
Buletinul Ştiinţific al Universităţii Politehnica Timişoara 
 

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 
 

Volume 60(74), Issue 1, 2015 
 

INVERTA – Specification of Real-Time Scheduling 

Algorithms 
 

V. Stangaciu
1
 , O. Datcu

2
, M. Micea

3
, V. Cretu

4
 

 

                                                      
1 Faculty of Automation and Computers, Dept. of Computer and Software Engineering 

Bd. V. Parvan 2, 300223 Timisoara, Romania, e-mail valys@dsplabs.cs.upt.ro 
2 Faculty of Automation and Computers, Dept. of Computer and Software Engineering 

Bd. V. Parvan 2, 300223 Timisoara, Romania, e-mail olivia.datcu@gmail.com  
3 Faculty of Automation and Computers, Dept. of Computer and Software Engineering  
Bd. V. Parvan 2, 300223 Timisoara, Romania, e-mail mihai.micea@cs.upt.ro 
4 Faculty of Automation and Computers, Dept. of Computer and Software Engineering 

Bd. V. Parvan 2, 300223 Timisoara, Romania, e-mail vladimir.cretu@cs.upt.ro 

Abstract – This paper describes how the scheduling 

algorithms for real time applications can be specified 

formally and the development of a simulator that 

verifies if a set of tasks for a real time application can be 

scheduled with an existing scheduling algorithm or with 

an algorithm defined by the user. This simulator is part 

of the integrated visual environment for designing and 

analysing real-time applications called INVERTA.  

Keywords: scheduling, real-time, simulator 

 

I. INTRODUCTION 

 

Embedded systems and digital signal processing 

(DSP) systems are used in a variety of application 

today. Such applications include: automotive control, 

nuclear plant surveillance, flight control systems, and 

industrial mechatronics. These systems usually run 

hard real-time tasks, for which the violation of their 

time requirements (deadlines), may have catastrophic 

impacts, thus special task scheduling policies must be 

used.  This class of hard real time scheduling policies 

must provide schedulability tests which state if a 

certain set of tasks is feasible or not. If a set of task is 

feasible with a certain algorithm there is a guarantee 

that no deadline is missed. Thus, these algorithms 

have been and still are, heavily analyzed [1, 2]. 

OPEN-HARTS (Operating Environment for Hard 

Real-Time Systems) is a methodology that was 

introduced recently for development and 

implementation of hard real-time systems and 

applications and is based on signals and tasks.  This 

system is represented by the interconnection of two 

sub-systems: one for analysis of the task set called 

INVERTA (Integrated Visual Environment for Real-

Time Application Analysis and Development) and 

one for running the task set called HARETICK (Hard 

Real-Time Compact Kernel). 

The paper has the following structure which will 

be further described: problem statement, theoretical 

foundations, related work, proposed solution and 

research methodology, implementation, experimental 

results, contribution and conclusions. 

 

II. PROBLEM STATEMENT 

 

INVERTA allows the building, specification and 

visual display of real-time applications, designed as a 

set of tasks of different types, each task having a 

characteristic set of parameters (including parameters 

of time) and a set of control links with other tasks of 

the application. 

The INVERTA sub-system which is presented in 

this paper, along with HARETICK (Hard Real-Time 

Compact Kernel) sub-system is part of OPEN-

HARTS (Operating Environment for Hard Real-Time 

Systems) system. The role of the INVERTA sub-

system is to take the running context of the current 

application from the HARETICK module, to analyse 

the application, to modify its parameters and to send 

the modified application back to it. 

Most scheduling simulators do not offer the 

possibility to simulate a customized real time 

scheduling algorithm. This is a drawback because 

users that propose new algorithms cannot test them to 

see if they are feasible or not. Another disadvantage 

of some of the existing scheduling simulators is that 

they are not optimized to work for high number of 

tasks. 

 

III. THEORETICAL FOUNDATIONS 

 

A real time system is defined by J.S. Ostroff as: 

“A real-time system (RTS) is any system in which the 

time at which the output is produced is significant. 

This is usually because the input corresponds to some 

movement in the physical world, and the output has to 

relate to that same movement. The lag from input time 

to output time must be sufficiently small for 

acceptable timeliness.” [3] 

Real time system can be divided in the following: 

critical RTS (not meeting the deadline can result in a 

catastrophe), strict RTS (not meeting the deadline 

results in a wrong behaviour of the system), and soft 



RTS (not meeting the deadline results in the loss of 

the system’s value and of the quality provided by the 

system). 

