
Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 18

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

ISSN 1726-5479
© 2009 by IFSA

http://www.sensorsportal.com

Movement in Collaborative Robotic Environments
Based on the Fish Shoal Emergent Patterns

1Razvan CIOARGA, 1Mihai V. MICEA, 1Vladimir CRETU, 2Emil M. PETRIU

1Department of Computer and Software Engineering (DCSE),
"Politehnica" University of Timisoara, 2, Vasile Parvan Blvd., 300223 – Timisoara, Romania

2School of Information Technology and Engineering, University of Ottawa,
800, King Edward, Ottawa, KIN 6N5, Canada

E-mail: razvan.cioarga@cs.upt.ro, mihai.micea@cs.upt.ro, vladimir.cretu@cs.upt.ro,
petriu@site.uottawa.ca

Received: 30 January 2008 /Accepted: 20 February /Published: 23 March 2009

Abstract: Robotic collectives are used for the efficient achievement of complex tasks. There is a
significant increase in the interest for emergent, collaborative robotics as a viable alternative to the
more centralized classic approach as the dimensions, energy consumption and especially price are
becoming required constraints. This paper describes a nature inspired algorithm intended for the
movement and communication of such robotic collectives. As a case study, the implementation of the
emergent algorithm on a system consisting of LEGO Mindstorm Robots is further discussed along
with the most interesting experimental results. Copyright © 2009 IFSA.

Keywords: Collective robotics, Emergent behavior, Nature inspired movement

1. Introduction

The evolution of information processing equipment and the need of adaptable digital control systems
generate an extraordinary spreading of digital equipment in all fields of life including military
applications, service industries, space exploration, agriculture, mining, factory automation, health care,
waste management, disaster intervention and domestic applications. Most of such equipment present in
diverse human activities is required to be more or less autonomous, meaning that some degree of
intelligence must be embedded into it.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 19

The new trend of miniaturization of electronic devices leads to the necessity of small, relatively
independent entities which can interact with each other. Therefore, the embedded autonomous
equipment must scale well and have a low cost.

Embedded systems [1], robotic systems [2], sensors and digital perception equipments (sensor
networks) [3, 4], digital signal and image acquisition and processing (DSP-based and digital image
processing systems) [5] are major domains of interest in the present activities of the academic and
industrial community. This fact is proven by the huge number of applications and projects that are
developed in these domains. The complexity of the applications involving embedded digital
intelligence has grown over the last years, reaching the limit where the integration of inter-domain
approaches is required. This leads to the necessity of defining and implementing new, specific
methodologies in new domains such as: collaborative robotic environments and intelligent sensor
networks, distributed artificial perception, reconfigurable and auto-configurable systems, associative
behavior patterns.

The employment of robots in numerous industrial and academic applications is common nowadays.
Many of the applications of robots imply their movement towards a given goal.

The movement in collective robotics has always been a complex issue. It is usually addressed in two
ways: individual navigation of a single entity which does not take into account the movement of the
other entities in the system and tries to reach the given goal individually, and distributed navigation
where the actions of the robots are known to each other and they collaborate in order to reach their
goal.

As long as the robots involved are large enough to carry sufficient computing and sensing capabilities,
movement can be designed using a very complex distributed system (the network of robots
themselves). The robots involved with these algorithms are very important for the whole system, in
that losing one in a dangerous environment may be disastrous for the system. Usually, because of the
required constraints (price, dimensions and energy consumption) the robotic collectives are composed
of relatively small robots, with little computing power which is not sufficient for most of the
movement algorithms. This is a case well suited to apply movement algorithms which were inspired
from the study of the natural world. Such emergent behavior patterns like the movement of bees and
fish have proven to be extremely efficient when dealing with large number of small entities [6-9].

Applying emergent behavior patterns to robotic collectives [4, 9, 10] meets the constraints of power
saving and price which are required in usual applications.

