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Abstract: Robotic collectives are used for the efficient achievement of complex tasks. There is a 
significant increase in the interest for emergent, collaborative robotics as a viable alternative to the 
more centralized classic approach as the dimensions, energy consumption and especially price are 
becoming required constraints. This paper describes a nature inspired algorithm intended for the 
movement and communication of such robotic collectives. As a case study, the implementation of the 
emergent algorithm on a system consisting of LEGO Mindstorm Robots is further discussed along 
with the most interesting experimental results. Copyright © 2009 IFSA. 
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1. Introduction 
 
The evolution of information processing equipment and the need of adaptable digital control systems 
generate an extraordinary spreading of digital equipment in all fields of life including military 
applications, service industries, space exploration, agriculture, mining, factory automation, health care, 
waste management, disaster intervention and domestic applications. Most of such equipment present in 
diverse human activities is required to be more or less autonomous, meaning that some degree of 
intelligence must be embedded into it. 
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The new trend of miniaturization of electronic devices leads to the necessity of small, relatively 
independent entities which can interact with each other. Therefore, the embedded autonomous 
equipment must scale well and have a low cost. 
 
Embedded systems [1], robotic systems [2], sensors and digital perception equipments (sensor 
networks) [3, 4], digital signal and image acquisition and processing (DSP-based and digital image 
processing systems) [5] are major domains of interest in the present activities of the academic and 
industrial community. This fact is proven by the huge number of applications and projects that are 
developed in these domains. The complexity of the applications involving embedded digital 
intelligence has grown over the last years, reaching the limit where the integration of inter-domain 
approaches is required. This leads to the necessity of defining and implementing new, specific 
methodologies in new domains such as: collaborative robotic environments and intelligent sensor 
networks, distributed artificial perception, reconfigurable and auto-configurable systems, associative 
behavior patterns. 
 
The employment of robots in numerous industrial and academic applications is common nowadays. 
Many of the applications of robots imply their movement towards a given goal. 
 
The movement in collective robotics has always been a complex issue. It is usually addressed in two 
ways: individual navigation of a single entity which does not take into account the movement of the 
other entities in the system and tries to reach the given goal individually, and distributed navigation 
where the actions of the robots are known to each other and they collaborate in order to reach their 
goal. 
 
As long as the robots involved are large enough to carry sufficient computing and sensing capabilities, 
movement can be designed using a very complex distributed system (the network of robots 
themselves). The robots involved with these algorithms are very important for the whole system, in 
that losing one in a dangerous environment may be disastrous for the system. Usually, because of the 
required constraints (price, dimensions and energy consumption) the robotic collectives are composed 
of relatively small robots, with little computing power which is not sufficient for most of the 
movement algorithms. This is a case well suited to apply movement algorithms which were inspired 
from the study of the natural world. Such emergent behavior patterns like the movement of bees and 
fish have proven to be extremely efficient when dealing with large number of small entities [6-9]. 
 
Applying emergent behavior patterns to robotic collectives [4, 9, 10] meets the constraints of power 
saving and price which are required in usual applications. 
 
This paper focuses on an improved movement algorithm based on the movement of fish shoals [11- 
13]. In addition to [11], this paper presents the detailed movement algorithm and the mathematical 
formalisms involved. The algorithm has been implemented on a robotic collective composed of 6 
entities which are able to communicate with each other using a protocol that is also described. A 
complete set of experiments have been conducted on the robotic collective using the fish shoal inspired 
movement algorithm and the results have been presented in this article. 
 
 
1.1. Emergent Behavior Patterns 
 
Emergence is the process by which complex behavior patterns are formed starting from extremely 
simple rules [4, 10]. The new field of emergent behavior is mainly based on the study of the natural 
world in order to retrieve simple natural algorithms that can be applied in other fields of interest. The 
simplicity of these patterns and the interaction between them can solve some of the most important 
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problems in embedded systems such as: energy consumption, communication protocols, efficiency and 
reliability features, obstacle avoidance algorithms etc. 
 