Tasks scheduling refers to finding reliable 

solutions for the processor’s assignment, for each 

tasks, in a way in which there is no overlapping in 

their execution while the system operates.[4] 

Taking into consideration if they admit or not 

interruptions, the scheduling algorithms can be 

classified as follows: preemptive (the execution of a 

task can be interrupted by a task with a higher 

priority) and non-preemptive (the execution of a task 

cannot be interrupted). 

Off-line non-preemptive scheduling techniques 

provide solutions to hard real-time constraints and 

predictability, which are important demands in critical 

applications. On the other hand, these scheduling 

techniques do not provide flexibility, as online 

scheduling techniques like the ones that rely on task 

prioritization (RM, EDF, LLF and others). 

A scheduler is the part of a system that deals with 

the operation of scheduling a task set.  In order to find 

a valid schedule for a task set the scheduler executes a 

schedulability test. The scheduler can be preemetive if 

the execution of a task can be interrupted by another 

task and non-preemtive if no interruption is allowed. 

Fig. 1 presents a real-time scheduler [5]. As it can 

been seen in Fig. 1, the scheduling algorithm needs 

the task set and the resource management protocol to 

apply the schedulability test, for a given system 

architecture, and give an answer if the task set can be 

scheduled or not. 

 

 
Fig. 1. Real-time scheduler 

 

IV. RELATED WORK 

 

Liu and Layland [6] showed that RM is the best 

fixed priority algorithm to be used in a uniprocessor 

system. They proved that a task set that is not 

schedulable by RM it cannot be scheduled by any 

other fixed priority scheme. They were the first 

authors who provided a necessity condition for a set 

of n periodic tasks under RM, based on the processor 

utilization factor  U (1) and an upper bound bn (2), 

both defined below: 

 

∑
=

=

n

i i

i

T

C
U

1

,         (1) 

 

where, Ci represents the computation time of task 

i and Ti represents the period of the same task i. 

 )12( /1
−=

n

n nb        (2) 

The condition is that if the processor utilization 

factor is greater than bn, then the set of tasks is not 

schedulable by RM. This condition was improved by 

Bini in [7] where the Hyperbolic Bound (HB) 

improves the acceptance ratio by a factor of √2 for 

large n, compared with the Liu and Layland test. 

According to HB method, a set of periodic tasks is 

schedulable by RM if condition (3) is satisfied: 

 

C
n

i

iU
1

2)1(
=

≤+         (3) 

 

In [8] a sufficiency test is provided for the same 

RM algorithm. The task set is proven to be 

schedulable if the utilization factor is smaller or equal 

to: 

)12( −≤
nnU          (4) 

 

The first formulation of the Rate Monotonic 

Analysis was done by Lehoczky in [9]. The goal of 

the article was to present an exact characterization of 

the ability of the rate monotonic algorithm to meet the 

deadlines for a set of period tasks. The article also 

includes a stochastic analysis of the performance of 

the algorithm when the task sets are generated 

randomly. Manabe and Aoyagi improved this article 

in [10] by reducing the number of points where the 

time demand has to be checked. Another 

improvement was done by Bini and Buttazzo [11], 

who proposed a way to trade complexity versus 

accuracy of the RM feasibility tests.  

In [5] Chen presents an overview of the existing 

real-time scheduling tool-kits. These tools are useful 

for real-time system designers and programmers to 

verify if a task set is schedulable with a scheduling 

algorithm. Chen divides these scheduling tool-kits 

based on their functionality in the following 

categories: simulators, simulation languages and 

frameworks. 

A drawback of the simulators is that they have all 

the functionality predefined and the user cannot add 

new code. Among the developed simulators there are: 

GAST [12], DET/SAT/SIM, PERTS SAT, 

DTRESS/PERTSSim, AFTER, Brux, CAISARTS, 

and Scheduler 1-2-3. 

