
Buletinul Ştiinţific al Universităţii Politehnica Timişoara

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Volume 60(74), Issue 1, 2015

Analysis of Non-Preemptive Scheduling Techniques for

HRT Systems

Mihai V. Micea
1
 Cristina. S. Stangaciu

1
Vladimir I. Cretu

1

1 Faculty of Automation and Computer Engineering, Computer Engineering and Information Technology Dept.

Bd. V. Parvan 2, 300223 Timisoara, Romania, e-mail mihai.micea@cs.upt.ro

Abstract – Special cases of hard-real time (HRT)

scheduling mechanisms, which provide high

predictability regarding task scheduling and execution,

are studied in this paper. These mechanisms are all

based on a proposed task model called ModX. Extensive

evaluation tests have been performed to simulate and

analyze the proposed scheduling algorithms and their

comparative performance, which is also discussed in this

paper.

Keywords: Scheduling, Embedded, Hard Real-Time,

Non-Preemptive.

I. INTRODUCTION

Digital control is a topic of major interest in today's

engineering and research activities. Embedded

systems and digital signal processing (DSP) systems

[1]-[4] are widely used in digital control applications,

requiring, in most cases, real-time behavior of the

hardware-software components. Many applications

have a critical impact on the environment and/or on

humans. Examples of such applications include:

modern flight control systems, fly-by-wire, autopilot,

automotive control, industrial mechatronics, nuclear

plant surveillance, and so on.

 There are two essential characteristics a

hardware-software platform has to meet to provide

correct operation results for critical applications [5]:

(a) the entire process of system development should

integrate the time coordinate, and (b) the system must

provide maximum of predictability for the hard real-

time tasks. As a key component of real-time

application development and operation, task

scheduling is closely related to the previously stated

requirements.

 Although a very large number and variety of

scheduling techniques have been developed in the late

years for both single processor and multiprocessor

systems [6], hard real-time task scheduling with

maximum of predictability still remains an open

problem for critical applications. Some of the main

reasons include the architectures which optimize the

average case system operation (cache, pipelines, etc.),

and the unrestricted use of interrupts and of the

associated asynchronous mechanisms and tasks [7].

 Our research focuses on developing suitable

methodologies and architectures that enable hard real-

time systems to meet the two basic requirements

stated here. The approach is based on studying and

integrating proper models of time, signals and tasks,

emphasizing on non-preemptive scheduling

techniques.

 The next section introduces the model of hard

real-time tasks, the ModX, based on which a number

of non-preemptive scheduling techniques will be

studied in Section III. The main results of the

evaluation tests performed to simulate and analyze the

proposed scheduling algorithms are presented in

Section IV. A discussion on the non-preemptive

scheduling techniques and their performance, current

work and some prospects conclude the paper.

II. HARD REAL-TIME TASK MODEL

In a general acceptance, real-time applications (even

those with critical operating requirements) contain

both types of tasks – soft real-time (SRT) and hard

real-time (HRT) tasks. Therefore, the development,

scheduling and concurrent execution of the two types

of tasks must be accommodated properly. In our

approach, a task is classified as SRT if its correct

operation is considered with respect to functional

behavior only, while a HRT task also requires in

addition a correct temporal behavior.

 SRT tasks can therefore be modelled and

analyzed using classical techniques; instead, the

model of the HRT tasks must be able to describe and

manipulate their temporal parameters. Thus, it must

be considered with extreme care.

 A ModX (executable module) is defined [8] as a

periodic, modular, HRT task, with complete and strict

temporal specifications, scheduled and executed in

non-preemptive context:

 FSPT ,,,≡iM (1)

where: P = {PIN, POUT, PGLB} is the set of input, output

and global parameters of Mi, respectively; S = {SIN,

SOUT} is the set of input and output signals Mi interacts

with; F is the task's instruction set (its functional

specification); and:









= iiiii MM

dy

M

dl

M
ex

M
pr NTTTT ,,,,T (2)

represents the set of temporal parameters of Mi, in

their respective order: period, execution time,

deadline, delay of execution during each period, and

execution count.

 Information exchange between the application

ModXs is performed through the input, output and

global parameters which define the set P (see (1)).