Emergent phenomena are usually unpredictable, representing non trivial results of simple interactions 
between simple entities. As a result, there are several combinatorial complexity problems for which 
finding an optimal solution is difficult or sometimes impractical because of the high dimensions of the 
search field or because of the computational requirements involved by the existing constraints. In order 
to solve these problems heuristic techniques are preferred, to generate solutions which are not always 
optimal [14]. The meta-heuristics used are optimizations based on ant colonies studies (Ant Colony 
Optimization [15]) and global convergence [16] in which case a great number of emergent behavior 
systems are exponentially converging to the required result, the convergence rate increasing with the 
number of entities involved. Another extremely important domain of applicability of emergent 
behavior patterns is represented by NASA’s future spatial missions involving new exploration 
technologies based on swarm emergent behavior [17, 18]. 
 
Although these meta-heuristics are sustained by a significant mathematical basis, there are no formal 
descriptions of the emergent behavior patterns used, just some partial representations mostly seeking 
the global effect of the patterns. Also, the local predictable behavior can be formally described, but the 
interactions between these local behaviors which finally generate the emergence, cannot be quantified 
because of their great number. As well, the application of behavior patterns to different systems is not 
standardized. These patterns are usually unpredictable, complex and specific for each application. 
 
 
1.2 Problems of Collaborative Robotic Environments and Intelligent Sensor Networks 
 
The domains of collaborative environments and intelligent sensor networks are some of the research 
areas of great interest for international academic and industrial communities. A lot of problems from 
these domains, highlighted by the literature, remain open-ended. A synthesis of these problems derived 
by the authors includes the following items: 
 
1) Development of a highly scalable, efficient and precise solution for the coordination of 

collaborative robotic and intelligent sensor systems; 
2) Defining efficient strategies for decision making; 
3) Efficient task distribution by exploiting and optimizing the system parallelism; 
4) Although the potential and advantages of the emergent behavior patterns has been proven for a wide 

range of  collaborative systems applications like environment exploration and monitoring, there is 
no real implementation of these patterns for coordination and decision making [17 – 18]; 

5) The implementation of emergent behavior in different applications is based on a set of empirical 
recipes without defining a rigorous mathematical basis [15, 16]; 

6) There is no formalization for describing the emergent behavior patterns [15, 16]; 
7) The services required by the efficiency of operation of collaborative systems: communication 

platform (infrastructure + protocol stack), localization solutions with minimal system resource 
requirements, maintaining a global system clock by using efficient synchronization techniques; 

8) Lack of a representation model for collaborative systems, which integrates the infrastructure and 
coordination level along with the required support services, to design, analyze and evaluate the 
performance of a system in the context of a certain application. 

 
This article presents an emergent algorithm used for movement in robotic collectives. This emergent 
algorithm implements a formal, mathematical model that is employed for the coordination of the 
movement in the robotic collective and requires small amounts of computing power. 
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2. Nature Inspired Movement in Collective Robotics 
 
According to the model presented in [12, 13] and then later revised in [19], the fish shoal does not 
have a leader. Each group member moves by the same rules as the others. Also, the movements of the 
fish are influenced only by the nearest neighbors. Each fish can approximate the distance between 
itself and its neighbors by vision, and the neighbors’ heading and speed by a natural sensor that fishes 
have, called lateral line that can sense the movement of water currents near them. From the point of 
view of a particular instance of the emergent algorithm, the fish hosting that algorithm is called “main 
fish”, while all the other fishes are “neighbors”. Obviously, each fish in the shoal is “main fish” for the 
corresponding instance of the algorithm which it hosts. 
 
According to [12, 13], each fish is surrounded by four distinct zones (z1 – z4), as shown in Fig. 1. 
Depending on the relative position of the neighboring fish to the main fish, there are four cases as 
follows: 
 
1) If a neighboring fish is situated in the closest circle around the main fish (Fig. 1a), then their next 

move will be a repulsion move because they are too close and there is the possibility of collision. 
2) If the neighboring fish is situated in the second circle (Fig. 1b), then the distance between it and the 

main fish is considered to be optimal; the main fish will follow its neighbor’s direction describing a 
parallel direction. 