A simulation language called STRESS was 

proposed in [13]. Although STRESS is a good tool to 

evaluate scheduling algorithms and can be used to 

design new algorithms, the cost of a context switch is 

considered to be zero, a task can only start on a tick of 

the system clock and resources are limited to 

semaphores. Asserts (A Software Simulation 

Environment for Real-Time Systems) [14] is another 

simulation language which is focused on distributed 

and heterogeneous systems. The user can define 

nonstandard systems by specifying the task body in 

pseudo-code. 

Frameworks take into consideration the user 

requirements and the possibility of extension. A 

framework is able to generate, compile and the run 

code based on the user specification of a simulation 

environment, scheduler, resource management 



protocols, and task set. A framework of the Oregon 

State University, which is implemented in C++ was 

presented in Chen’s study from [12]. Another 

framework that targets failure analysis and 

hierarchical scheduling was described by Matthew 

Francis Storch in [15]. 

Cheddar [16] is another framework, which was 

implemented in Ada language, and allows the user to 

check if a real time application meets its temporal 

constraints.  The purpose for creating this framework 

was mainly educational. This framework can connect 

to other tools such as editors, design tool and 

simulations, easily because the data sent to the 

framework and received by the framework is in XML 

format. 

            

V. PROBLEM STATEMENT 

 

This paper defines a meta-language for the 

INVERTA environment, which has the ability to 

model numerous schedulers (executives). The 

simulation will be based on scripts that will be 

translated into simulation parameters and interpreted 

by the simulation engine. 

The general architecture of the simulator 

described in this paper is presented in Fig 2.  The 

simulator was developed as a plugin for INVERTA 

application. As it can been seen in the figure, the 

simulator plugin receives as an input a configuration 

for a task set and an XML file in which the scheduling 

algorithm is specified. INVERTA environment is 

used to describe the configuration of the task set. The 

XML specification file is generated by the Formal 

Specification plugin from INVERTA. This plugin 

offers a User Interface where the scheduling 

algorithm can be defined in an XML format. 

Fig. 3 illustrates the structure of the XML file 

used for describing the scheduling algorithm. The 

XML file is composed of five tags. The first one is the 

ScheduleName, in which the name for the scheduling 

algorithm is entered. The second tag, Acronym, 

identifies the acronym used for the algorithm. The 

value from this tag is optional. The next tag, 

DeclarePriority, describes the type of the scheduling 

algorithm: static, dynamic or special. The forth tag, 

DeclarePreemtiveBehavior, specifies if the algorithm 

is preemptive or non-preemptive. The condition for 

priority assignment is defined in the last tag, called 

PriorityAssignement. 

In order to evaluate the expression that defines 

the priority assignment for a scheduling algorithm, the 

expression is first split into atoms, which are stored in 

a list of atoms. An atom can be an operator, a numeric 

constant or a task parameter. Based on the literature 

review, a set of task parameters were identified: 

 

Task Set 

Configuration 
Scheduling Plugin 

XML Specification 

of Scheduling 

Algorithm  

Formal 

Specification 

Plugin 

Scheduling output 

 

 

Fig. 2. General architecture of Task Simulator 

 
 

• The name of the scheduling algorithm SchedulerName 

• The acronym used for the scheduling 

algorithm 
Achronime 

• Priority declaration: STATIC, DYNAMIC, 

SPECIAL 
DeclarePriority 

• Scheduling algorithm preemptive behavior: 

PREEMPTIVE, NON-PREEMPTIVE 
DeclarePreemptiveBehaviour 

• Expression used for assigning of  priorities PriorityAssignement 

 

Fig. 3. XML Specification file structure 

 

 

 

− T[i] - The task relative period 

− D[i] - The task relative deadline 

− C[i] - The task computation time 

− P[i] - The task priority 

− S[i] - The task start time inside current period 

− d[i] - The task absolute deadline 

− s[i] - The task absolute start time 

 

In the next step, the expression is transformed in 

Reversed Polish Notation. From this notation the 

binary evaluation tree was constructed.  The result of 

the expression is obtained from the in-order traversal 

of the tree. The above steps are presented in Fig. 4. 