ModXs can process input signals or can generate

output signals, which formally define the S set. In the

case of input signals, their temporal parameters define

the behavior of the corresponding ModXs. The input

signals (including the asynchronous events) are

processed with our ModX model by periodic polling.

III. NON-PREEMPTIVE SCHEDULING

ALGORITHMS OF INDEPENDENT MODX SETS

This section discusses the non-preemptive scheduling

algorithms of hard real-time tasks on single-processor

systems. Several cases are treated, starting from

simple to more complex and realistic ones.

The task set model consists of simple and

independent ModXs, each having the initial invocation

time at t0 = 0. Thus, each ModX Mi in the set can be

characterized, according to (2), by:









∞= ,0,,, iii M
pr

M
ex

M
pr TTTT (3)

In other words, the deadline of Mi equals its period,

the execution delay during each period is null and the

execution count states a continuous execution for Mi.

The execution of Mi is not conditioned by any control

or data dependencies with any other ModXs in the set.

 Lemma 1. Let M be a set of simple and

independent ModXs, characterized as in (3), and TLCM

the time interval equal to the least common multiplier

of the ModX periods in M:









∈∀= Mi
M
prLCM MCTCT i ,min (4)

where: x/y means x divides y. If a particular algorithm

is able to schedule the set M within the TLCM interval,

then M is feasible with respect to this scheduling

algorithm.

 Proof. The set M is composed of simple and

independent ModXs, with their initial invocations

aligned at the t0 time instance. Moreover, the

invocation time of all the ModXs are also aligned at

each moment which is a common multiple of the task

periods. On the other hand, the scheduling algorithms

must guarantee that each ModX executes only once

during each of its periods and without missing any of

the specified deadlines. As a result, a cyclic behavior

of the scheduling can be established based on the

TLCM interval.

 Lemma 1 reduces the offline schedulability

analysis of a set M of ModXs to a time interval of

finite length, TLCM.

 Two main dynamic non-preemptive scheduling

algorithms, considered as most efficient in the

literature [9],[10], have been adapted to our task

model: MLFNP (Minimum Laxity First Non-

Preemptive) and EDFNP (Earliest Deadline First

Non-Preemptive). Both have a general algorithmic

framework, in which the ModX set is first sorted in

non-decreasing order by period (i.e., for any pair of

tasks Mi and Mj, if i < j, then
ji

M

pr
M
pr TT ≤). At any

scheduling moment t, a ModX is selected for

execution if it has not been already scheduled during

its current period and if a particular criterion is

verified:

(a) MLFNP selects the ModX with the minimum

laxity (i.e. the time interval remaining available for

the correct scheduling of the ModX, starting from t),

as defined by:

 () tT
T

t
TtL i

i

i M
exM

pr

M
pri −−

















+

















= 1 (5)

(b) EDFNP selects the ModX with the earliest

deadline with respect to the current time t.

After a particular ModX, Mj, has been scheduled at

time t, the scheduling time is increased with the

execution time of Mj, and the procedure is reiterated

until t reaches TLCM.

 An important advantage of the non-preemptive

task models and scheduling techniques is that the

offline analysis of the system feasibility is very close

to the actual operating conditions at run-time, thus

increasing the system predictability. The offline

schedulability analysis can be speeded up by applying

some necessity and/or sufficiency conditions instead

of employing the algorithm to verify the feasibility of

a task set.

 The ModX model imposes some particularities to

the schedulability conditions. Consider M a set of n

ModXs, sorted in non-decreasing order by period. If M

has a feasible schedule, then:

CN1) 1
1

≤∑
=

n

i
M

pr

M

ex

i

i

T

T
 (6)

This necessary condition is the basic relation that

characterizes the feasible task scheduling on a single

processor system. It states that the cumulative

processor utilization cannot exceed unity. The second

necessary condition has been demonstrated in [11]:

CN2) :.;1. 1 iM
pr

M
pr TLTLnii <<∀≤<∀

j

j

i
M

ex

i

j
M

pr

M
ex T

T

L
TL ⋅
















−

+≥ ∑
−

=

1

1

1
 (7)

The condition (7) basically states that the

processor utilization of a task set over any time

interval L should not exceed that interval.