3) In the third case, the neighboring fish is inside the furthermost circle (Fig. 1c), the main fish, which 
calculates the next move, will try to move according to the heading of its neighbor.  

4) When the neighboring fish is located outside the furthermost circle, then it will not be taken into 
consideration (as in real life it can’t be seen). 

 
 

  

   

       

 
 

 
Fig. 1. Basic Fish Shoal Movement. 

 
 

When there are no fish in its proximity, the main fish will adopt a searching strategy to find the lost 
group. When one fish has more neighbors it can either take into consideration only one of them (based 
on the distance and the weight factor given from the beginning to each fish) [12, 13], or take into 
consideration all of its neighbors [19]. 
 
 
3. Improved Fish Shoal Movement in Collective Robotics 
 
The above cited papers [12, 13, 19] present only three possible influences, which are induced by the 
neighboring entity (attraction, repulsion and parallel movement). These generate a limited range of 
motion (parallel to the direction of movement of the neighboring entity in the case of the parallel 

a b c 

z1 

z2 
z3 

z4 
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movement influence or a full turn around in the case of repulsion). In order to give the entities of the 
robotic collectives a wider range of motions the algorithm presented in this paper introduces a larger 
range of influences instead of the only three named above. From attraction to repulsion, the robot can 
move at any orientation angle which can be induced by a neighbor, depending on the distance between 
them. If the distance is smaller than a given minimum value, which means that a collision is about to 
happen, then the two entities form a total repulsion system, moving away from each other in opposite 
direction; if the distance between the entities is equal to a maximum value then the two entities will 
completely attract each other. If the distance between them is between the constraint values, the angle 
between the new directions of movement of the fish will differ accordingly. If the distance is bigger 
than the maximum value then the two entities will not influence each other at all. 
 
An improvement of this situation is presented in [11]: when the main entity is influenced by more than 
one entity, it calculates a weight distributed mean of all the influences. In order to establish the new 
position for a fish the algorithm calculates an angle of movement and a distance. The angle gives the 
new orientation of the fish and the distance gives the length of the movement. To calculate the new 
position we use a movement vector. This vector is calculated as a sum of the vectors that describe the 
movement for every neighbor fish. For every fish, the vector is represented by an angle and a distance 
relative to initial state. When a fish calculates the length of the movement it takes into consideration 
the distance between it and the neighbors; the further the neighbors, the shorter the movement. 
 
In the opposite case, when the fish is closer to the neighbor, the distance is larger. This consideration 
has been made so that at any given time the repulsion is more important than the attraction in order to 
avoid collisions. 
 
For the algorithm to work properly, a known initial state, shown in Fig. 2, is necessary to position the 
whole system. The algorithm is implemented on a robot collective; the implementation is presented 
later in this paper. Each fish has been implemented using a robot which has movement and 
communication capabilities. 
 
 

60° 
60° 60° 

60° 
60° 

60° 

 

 
 

Fig. 2. Initial State. 
 
 

The entities are placed in a circular shape. They are 19 centimeters apart from the center of the system; 
they are equidistant and heading in the opposite direction from the center, thus making an equal angle 
between each two consecutive robots (in Fig. 2 there are 6 robots so the angle is exactly 60°). After the 
robots are set in position each of them moves forward with a random number of centimeters, after 
which they stop and compute their coordinates. These will be considered the initial coordinates. There 
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is also a final state that the fish should reach. In real life, this goal can be represented by food or by a 
safe place to live. 
 
At each step the robot will calculate the distance between it and its neighbors. Depending on the 
relation between the computed distance and the robot’s view range, there are three possible cases as 
seen in Fig. 3: 
 
 

 

MAX 

 

 

MAX MAX 

   

   

 

 
 

Fig. 3. The three possible cases of positioning. 
 
 

If the robot has no neighbors in its vicinity, based on a maximum distance at which the robots can 
“see” each other, it will have to go in a random direction to find some other robots. The robot needs to 
calculate both the distance it has to cover and the angle of that direction. Because the movement has to 
be random in this case, the deviation of the angle will be no more than 30°, and the distance covered 
will be between mD (a minimum distance) and MD (a maximum distance). 
 