 



Expression 

Parser 

Expression String 

Reversed Polish 

Notation 

Expression Tree 

Expression Tree 

Evaluation 

(Inorder) 

 
Fig. 4. Expression evaluation steps 

 

The list of atoms is iterated in order to verify each 

atom. If an atom is a number, it is added to the 

Reversed Polish Notation list. If the atom is an 

operator and the stack is empty the atom is pushed on 

the stack. If the stack is not empty, the precedence of 

the current atom is compared with the precedence of 

the atom from the top of the stack, and a specific 

action is performed based on the precedence. If the 

atom is a start of parenthesis character the atom is 

pushed on the stack. On the other hand, if the end of 

parenthesis is encountered the content of the stack 

until the start of parenthesis is stored in the output 

RPN list. The pseudo-code used to specify the RPN 

list construction algorithm is very similar with C 

programing language. The reserved words are written 

in bold and the main operations are listed in italic 

style: 

− isNumber – returns true if an atom is a number 

and false otherwise 

− isOperator –  returns true if an atom is an 

operator and false otherwise 

− isStartParan – returns true if the atom is a start of 

parenthesis character and false otherwise 

− isStopParan – returns true if the atom is a stop of 

parenthesis character and false otherwise 

− isStackEmpty – returns true if the sack is empty 

and false otherwise 

− Push – adds an element to the stack 

− Pop – removes the element from the top of the 

stack 

− Peek – returns the element from the top of the 

stack 

− Precedence – returns the precedence of the 

operator given as a parameter 

− AddRPNList – adds an element to the Reversed 

Polish Notation list 

 

 

Reversed Polish Notation  construction algorithm 

1: foreach (Atom in AtomList)  do 
2:   if isNumber(Atom) do 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12:   
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

AddRPNList(Atom)  

Push(Atom) 
else if isStartParan(Peek()) do 

Push(Atom) 

else if isOperator(Atom) do  
if isStackEmpty() do  

else if Precedence(Atom) > Precedence(Peek()) do 
Push(Atom) 

else  
while (!isStackEmpty() && !isStartParan(Peek()) 
           && Precedence(Atom) < Precedence(Peek())) do 

TempAtom = Pop() 

end do 
Push(Atom) 

end if 
else if isStartParan(Atom) do  

Push(Atom) 

22: 
23: 

else if isStopParan(Atom) do  

24: 
25: 
26: 

while (!isStackEmpty() && !isStartParan(Peek())) do 

TempAtom = Pop() 

end do 

27: 
28: 

Pop(Atom) 
end if 
while (!isStackEmpty()) do 

29: 

30: 

TempAtom = Pop() 

AddRPNList(TempAtom)  

AddRPNList(TempAtom)  

AddRPNList(TempAtom)  

31: 
32: 

end do 
end foreach 

 
Fig. 5 Reversed Polish Notation Construction 

Algorithm 

 

 

VI.  EXPERIMENTAL RESULTS 

 

 The output of the Scheduling PlugIn from 

INVERTA for the task set defined in Fig. 6 and 

scheduled with Rate Monotonic Non-Preemptive, a 

static algorithm, is presented in Fig. 8. Fig. 7 presents 

the XML file that specifies the Rate Monotonic Non-

Preemptive algorithm. 

 
 

Fig. 6 Task set scheduled with RM algorithm 

 

 

 

 

 

 

 



 
Fig. 7 XML specification for RM algorithm 

 

 
Fig. 8 RM scheduling example 

 

The output of the Scheduling PlugIn from 

INVERTA for the task set defined in Fig. 9 and 

planned with MLFNP - Minimum Laxity First Non-

Preemptive, a dynamic algorithm, is presented in Fig. 

11. The task set from Fig. 9 was taken from the 

example that was treated in [1] for MLFNP algorithm. 

Fig. 10 presents the XML file that specifies the 

MLNFNP algorithm. 

 

 
Fig. 9 Task set scheduled with MLFNP algorithm 

 
Fig. 10 XML specification for MLFNP algorithm 

 
 

 
Fig. 11 MLFNP scheduling example 

 

 

VII.  CONCLUSION 

 

The development of real-time systems remains a 

very important research domain because of the 

complexity of the problems which characterize these 

systems. Task scheduling is one of the most important 

problems from real-time systems and without which 

the function of the system would be unfeasible. This 

fact is supported by the tremendous number of 

research papers from this domain which treat different 

types of scheduling algorithms. INVERTA 

environment is intended to help users define real-time 

applications in a visual user friendly environment, 

analyse these applications from the feasibility point of 

view and simulate existing and custom defined 

scheduling algorithms. 