Nevertheless, there is a difference between the task

model considered in [11] and our ModX set, which is

a concrete task set, with initial invocation times

aligned to t0 = 0. Therefore, examples of ModX sets

can be found to be schedulable without satisfying

CN2):

.
.

.
.

.
.

.
.

.
.

.
.

MMMM exexexex maxmaxmaxmax

tttt

tttt

Time interval fully occupied with
the executions of the 2 ModXs

MMMM prprprpr minminminmin

Tex
ex maxM

Tpr
ex maxM

Tex
pr minM

Tpr
pr minM Tpr

pr minM

.
.

.
.

.
.

.
.

.
.

.
.

MMMM exexexex maxmaxmaxmax

tttt

tttt

Time interval fully occupied with
the executions of the 2 ModXs

MMMM prprprpr minminminmin

Tex
ex maxMTex
ex maxM

Tpr
ex maxMTpr
ex maxM

Tex
pr minMTex
pr minM

Tpr
pr minMTpr
pr minM Tpr

pr minMTpr
pr minM

Fig. 1. Worst case for a feasible scheduling

() () () (){ }1,90,4,90,8,15,4,10

,

=

=
















≡= ii M
ex

M
pri TTMM

 (8)

For the ModX set in (8), which is schedulable

with the EDFNP algorithm, the CN2) condition fails

for i = 2 and L = 11.

 Theorem 1. Let M be a set of n simple and

independent ModXs, characterized as in (3). If M is

schedulable, then:

CN3)

 







−≤

minminmax 2
prprex

M

ex

M

pr
M

ex TTT (9)

where: maxexM
exT is the execution time of the ModX

with the maximum execution time in the set;

minprM

prT and
minprM

exT are the period and execution

time, respectively, of the ModX with the minimum
period in the set.

 Proof. The theorem specifies a limiting condition

for the maximum execution time of any ModX in M,

with respect to the minimum ModX period in the set,

assuming the execution without preemption of the

ModXs.

The worst case for the execution (scheduling) of a

feasible set M, regarding the two ModXs implied by

the theorem, is presented in the figure above. It can be

noticed that the time interval available for scheduling

the Mexmax ModX without missing its deadlines is
limited by the period and execution time of Mprmin.

Theorem 1 states the necessary condition added

by our particular model of hard real-time task set to

the non-preemptive scheduling analysis.

IV. PERFORMANCE OF THE NON-PREEMPTIVE
ALGORITHMS

The performance evaluation of the non-preemptive

scheduling algorithms discussed in the previous

section focuses on determining the following
parameters:

� The results of the schedulability conditions

applied to the scheduling algorithm under test;

� The results of the schedulability analysis
performed on randomly generated ModX sets. The

analysis consists on applying the scheduling

algorithm over the TLCM interval calculated for the

ModX sets under test (according to Lemma 1 and

(4));

� The elapsed time of the schedulability analysis for

each set of ModXs, on a PC type of workstation.

This parameter characterizes only the general

behavior of a particular scheduling algorithm

during the offline analysis and differs from the

run-time behavior parameters of the online

scheduler.

 Each set of ModXs is randomly generated, based

on some general configuration parameters: n, the total

number of ModXs in the set; the time interval which

contains each of the ModX periods; the type of

distribution used by the randomization algorithm to

generate the periods – uniform distribution and
normal (Gaussian) distribution; the rational values

interval containing the processor utilization for the

ModX set, U
M

 = PU; and the upper limit for the TLCM

value.

 A comparative evaluation of the MLFNP and
EDFNP scheduling algorithms has been performed,

using the 12 workstations of the DSPLabs laboratory

at UPT Timisoara (http://dsplabs.upt.ro). More than

24000 tests have been accomplished to calculate the

schedulability ratio (SR) for the two algorithms, as a

function of the following additional parameters: the

total number of ModXs in the sets, {9, 15, 20}; the

processor utilization PU, bounded by the following

intervals: [0.6, 0.7], [0.7, 0.8], [0.8, 0.9] and [0.9,

1.0]; the ModX periods are randomly generated using

the uniform and the normal distributions, with the

upper limit of 310 and the lower limit of 10. As a
result, the ModXs tested have a maximum ratio of

1/310 between the execution time and the period.