 Angle = Angle_to_target – current_angle ± 30° (1)
 
 Distance = random(0, MD – mD) + mD (2)
 
If the robot has exactly one neighbor in its vicinity, it will move closer or it will move away based on 
the distance between them. 
 
If the robot has more than one neighbor in its vicinity its movement will be dictated by the resultant of 
all the forces of attraction and rejection between those robots. Three possible situations can occur. 

 
 

3.1. The Entity Has no Neighbors in its Proximity 
 
In the case an entity has no neighbors in its proximity, the necessary strategy is to search the group; the 
robot knows the relative position of its neighbors (all of the robots communicate with each other, and 
broadcast the data relevant to their positions), it computes the coordinates of the center of the group 
and, then, it will move towards that center. The explanation retrieved from the natural world resides in 
the fact that even if a fish cannot distinguish all the other neighboring fish, it is able to sense the whole 
shoal of fish and can head towards it. Fig. 4 shows how the robot changes its orientation and starts 
moving towards the group. 
 
In Fig. 4, α is the angle between the current orientation and the desired one, β is the angle between the 
horizontal axis (Ox) and the current direction of the fish (known at each step) and γ is the angle 
between the horizontal axis and the fish-target direction. 
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To make the move the movements of the robots using this algorithm seem more natural, we introduced 
a random angle of ±30°. This angle is added to the angle calculated for fish-target direction. 
 
 

 
 

Fig. 4. Movement towards the group of a single entity. 
 
 

 
The slope of the fish-target direction without our correction is given by the next formula: 
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where RG=(x, y) is the position of the center of the group and RR=(x, y) is the position of the robot. 
 
The γ angle can be computed with the formula: 
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In the end, the final turn angle (α) is calculated as: 
 
 α = γ – β ± 30° (5)
 
 
3.2. The Entity Has Exactly One Neighbor in its Proximity 
 
In the case when an entity has exactly one neighbor in its proximity, the influence that appears 
between the two entities ranges from repulsion to attraction, depending on the distance between them. 
If this distance is maximum, the fish will attract each other, and if the distance is minimum, 
theoretically 0, the fish will reject one another. In order to create a general algorithm, we introduced a 
function that takes as input values the possible distances between the two fish, and in return it gives the 
final angle that the main fish should follow (θ). This angle is relative to the direction of the fish-

x 
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neighbor pair and its values can be positive or negative taking into consideration the position of the 
goal. The final direction of the movement will bring the fish closer to the goal. Fig. 5 shows three 
possible situations that can arise in this case. 
 
The θ angle corresponding to the chosen influence (from repulsion to attraction) is calculated with the 
formula: 
 
 

d
DMAX

×=
°180θ , (6)

 
where DMAX is the constraint defined by the view range and d is the distance between the two entities. 
 
 

 
 

Fig. 5. Relative positioning of the goal and the chosen directions. 
 
 
Fig. 6 and Fig. 7 present a repulsion case, from the perspective of a pair of fish. 
 
 

 
 

Fig. 6. Repulsion case seen by the right fish. 
 
 
The α angle and the β angle were explained in the first section of this chapter, and θ was defined in the 
last paragraph. To calculate the new movement angle, we still need the angle between the horizontal 
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axis and the fish-neighbor direction. This is represented by the δ angle, and its value is determined like 
the θ in the first section of the chapter, replacing the center of the group with the neighbor. The final 
angle is given by the next formula: 
 
 α = δ – θ – β (7)
 

 

 
Fig. 7. Repulsion case seen by the left fish. 

 
 
For the left fish, for the generality of the formula (7), instead of the θ angle, we used its 
complementary angle, as seen in Fig. 7. 
 
To determine which the left one is, the algorithm calculates the slope formed from the target to each 
fish. The fish with the biggest slope is considered to be the left one. 
 
 
3.3. The Entity Has more than One Neighbor in its Proximity 
 
In this general situation, the main entity will compute a resultant vector based on all the vectors 
computed for each of the neighboring entities.  
 