 

 

ACKNOWLEDGMENT 

 

  

 This work was partially supported by the strategic 

grant POSDRU/159/1.5/S/137070 (2014) of the 

Ministry of National Education, Romania, co-

financed by the European Social Fund – Investing in 

People, within the Sectoral Operational Programme 

Human Resources Development 2007-2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 
 

[1] S. Baruah, M. Bertogna, and G. Buttazzo, "A 

Review of Selected Results on 

Uniprocessors," in Multiprocessor 

Scheduling for Real-Time Systems, ed: 

Springer International Publishing, 2015, 

ISBN: 978-3-319-08695-8, pp. 29-33. 

[2] Yan Feng Zhai and Feng Xiang Zhang, "A 

Review of Sufficient Schedulability Analysis 

for Fixed Priority Scheduling Systems," 

Applied Mechanics and Materials, vol. 741, 

no. 1, pp. 856-859 2015. 

[3] J. S. Ostroff, "Formal methods for the 

specification and design of real-time safety 

critical systems," J. Syst. Softw., vol. 18, no. 

1, pp. 33-60, 1992. 

[4] M. V. Micea, "Proiectarea si implementarea 

sistemelor timp-real pentru aplicatii critice de 

achizitie si prelucrare numerica de semnal," 

PhD, Politehnica Timisoara, 2004. 

[5] J. Chen, "Extensions to Fixed Priority with 

Preemption Threshold and Reservation-

Based Scheduling," PhD, University of 

Waterloo, 2005. 

[6] C. L. Liu and J. W. Layland, "Scheduling 

Algorithms for Multiprogramming in a Hard-

Real-Time Environment," J. ACM, vol. 20, 

no. 1, pp. 46-61, 1973. 

[7] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, 

"Rate monotonic analysis: the hyperbolic 

bound," Computers, IEEE Transactions on, 

vol. 52, no. 7, pp. 933-942, 2003. 

[8] R. Devillers, Jo, #235, and l. Goossens, "Liu 

and Layland's schedulability test revisited," 

Inf. Process. Lett., vol. 73, no. 5-6, pp. 157-

161, 2000. 

[9] J. Lehoczky, S. Lui, and Y. Ding, "The rate 

monotonic scheduling algorithm: exact 

characterization and average case behavior," 

in Real Time Systems Symposium, 1989., 

Proceedings., 1989, pp. 166-171. 

[10] Y. Manabe and S. Aoyagi, "A Feasibility 

Decision Algorithm for Rate Monotonic 

andDeadline Monotonic Scheduling," Real-

Time Syst., vol. 14, no. 2, pp. 171-181, 1998. 

[11] E. Bini and G. C. Buttazzo, "Schedulability 

analysis of periodic fixed priority systems," 

Computers, IEEE Transactions on, vol. 53, 

no. 11, pp. 1462-1473, 2004. 

[12] J. Johnson, "The Impact of Application and 

Architecture Properties of Real-Time 

Multiprocessor Scheduling," PhD, CTH 

Department of Computer Engineering, 

Computer Architecture Laboratory (CAL), 

MicroMultiProcessor Group, 1997. 

[13] N. C. Audsley, A. Burns, M. F. Richardson, 

and A. J. Wellings, "STRESS: a simulator 

for hard real-time systems," Softw. Pract. 

Exper., vol. 24, no. 6, pp. 543-564, 1994. 

[14] K. Ghose, S. Aggarwal, P. Vasek, S. 

Chandra, A. Raghav, A. Ghosh, and D. R. 

Vogel, "ASSERTS: a toolkit for real-time 

software design, development and 

evaluation," in Real-Time Systems, 1997. 

Proceedings., Ninth Euromicro Workshop 

on, 1997, pp. 224-232. 

[15] M. F. Storch, "A framework for the 

simulation of complex real-time systems," 

University of Illinois at Urbana-Champaign, 

1997. 

[16] F. Singhoff, J. Legrand, L. Nana, L. Marc, 

and #233, "Cheddar: a flexible real time 

scheduling framework," presented at the 

Proceedings of the 2004 annual ACM 

SIGAda international conference on Ada: 

The engineering of correct and reliable 

software for real-time &amp; distributed 

systems using Ada and related technologies, 

Atlanta, Georgia, USA, 2004. 

 

 