 Although the second schedulability condition,

CN2), does not apply properly to our ModX model

(see discussion in Section III), we have included it in
the evaluation tests (denoted as "Jeffay").

 Figure. 2 presents some of the main results of the

evaluation tests. The results show clearly that the

EDFNP algorithm behaves much better than the

MLFNP (i.e. the former issues a higher schedulability

ratio than the latter), for all the cases considered: any

ModX set dimension, any processor utilization PU,

and any type of distribution used to generate the

temporal parameters of the ModXs. The success ratio

of both algorithms decreases when the processor

utilization of the ModX sets is increased. On the other

hand, the behavior of the algorithms improves when
the number of ModXs in each set is increased. The

reason is that, while the processor utilization remains

constant, increasing the number of ModXs in a set

implies a lowering of the execution times of each

ModX. Therefore, the non-preemptive scheduling will

have more chances of success with "many, but smaller

tasks" (higher task granularity) than vice versa.

 Regarding the "Jeffay" test, the results show that
EDFNP succeeds in scheduling many ModX sets for

which the CN2) condition does not hold. This

observation confirms our discussion about CN2), in

Section III. On the other hand, MLFNP shows that the

"Jeffay" test can be used as a valid condition for this

algorithm in all the cases considered in our tests.

 As previously mentioned, an upper bound

parameter has been specified for the TLCM value,

calculated for each generated set of ModXs. This

limitation is imposed because for sets of 20 ModXs

for example, TLCM can easily reach a magnitude order

of 1030 and even more, generating a two-fold
problem for our offline schedulability analysis

approach:

a) The necessity of operating with very large

numbers, which cannot be natively represented on

PC architectures. As a result, specialized large

integer arithmetic libraries must be used;
b) The time needed to perform the offline

schedulability analysis is proportional with the

size of TLCM.

 Some scheduling times obtained for sets of 18

ModXs with the limit of 2,000,000,000 for TLCM, are
shown in Table 1. The processor utilization has been

set as low as possible (i.e. in the [1.0, 2.0] interval) to

maximize the analysis times for the tested sets. The

values in the table can be considered in a comparative

manner, showing that the EDFNP algorithm is

quicker than MLFNP.

Table 1. Elapsed times for some offline

schedulability analysis tests

TLCM values
Scheduling times [seconds]

MLFNP EDFNP

145,044,900 476 469

325,155,600 1,060 1,052

149,189,040 483 481

681,912,000 2,214 2,212

1,730,907,360 5,698 5,601

Average values

1,000,000,000 3,275 3,237

V. CONCLUSIONS

Critical and hard real-time applications require high
operation predictability of the target system. Non-

preemptive task models and scheduling techniques

have been proven as a valid solution to develop and

implement such applications on embedded and DSP-

based platforms.

 The offline feasibility analysis is a necessary step

which eliminates the NP-hard type time and system

resource requirements of an online analysis. Although

reduced to a limited temporal interval (TLCM) by using

the Lemma 1, the offline schedulability analysis can

be, in many cases, prohibitively time- (resource-)

consuming. A set of schedulability conditions

(necessary and/or sufficient conditions) can speed up

the feasibility decision of some particular non-

preemptive scheduling algorithm for a given task set.
 Two of the most efficient dynamic non-

preemptive scheduling algorithms have been adapted

to our ModX model and studied: MLFNP and

EDFNP. The performace evaluation tests have shown

that EDFNP behaves better than MLFNP. Therefore,

EDFNP has been chosen as the core of the online

scheduling algorithms further developed to

accommodate the realistic implementation of non-

preemptive scheduling on real-time platforms.

 The theoretical studies and test results showed

that the CN2) schedulability condition, demonstrated

in [11], does not apply to our ModX set model, which
is a particular case of the task set considered in [11].

 The non-preemptive task model and

scheduling techniques presented in this paper are

successfully being used in the development and

implementation of a hard real-time kernel on a
Motorola DSP56307 EVM platform [12][13]: the

HARETICK kernel [5][14].

ACKNOWLEDGEMENTS

This work was partially supported by the strategic

grant POSDRU/159/1.5/S/137070 (2014) of the

Ministry of National Education, Romania, co-

financed by the European Social Fund – Investing in
People, within the Sectoral Operational Programme

Human Resources Development 2007-2013.

