voice

recognition enabled

• similar application runs on Raspberry Pi OS with voice

recognition disabeld

Looking at the experiment as a whole, it diverges into two

systems: one running on a Linux based OS and the other

on a OS offered by Microsoft. Each one has its advantages

and disadvantages, aspects which are analyzed through the

following paragraphs, from both hardware and software point

of view individually.

Going to the software part of the system and considering

the operating system on which the interface is running, we

can distinguish two very popular choices for a Raspberry Pi

development board: Windows 10 IoT and Raspberry Pi OS.

The first one offered by Microsoft includes a voice recognition

library which represents the main feature upon which this

research diverges around. The interface was developed using

C# for both frontend and backend. For the backend functional

part of the project C# .Net Core 2.0 programming language

was used. The main objective of the interface is to gather

useful daily information from different vendors and display it

in a user friendly manner. The frontend part was developed

using XAML (Extensible Application Markup Language),

based on the declarative format XML. To make accessing this

information easier, the feature of voice recognition was added

to recognize different voice commands and execute certain

actions based on the recognized commands.

Regarding the voice recognition feature, Windows 10 IoT

has an advantage over the Raspberry Pi OS because the

voice recognition library is already included into the operating

system, while for the later one it is not the case. In order to im-

plement the voice recognition feature on the similar interface

running on Raspberry Pi OS, an intermediate library had to

be used. The SpeechRecognition library is a swiss army knife

of voice recognition for Python based applications. It supports

(as of now, but not limited to) CMU Sphinx, Google Speech

Recognition, Microsoft Bing Voice Recognition, IBM Speech

to Text. CMU Sphinx works offline, but has the disadvantage

that its recognition accuracy is very low. Google Speech

Recognition for online recognition has far higher accuracy but

at the cost of constant required internet connection.

Back to the hardware point of view, we are going to focus

on the power consumption in the 2 large scenarios. We make

our analysis based on power consumption graphs with data

recorded with the KEITHLEY advanced ampere meter, from

which we should draw conclusions. As an input source, a voice

recording with several commands was played back in loop for

5 minutes to provide the same testing conditions, allowing 25

repetitions. The microphone placement, playback volume and

room background noise was also kept the same during the

testing of scenarios. There are 4 actual scenarios to be tested

as follows.

Considering the fact that there is no humanly visible vari-

ation in spikes height from the graph and in order to keep

the power consumption graphics inteligible, they will only

represent a one minute time interval capture. However, the

average power consumption is calculated on the entire five

minute time interval capture.

A. Windows 10 IoT without voice recognition

We first take a look at the power consumption graph from

the system running on Windows 10 IoT, but without having

the voice recognition feature. On figure 4 we can see that the

power usage over time is constant, with small spikes specific

to the period of data refresh. The important thing to notice is

the average power usage that stays below 0.4 amps almost all

the time (avg. 0.382 amps), ranging from around 0.36 amps

to around 0.39 amps, with only the spikes that rise above for

a very short period of time to maximum upwards variation of

0.528 amps. We set the 0.4 amps as a reference value in order

to make the comparison between those scenarios easier.

B. Windows 10 IoT with voice recognition

Secondly we move on with the analysis to the scenario same

as previous, but here having the voice recognition feature.

By looking in comparison with the previous scenario, we

can see that the average power consumption of the system

has gone up by quite a bit, now ranging from around 0.38

amps to around 0.42 amps. This can be seen as 0.02 amps



Fig. 4. Windows 10 IoT without voice recognition power consumption graph.

Fig. 5. Windows 10 IoT with voice recognition power consumption graph.

consumed more on average or as an increase of 5% just

while idling. We can conclude that this increased idling power

consumption is caused by the constant audio input analysis.

The voice recognizer constantly listens for audio input. When

input volume reaches above a certain threshold, the recognizer

starts recording until input volume gets below the threshold

for a longer period of time. After that the recorded audio

is interpreted into text. If we take a closer look at the

graph from 5 we can notice 4 periods of time with visible

power consumption increase. Those 4 periods correspond with

the moments when audio input was recorded and decoded

into text. During those recording and decoding periods the

increased processing power required translates into increased

power consumption with calculated average being 0.421 amps

with maximum upwards variation up to 0.532 amps. (See

figure 5).

As a conclusion, there is a clear increase seen in power

consumption when having the voice recognition feature im-

plemented versus not having it. The exact increase percentage

cannot be determined, as it is directly proportional to the

amount of sound over time that exceeds the start threshold

of the recording. In other words, the more noise there is in

the room where the system is placed, the higher the occurrence

rate of the recording and decoding is, which means the more

power the system consumes.

C. Raspberry Pi OS without voice recognition

Moving on to the scenario where our system runs on

Raspberry Pi OS and taking a closer look at the power

consumption graph from figure 6, we can see that the current

values only rise above 0.4 amps reference mark during the

data refresh, same as the interface running on Windows 10

IoT. The calculated average power consumption is 0.375 amps

with maximum upwards variation up to 0.457 amps. What is

more important to notice are the lower current spikes drawn

during the application idling. Here it barely goes above the

reference value, while the Windows 10 IoT application has

quite frequent spikes, some of them even rising above 0.55

amps. This might seem that it does impact the general power

consumption by raising the average current drawn by quite a

bit for the Windows system, but the reality is that those are

happening for a very short period of time, so the impact is not

that great.