The robot computes the coordinates of the center of the group and he will make the next move towards 
it. By doing a random search of the group it would have been very possible that the fish lost the group 
forever. 
 
 
4. Case Study: Implementing the Fish Shoal Inspired Movement  

Using Lego NXT Robots 
 
An application which implements the movement algorithm presented in the previous section has been 
developed on a robotic collective composed of 6 LEGO Mindstorm NXT robots [20 - 22]. The LEGO 
Mindstorm NXT robots were programmed using the RobotC programming language [23]. 
 
A NXT robot is composed of an “intelligent brick”, as depicted in Fig. 8 (1), that controls a series of 
actuators and sensors, namely: a touch sensor (2), a microphone (3), a light sensor (4), an ultrasonic 
sensor (5), and DC motors (6). The intelligent brick also features an advanced communication device 
based on the Bluetooth protocol. 
 
The NXT intelligent brick features an ARM7-based Atmel main processor [24] which can be 
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programmed using RobotC which is the version of the C language for NXT. The firmware application 
software was written in RobotC [23] and has been uploaded to the intelligent brick. 
 
 

 
 

Fig. 8. The Lego Mindstorm NXT intelligent brick, actuators and sensors [20 - 22]. 
 
 

4.1. Implementing Movement on the NXT Robots 
 
Using the LEGO parts and intelligent bricks we have created 6 robots loosely based on Castor Bot 
[25], as depicted in Fig. 9. 
 
 

 

 
 

Fig. 9. The Castor Bot [25]. 
 
 

The movement for each robot is composed of a succession of rotations and translations. When 
implementing these functionalities on the NXT robot, special care was taken in order to make them 
extremely precise, so that the coordinates computed in the robots memory correspond to the actual 
coordinates the robot. As seen in Fig. 9, each robot has two active wheels which are used for motion. 
For each type of movement (either rotation or translation), each wheel has been programmed to turn a 
very specific and exact number of degrees (for rotation the wheels rotate in opposite ways, and for 
translation they rotate in the same direction). 
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The following parameters are used: 
• the distance between wheel, DBW: 
 
 DBW = 12 cm (8)
 
• the circumference of the circle made by one wheel if the other is stationary, CC: 
 
 CC = DBW * π (9)
 
• the distance (in centimeters) which the robot has to cover in order to rotate exactly 1 degree 

(distance per degree), DPD: 
 
 DPD = CC / 360° (10)
 
• from the wheel diameter, WD, the circumference of the wheel, WC, can be computed, and also the 

number of degrees necessary to rotate the wheel so that the robot moves exactly 1 centimeter 
(degree per centimeter), DPC: 

 
 WD = 5.6 cm (11)
 
 WC = WD * π (12)
 
 DPC =360° / WC (13)
 
• the number of degrees that the wheel has to move so that the whole robot can rotate exactly one 

degree (degree per degree), DegPD: 
 
 DegPD = DPD * DPC (14)
 
Based on the physical dimensions of the NXT brick, motors and wheels the parameters presented 
above are computed. Replacing (11) in (12) and the result in (13), DPC can be calculated as: 
 
 DPC = 20.4628 °/cm (15)
 
Replacing (8) in (9) and the result in (10), and using the value from (15), (14) can be computed as: 
 
 DegPD = 0.7692 (16)
 
In order to rotate the robot with d degrees, the corresponding wheel should rotate with 
 
 WR = DegPD * d (17)
 
degrees. 
 
In order to move the robot c centimeters in a straight line, both wheels should rotate with 
 
 WT = DPC * c (18)
 
degrees. 
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4.2. Communication in the NXT Robot Network 
 
A computer featuring a Bluetooth connection as shown in Fig.10 is used as a gateway/router for the 
communication between the robots; the computer is transparent to all the robots, so that they are not 
aware of its presence (the computer works on a lower level of a layered communication protocol). 
 
 

 

C# 
RobotC 

RobotCRobotC

RobotC 

RobotC

RobotC

RobotCRobotC

C# 
Bluetooth 

Bluetooth 
Bluetooth 

Bluetooth 

Bluetooth 
Bluetooth 

 
 

Fig. 10. NXT  System Architecture. 
 