This paper focuses on an improved movement algorithm based on the movement of fish shoals [11-
13]. In addition to [11], this paper presents the detailed movement algorithm and the mathematical
formalisms involved. The algorithm has been implemented on a robotic collective composed of 6
entities which are able to communicate with each other using a protocol that is also described. A
complete set of experiments have been conducted on the robotic collective using the fish shoal inspired
movement algorithm and the results have been presented in this article.

1.1. Emergent Behavior Patterns

Emergence is the process by which complex behavior patterns are formed starting from extremely
simple rules [4, 10]. The new field of emergent behavior is mainly based on the study of the natural
world in order to retrieve simple natural algorithms that can be applied in other fields of interest. The
simplicity of these patterns and the interaction between them can solve some of the most important

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 20

problems in embedded systems such as: energy consumption, communication protocols, efficiency and
reliability features, obstacle avoidance algorithms etc.

Emergent phenomena are usually unpredictable, representing non trivial results of simple interactions
between simple entities. As a result, there are several combinatorial complexity problems for which
finding an optimal solution is difficult or sometimes impractical because of the high dimensions of the
search field or because of the computational requirements involved by the existing constraints. In order
to solve these problems heuristic techniques are preferred, to generate solutions which are not always
optimal [14]. The meta-heuristics used are optimizations based on ant colonies studies (Ant Colony
Optimization [15]) and global convergence [16] in which case a great number of emergent behavior
systems are exponentially converging to the required result, the convergence rate increasing with the
number of entities involved. Another extremely important domain of applicability of emergent
behavior patterns is represented by NASA’s future spatial missions involving new exploration
technologies based on swarm emergent behavior [17, 18].

Although these meta-heuristics are sustained by a significant mathematical basis, there are no formal
descriptions of the emergent behavior patterns used, just some partial representations mostly seeking
the global effect of the patterns. Also, the local predictable behavior can be formally described, but the
interactions between these local behaviors which finally generate the emergence, cannot be quantified
because of their great number. As well, the application of behavior patterns to different systems is not
standardized. These patterns are usually unpredictable, complex and specific for each application.

1.2 Problems of Collaborative Robotic Environments and Intelligent Sensor Networks

The domains of collaborative environments and intelligent sensor networks are some of the research
areas of great interest for international academic and industrial communities. A lot of problems from
these domains, highlighted by the literature, remain open-ended. A synthesis of these problems derived
by the authors includes the following items:

1) Development of a highly scalable, efficient and precise solution for the coordination of

collaborative robotic and intelligent sensor systems;
2) Defining efficient strategies for decision making;
3) Efficient task distribution by exploiting and optimizing the system parallelism;
4) Although the potential and advantages of the emergent behavior patterns has been proven for a wide

range of collaborative systems applications like environment exploration and monitoring, there is
no real implementation of these patterns for coordination and decision making [17 – 18];

5) The implementation of emergent behavior in different applications is based on a set of empirical
recipes without defining a rigorous mathematical basis [15, 16];

6) There is no formalization for describing the emergent behavior patterns [15, 16];
7) The services required by the efficiency of operation of collaborative systems: communication

platform (infrastructure + protocol stack), localization solutions with minimal system resource
requirements, maintaining a global system clock by using efficient synchronization techniques;

8) Lack of a representation model for collaborative systems, which integrates the infrastructure and
coordination level along with the required support services, to design, analyze and evaluate the
performance of a system in the context of a certain application.

This article presents an emergent algorithm used for movement in robotic collectives. This emergent
algorithm implements a formal, mathematical model that is employed for the coordination of the
movement in the robotic collective and requires small amounts of computing power.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 21

2. Nature Inspired Movement in Collective Robotics

According to the model presented in [12, 13] and then later revised in [19], the fish shoal does not
have a leader. Each group member moves by the same rules as the others. Also, the movements of the
fish are influenced only by the nearest neighbors. Each fish can approximate the distance between
itself and its neighbors by vision, and the neighbors’ heading and speed by a natural sensor that fishes
have, called lateral line that can sense the movement of water currents near them. From the point of
view of a particular instance of the emergent algorithm, the fish hosting that algorithm is called “main
fish”, while all the other fishes are “neighbors”. Obviously, each fish in the shoal is “main fish” for the
corresponding instance of the algorithm which it hosts.