SR vs PU

Sets of 10 ModXs, Normal distribution

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

[PU]

[SR]

Jeffay

EDFNP

MLFNP

0.6 0.7 0.8 0.9 1.0

SR vs PU

Sets of 10 ModXs, Uniform distribution

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

[PU]

[SR]

0.6 0.7 0.8 0.9 1.0

SR vs PU

Sets of 15 ModXs, Normal distribution

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

[PU]

[SR]

Jeffay

EDFNP

MLFNP

0.6 0.7 0.8 0.9 1.0

SR vs PU

Sets of 15 ModXs, Uniform distribution

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

[PU]

[SR]

0.6 0.7 0.8 0.9 1.0

Fig. 2. SR as a function of PU for the MLFNP and EDFNP algorithms

REFERENCES

[1]. Lin, Chi-Ying, Li, Chien-Yao: Design and

Implementation of Advanced Digital Controls for Piezo-

Actuated Systems using Embedded Control Platform. In:

Appl. Math 9.1L (2015), p. 251-258. [2] R. E. Collin,

Foundations for Microwave Engineering, Second

Edition, McGraw-Hill, Inc., 1992.
[2]. Antao, R., Mota, A., et al: Adaptive control of a buck

converter with an ARM Cortex-M4. In: Proceedings of

the 16th IEEE International Power Electronics and

Motion Control Conference and Exposition, Antalya,

2014, p. 359

[3]. Morkoc, C., Onal, Y., et al: DSP based embedded code

generation for PMSM using sliding mode controller. In:

Proceedings of the 16th IEEE International Power

Electronics and Motion Control Conference and

Exposition, Antalya, 2014, p. 472

[4]. Puiu, D., Moldoveanu F. The Time Delay Ccontrol of a

CAN Network with Message Recognition.In Bulletin of
the Transilvania University of Braşov, Vol 3 (2010): 52,

p.285-292.

[5]. Micea, M.V., Cretu, V.: Non-Preemptive Execution

Support for Critical and Hard Real-Time Applications on

Embedded Platforms. In: Proceedings of the

International. Symposium on Signals, Systems and

Electronics, Linz, 2004

[6]. Baruah, S., Bertogna, M., et al: Multiprocessor

Scheduling for Real-Time Systems. Springer, 2015
[7]. Stewart, D. B.: Twenty-five Most Common Mistakes with

Realtime Software Development. In Embedded Systems

Conference, San Francisco, 2001.

[8]. Micea, M. V., Cretu, V., et al: Program Modeling and

Analysis of Real-Time and Embedded Applications. In:

Scientific Bulletin of "Politehnica" University of
Timisoara, Transactions on Automatic Control and

Computer Science. 49 (2004) No. 3, p. 207-212.

[9]. George, L., Rivierre, N., at al: Preemptive and Non-

Preemptive Real-Time Uni-Processor Scheduling. In:

Rapport de recherche, Nr. 2966, Institut National de

Recherche en Informatique et en Automatique, INRIA,

Rocquencourt, France, 1996.

[10]. Kang, S.I., Lee, H.K.: Analysis and Solution of Non-

Preemptive Policies for Scheduling Readers and Writers.
In ACM Operating Systems Review 32 (1998), p. 30-50.

[11]. Jeffay, K., Stanat, D., et al: On Non-Preemptive

Scheduling of Periodic and Sporadic Tasks. In:

Proceedings of the 12th IEEE Real-Time Systems.

Symposium, San Antonio, p. 129.

[12]. Motorola, Inc.: DSP56307: 24-Bit Digital Signal

Processor: User's Manual, DSP56307UM/D, Rev. 0,

08/10/98, Semiconductor Products Sector, DSP Division,
Austin, USA, 1998.

[13]. Motorola, Inc.: DSP56300: 24-Bit Digital Signal

Processor: Family Manual. Rev. 3, DSP56300FM/AD,

Semiconductor Products Sector, DSP Division, Austin,

USA, 2000.

[14]. Micea, M.V.: HARETICK: A Real-Time Compact Kernel

for Critical Applications on Embedded Platforms. In:

Proceedings of the 7th International Conference on

Development and Application Systems, Suceava, 2004, p.
16.