 
The NXT brick and the PC communicate with each other with direct commands. The communication 
protocol used implements a master-slave communication in which the master is the PC computer and 
the slaves are represented by the NXT bricks. The commands exchanged between the master and the 
slave are MessageRead and MessageWrite. The structure of the MessageRead command is presented 
below: 
 
 
Byte 0: 0x00 or 0x80 
Byte 1: 0x13 
Byte 2: Remote inbox number (0-9) – the inbox which is receiving the message 
Byte 3: Local inbox number (0-9) – the inbox which is sending the message 
Byte 4: remove (if true the message is removed from the remote inbox) 

 
The MessageRead command is issued only by the master. When the MessageRead is received by the 
slave, it responds with a ResponseRead message: 
 
Byte 0: 0x12 
Byte 1: 0x13 
Byte 2: Status Byte 
Byte 3: Local inbox number (0-9) 
Byte 4: Message Length 
Byte 5-63: Message (zero filled if necessary) 
 
The structure of the MessageWrite command is presented below: 
 
Byte 0: 0x00 sau 0x80 
Byte 1: 0x09 
Byte 2: Inbox number (0-9) – the inbox which is receiving the message 
Byte 3: Message length 
Byte 4-N: Message;  
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The MessageWrite command is issued only by the master. When the MessageWrite is received by the 
slave, it responds with a ResponseWrite message: 
 
Byte 0: 0x12 
Byte 1: 0x13 
Byte 2: Status Byte 
Byte 3: Local inbox number (0-9) 
 

 
The required software resources have been created on both the PC computer master (written in C#) and 
on the NXT bricks slaves (written in RobotC) Fig. 11. 
 
 

 
 

Fig. 11. Bluetooth commands for the PC (left) and NXT brick (right). 
 
 
All the NXT robots know their position relative to the starting position. At each step of the algorithm, 
the robots compute the new direction of movement, the angle it makes with the original direction and 
the distance which has to be covered at that step. This information enables the robot to know its exact 
position relative to the starting position. Also, each movement the robot makes is broadcasted to all the 
other robots at each step of the algorithm; this is necessary because the algorithm takes into account 
the position of all the other robots (actually the center of the robot group) when deciding the next 
movement. 
 
 
4.3. Experimental Results 
 
The behavior of the 6 robot system has been investigated based on a number of scenarios designed to 
stress the movement algorithm. Based on these experiments, a success rate has been calculated based 
on the time to reach the goal. The time to reach the goal is the sum between the number of grouping 
steps and the number of parallel movement steps. 
 
The experiments have included scenarios to test the following situations: 
• Movement towards the target of a number of robots which were not in the larger group’s view 

range; 
• Movement towards the center of the group of a robot which was not in the group’s view range; 
• Using different initial states for the algorithm: using angles of 50° and 60° for the initial placing of 

the robots; 
• Movement of a group of 3, 4, 5 or 6 robots towards the goal. 
 
Scenario No. 1. Movement of a group of 3 robots situated at a distance smaller than the maximum 
distance from the center of system. 
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The robots leave from the initial position shown Fig. 12.a, they then regroup as presented in Fig. 12.b 
and move in parallel until they are close to the target. Finally, the robots change their movement 
pattern, heading towards the target, as depicted in Fig. 12 d-f. 
 
Because there are only three robots, they are not attracted strongly enough to the target unless they are 
very close to it.  
 
 

   
a    b    c   

 

   
d    e    f  

 
Fig. 12. Movement of a group of 3 robots situated at a distance smaller  

than the maximum distance from the center of system.  
 
 
 

Scenario No. 2. Movement of a group of 4 robots situated at a distance smaller than the maximum 
distance from the center of system. 
 
The movement of the robots is similar to Scenario No. 1, but here the influence of the fourth robot is 
making the whole system converge to the target faster, as seen in Fig. 13. 
 
Scenario No. 3. Movement of a group of 5 robots situated at a distance smaller than the maximum 
distance from the center of system. 
 