According to [12, 13], each fish is surrounded by four distinct zones (z1 – z4), as shown in Fig. 1.
Depending on the relative position of the neighboring fish to the main fish, there are four cases as
follows:

1) If a neighboring fish is situated in the closest circle around the main fish (Fig. 1a), then their next

move will be a repulsion move because they are too close and there is the possibility of collision.
2) If the neighboring fish is situated in the second circle (Fig. 1b), then the distance between it and the

main fish is considered to be optimal; the main fish will follow its neighbor’s direction describing a
parallel direction.

3) In the third case, the neighboring fish is inside the furthermost circle (Fig. 1c), the main fish, which
calculates the next move, will try to move according to the heading of its neighbor.

4) When the neighboring fish is located outside the furthermost circle, then it will not be taken into
consideration (as in real life it can’t be seen).

Fig. 1. Basic Fish Shoal Movement.

When there are no fish in its proximity, the main fish will adopt a searching strategy to find the lost
group. When one fish has more neighbors it can either take into consideration only one of them (based
on the distance and the weight factor given from the beginning to each fish) [12, 13], or take into
consideration all of its neighbors [19].

3. Improved Fish Shoal Movement in Collective Robotics

The above cited papers [12, 13, 19] present only three possible influences, which are induced by the
neighboring entity (attraction, repulsion and parallel movement). These generate a limited range of
motion (parallel to the direction of movement of the neighboring entity in the case of the parallel

a b c

z1

z2
z3

z4

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 22

movement influence or a full turn around in the case of repulsion). In order to give the entities of the
robotic collectives a wider range of motions the algorithm presented in this paper introduces a larger
range of influences instead of the only three named above. From attraction to repulsion, the robot can
move at any orientation angle which can be induced by a neighbor, depending on the distance between
them. If the distance is smaller than a given minimum value, which means that a collision is about to
happen, then the two entities form a total repulsion system, moving away from each other in opposite
direction; if the distance between the entities is equal to a maximum value then the two entities will
completely attract each other. If the distance between them is between the constraint values, the angle
between the new directions of movement of the fish will differ accordingly. If the distance is bigger
than the maximum value then the two entities will not influence each other at all.

An improvement of this situation is presented in [11]: when the main entity is influenced by more than
one entity, it calculates a weight distributed mean of all the influences. In order to establish the new
position for a fish the algorithm calculates an angle of movement and a distance. The angle gives the
new orientation of the fish and the distance gives the length of the movement. To calculate the new
position we use a movement vector. This vector is calculated as a sum of the vectors that describe the
movement for every neighbor fish. For every fish, the vector is represented by an angle and a distance
relative to initial state. When a fish calculates the length of the movement it takes into consideration
the distance between it and the neighbors; the further the neighbors, the shorter the movement.

In the opposite case, when the fish is closer to the neighbor, the distance is larger. This consideration
has been made so that at any given time the repulsion is more important than the attraction in order to
avoid collisions.

For the algorithm to work properly, a known initial state, shown in Fig. 2, is necessary to position the
whole system. The algorithm is implemented on a robot collective; the implementation is presented
later in this paper. Each fish has been implemented using a robot which has movement and
communication capabilities.

60°
60° 60°

60°
60°

60°

Fig. 2. Initial State.

The entities are placed in a circular shape. They are 19 centimeters apart from the center of the system;
they are equidistant and heading in the opposite direction from the center, thus making an equal angle
between each two consecutive robots (in Fig. 2 there are 6 robots so the angle is exactly 60°). After the
robots are set in position each of them moves forward with a random number of centimeters, after
which they stop and compute their coordinates. These will be considered the initial coordinates. There

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 23

is also a final state that the fish should reach. In real life, this goal can be represented by food or by a
safe place to live.