D. Raspberry Pi OS with voice recognition

Last but not least, the scenario where the application running

on Raspberry Pi OS has the voice recognition feature shows

some variations from the one that does not have the voice

recognition enabled. The recorded average value was 0.379

amps with maximum upwards variation up to 0.551 amps. By

looking at the graph from figure 7 in comparison with the one

from figure 6 the main differences that are noticeable are the

current spikes from the moments the recordings have started

and were sent for decoding. The important thing to mention

is that those are only happening for a short period of time

and do not impact the overall consumption by much. By just

comparing the average power consumption over 5 minute for

both scenarios running on Raspberry Pi OS, the value goes

from 0.375 amps average without the voice recognition feature

to 0.379 amps average with the feature.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

After the analysis of the power usage over time of the 4

systems (two with voice recognition feature and the other two

without it), there should be an overall power consumption



Fig. 6. Raspberry Pi OS without voice recognition power consumption graph.

Fig. 7. Raspberry Pi OS with voice recognition power consumption graph.

difference. Variations during the recorded time frames are

expected, but are not expected to influence the outcome of

the result.

The obvious expected result would be that the power

consumption of the system that has the voice recognition

integrated is greater than the system that does not have it. The

main cause of this result should be the increased processing

power needed to continuously record and decode the recording

in real time. Increased memory footprint is also expected for

the first mentioned system.

Also, comparison with similar application running on Rasp-

berry Pi OS are done from where conclusions regarding the

efficiency of the operating system while running the applica-

tion are to be drawn.

From the analysis done on the 4 scenarios, the conclusion

is that the voice recognition feature increases the power

consumption over the same systems, but without having this

feature. Regarding the interface developed using C# running

on Windows 10 IoT, the difference can be seen the easiest.

From 0.382 amps to 0.421 amps, there is a increase in

power draw by 10.2%. This is a direct result of all the

processing involved on decoding the voice audio recorded that

is done locally, on the board. The other interface developed

using Python and a Python specific external library for voice

recognition that runs on Raspberry Pi OS, does not illustrate

such a big difference in current drawn because all the resource

intensive decoding is happening on a Google server. The

most resource intensive tasks happening on this interface

are the voice recording, storing and sending to Google for

decoding. As a result, there is a small increase in average

power consumption, going from 0.375 amps without the voice

recognition feature to 0.379 amps for the system with voice

recognition. Here the increase in power draw is only 1%, so

the conclusions cannot be safely made.

In shorter terms, from the power consumption point of

view it is better to do the decoding on the cloud. The

main disadvantage is the constant required internet connection,

which in this case was a requirement for the interface to be

able to fetch data relevant to the user.

There are several future perspectives for this project to be

continued. One of them would be an analysis of the power

consumption of voice recognition while a large quantity of

audio constantly triggers the recording and decoding of audio.

For example, a smart mirror similar to the one from this

project, but placed into a crowded room with constant noise.

Another perspective would be to find other systems, more

energy efficent, that can incorporate a set of requirements

similar to the ones from this project.

REFERENCES

[1] Bansal, S., & Kumar, D. (2020). IoT ecosystem: A survey on devices,
gateways, operating systems, middleware and communication. Interna-
tional Journal of Wireless Information Networks, 27(3), 340-364.

[2] Sahana, S., Shraddha, M., Phalguni, M. P., Shashank, R. K., Aditya, C.
R., & Lavanya, M. C. (2021, April). Smart Mirror using Raspberry
Pi: A Survey. In 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC) (pp. 634-637). IEEE.

[3] Johri, A., Jafri, S., Wahi, R. N., & Pandey, D. (2018, December). Smart
mirror: A time-saving and affordable assistant. In 2018 4th International
Conference on Computing Communication and Automation (ICCCA)
(pp. 1-4). IEEE.

[4] Hamdan, Y. B. (2021). Smart home environment future challenges and
issues-a survey. Journal of Electronics, 3(01), 239-246.

[5] Jensen, R. H., Strengers, Y., Kjeldskov, J., Nicholls, L., & Skov, M. B.
(2018, April). Designing the desirable smart home: A study of household
experiences and energy consumption impacts. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (pp.
1-14).

 



[6] Venkatraman, S., Overmars, A., & Thong, M. (2021). Smart Home
Automation—Use Cases of a Secure and Integrated Voice-Control
System. Systems, 9(4), 77.

[7] Ruslan, A. H., Jusoh, A. Z., Asnawi, A. L., Othman, M. R., & Razak, N.
A. (2021, May). Development of multilanguage voice control for smart
home with IoT. In Journal of Physics: Conference Series (Vol. 1921,
No. 1, p. 012069). IOP Publishing.

[8] Maitreyee Vaidya, Shantanu Moraskar, L P Nikhade ”SMART MIRROR
USING RASPBERRY PI”, International Research Journal of Engineer-
ing and Technology, IEEE 2019

[9] Muhammad Muizzudeen Yusri, Shahreen Kasim, Rohayant i Hassan,
Zubaile Abdullah, Husni Ruslai, Kamaruzzaman Jahidin, et al., ”Smart
Mirror for Smart Life”, International Journal of Advanced Research in
Computer and Communication Engineering, 2017

[10] R. K. Meine, “System and method for displaying information on a
mirror,” May 6 2003. US Patent 6,560,027