The movement of the robots is similar to those in the previous scenarios but now the influence of the 
supplementary robots is visibly making the whole system converge to the target faster. When some 
robots change direction, that change is evident only to the robots closest to them; the change in 
direction if propagated to the closest robots but is also dampened by the distance between them. 
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a    b    c   

   
d   e    f 

 
Fig. 13. Movement of a group of 4 robots situated at a distance smaller  

than the maximum distance from the center of system. 
 

   
a   b    c 

   
d   e    f 

 
Fig. 14. Movement of a group of 5 robots situated at a distance smaller  

than the maximum distance from the center of system. 
 
 
Scenario No. 4. Movement of a group of 6 robots situated at a distance smaller than the maximum distance 
from the center of system. 
 
Because of the large number of robots, the changes in direction for the robots are more frequent than in 
the last scenarios. These frequent changes allow the system to converge faster to the target. 
 
The performance of the algorithm for the above studied cases using 3, 4, 5 or 6 robots respectively is 
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analyzed in Table 1 and Fig. 16. 
 
 

Table 1. Performance of the algorithm when using a varying number of robots. 
 

No. of robots Grouping 
[number of steps] 

Parallel movement 
[number of steps] 

Reaching the goal 
[number of steps] 

Time to reach the 
goal [%] 

3 3 65 68 100 
4 6 60 66 97,1 
5 7 58 65 95,6 
6 6 51 57 83,8 

 
 

   
a   b    c 

   
d   e    f 

 
Fig. 15. Movement of a group of 6 robots situated at a distance smaller than  

the maximum distance from the center of system. 
 
 
As shown in Fig. 16, the time to reach the goal decreases as the number of robots increases which 
demonstrates the emergent properties of the system: the more entities there are, the faster the entities 
converge to the goal. 
 
 

 
 

Fig. 16. The time to reach the goal for varying number of robots. 
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5. Conclusions 
 
This paper presents and discusses the problem of movement in robotic collectives. An algorithm 
inspired from the study of the natural world has been presented. This algorithm is derived from the 
study of the movement of fish shoals and has a mathematical basis. 
 
Emergent algorithms inspired by the natural world are part of the distributed navigation algorithms. 
Such algorithms make use of local data and local interactions in order to build a global view of the 
system and reach their goal [27-30]. On the opposite side from the normal distributed algorithms, the 
distributed algorithms inspired from the natural world are very simple, effective and inexpensive. The 
entities are very homogeneous, and losing one entity has almost no meaning on the functionality of the 
whole system (the system only integrates local data, so losing a simple entity in another part of the 
environment has little importance to another entity which is only aware of just a small part of the 
environment). 
 
The shoal movement algorithms in [12, 13, 19] use only three types of movement: parallel movement, 
repulsion and attraction, and a larger number of constraints; this implies a limited range of motion for 
the robots. The improved movement algorithm presented in this paper has fewer constraints and a 
much wider range of motion which implies that the entities are reaching the goal faster and more 
efficient. 
 
The algorithm presented in this article has been implemented on a robotic collective which consists of 
6 LEGO Mindstorm NXT robots with advanced communication and sensing capabilities. Various 
experiments have been conducted using this system in order to prove the feasibility and efficiency of 
the algorithm. All of the experiments were conducted using numerous scenarios in order to test the 
movement algorithm. The emergent properties of the algorithm were studied based on these 
experiments. 
 
The experiments presented in this article have been designed in such a manner that they are able to 
model some of the worst case scenarios of this algorithm. These experiments have validated the 
algorithm successfully. 
 
The main disadvantage of the algorithm presented in this article is that it does not take into account the 
presence of obstacles in the environment; this algorithm is based on emergent behavior patterns which 
are retrieved from the study of fish shoals, and in real world, in the ocean, fish shoals rarely meet any 
obstacles. The current algorithm can be used in the presence of obstacles only if those obstacles are 
marked in advance. 
 
Future work will focus on further testing the algorithm in real world scenarios and modifying the 
algorithm in order to model obstacle avoidance. 
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