At each step the robot will calculate the distance between it and its neighbors. Depending on the
relation between the computed distance and the robot’s view range, there are three possible cases as
seen in Fig. 3:

MAX

MAX MAX

Fig. 3. The three possible cases of positioning.

If the robot has no neighbors in its vicinity, based on a maximum distance at which the robots can
“see” each other, it will have to go in a random direction to find some other robots. The robot needs to
calculate both the distance it has to cover and the angle of that direction. Because the movement has to
be random in this case, the deviation of the angle will be no more than 30°, and the distance covered
will be between mD (a minimum distance) and MD (a maximum distance).

 Angle = Angle_to_target – current_angle ± 30° (1)

 Distance = random(0, MD – mD) + mD (2)

If the robot has exactly one neighbor in its vicinity, it will move closer or it will move away based on
the distance between them.

If the robot has more than one neighbor in its vicinity its movement will be dictated by the resultant of
all the forces of attraction and rejection between those robots. Three possible situations can occur.

3.1. The Entity Has no Neighbors in its Proximity

In the case an entity has no neighbors in its proximity, the necessary strategy is to search the group; the
robot knows the relative position of its neighbors (all of the robots communicate with each other, and
broadcast the data relevant to their positions), it computes the coordinates of the center of the group
and, then, it will move towards that center. The explanation retrieved from the natural world resides in
the fact that even if a fish cannot distinguish all the other neighboring fish, it is able to sense the whole
shoal of fish and can head towards it. Fig. 4 shows how the robot changes its orientation and starts
moving towards the group.

In Fig. 4, α is the angle between the current orientation and the desired one, β is the angle between the
horizontal axis (Ox) and the current direction of the fish (known at each step) and γ is the angle
between the horizontal axis and the fish-target direction.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 24

To make the move the movements of the robots using this algorithm seem more natural, we introduced
a random angle of ±30°. This angle is added to the angle calculated for fish-target direction.

Fig. 4. Movement towards the group of a single entity.

The slope of the fish-target direction without our correction is given by the next formula:

xRxR
yRyR

m
RG

RG
R ..

..
−
−

= , (3)

where RG=(x, y) is the position of the center of the group and RR=(x, y) is the position of the robot.

The γ angle can be computed with the formula:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∞

∞

+
+

=
−

−

−

 is slope theif
2

3

- is slope theif
2

quadrantforth for the 2)(tan
quadrant or third second for the)(tan

quadrantfirst for the)(tan

1

1

1

π

π
π
π

γ R

R

R

m
m
m

 (4)

In the end, the final turn angle (α) is calculated as:

 α = γ – β ± 30° (5)

3.2. The Entity Has Exactly One Neighbor in its Proximity

In the case when an entity has exactly one neighbor in its proximity, the influence that appears
between the two entities ranges from repulsion to attraction, depending on the distance between them.
If this distance is maximum, the fish will attract each other, and if the distance is minimum,
theoretically 0, the fish will reject one another. In order to create a general algorithm, we introduced a
function that takes as input values the possible distances between the two fish, and in return it gives the
final angle that the main fish should follow (θ). This angle is relative to the direction of the fish-

x

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 25

neighbor pair and its values can be positive or negative taking into consideration the position of the
goal. The final direction of the movement will bring the fish closer to the goal. Fig. 5 shows three
possible situations that can arise in this case.

The θ angle corresponding to the chosen influence (from repulsion to attraction) is calculated with the
formula:

d
DMAX

×=
°180θ , (6)

where DMAX is the constraint defined by the view range and d is the distance between the two entities.

Fig. 5. Relative positioning of the goal and the chosen directions.

Fig. 6 and Fig. 7 present a repulsion case, from the perspective of a pair of fish.

Fig. 6. Repulsion case seen by the right fish.

The α angle and the β angle were explained in the first section of this chapter, and θ was defined in the
last paragraph. To calculate the new movement angle, we still need the angle between the horizontal

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 26

axis and the fish-neighbor direction. This is represented by the δ angle, and its value is determined like
the θ in the first section of the chapter, replacing the center of the group with the neighbor. The final
angle is given by the next formula:

 α = δ – θ – β (7)

Fig. 7. Repulsion case seen by the left fish.

For the left fish, for the generality of the formula (7), instead of the θ angle, we used its
complementary angle, as seen in Fig. 7.

To determine which the left one is, the algorithm calculates the slope formed from the target to each
fish. The fish with the biggest slope is considered to be the left one.

3.3. The Entity Has more than One Neighbor in its Proximity

In this general situation, the main entity will compute a resultant vector based on all the vectors
computed for each of the neighboring entities.

The robot computes the coordinates of the center of the group and he will make the next move towards
it. By doing a random search of the group it would have been very possible that the fish lost the group
forever.

4. Case Study: Implementing the Fish Shoal Inspired Movement

Using Lego NXT Robots

An application which implements the movement algorithm presented in the previous section has been
developed on a robotic collective composed of 6 LEGO Mindstorm NXT robots [20 - 22]. The LEGO
Mindstorm NXT robots were programmed using the RobotC programming language [23].

A NXT robot is composed of an “intelligent brick”, as depicted in Fig. 8 (1), that controls a series of
actuators and sensors, namely: a touch sensor (2), a microphone (3), a light sensor (4), an ultrasonic
sensor (5), and DC motors (6). The intelligent brick also features an advanced communication device
based on the Bluetooth protocol.

The NXT intelligent brick features an ARM7-based Atmel main processor [24] which can be

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 27

programmed using RobotC which is the version of the C language for NXT. The firmware application
software was written in RobotC [23] and has been uploaded to the intelligent brick.

Fig. 8. The Lego Mindstorm NXT intelligent brick, actuators and sensors [20 - 22].

4.1. Implementing Movement on the NXT Robots

Using the LEGO parts and intelligent bricks we have created 6 robots loosely based on Castor Bot
[25], as depicted in Fig. 9.

Fig. 9. The Castor Bot [25].

The movement for each robot is composed of a succession of rotations and translations. When
implementing these functionalities on the NXT robot, special care was taken in order to make them
extremely precise, so that the coordinates computed in the robots memory correspond to the actual
coordinates the robot. As seen in Fig. 9, each robot has two active wheels which are used for motion.
For each type of movement (either rotation or translation), each wheel has been programmed to turn a
very specific and exact number of degrees (for rotation the wheels rotate in opposite ways, and for
translation they rotate in the same direction).

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 28

The following parameters are used:
• the distance between wheel, DBW:

 DBW = 12 cm (8)

• the circumference of the circle made by one wheel if the other is stationary, CC:

 CC = DBW * π (9)

• the distance (in centimeters) which the robot has to cover in order to rotate exactly 1 degree

(distance per degree), DPD:

 DPD = CC / 360° (10)

• from the wheel diameter, WD, the circumference of the wheel, WC, can be computed, and also the

number of degrees necessary to rotate the wheel so that the robot moves exactly 1 centimeter
(degree per centimeter), DPC:

 WD = 5.6 cm (11)

 WC = WD * π (12)

 DPC =360° / WC (13)

• the number of degrees that the wheel has to move so that the whole robot can rotate exactly one

degree (degree per degree), DegPD:

 DegPD = DPD * DPC (14)

Based on the physical dimensions of the NXT brick, motors and wheels the parameters presented
above are computed. Replacing (11) in (12) and the result in (13), DPC can be calculated as:

 DPC = 20.4628 °/cm (15)

Replacing (8) in (9) and the result in (10), and using the value from (15), (14) can be computed as:

 DegPD = 0.7692 (16)

In order to rotate the robot with d degrees, the corresponding wheel should rotate with

 WR = DegPD * d (17)

degrees.

In order to move the robot c centimeters in a straight line, both wheels should rotate with

 WT = DPC * c (18)

degrees.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 29

4.2. Communication in the NXT Robot Network

A computer featuring a Bluetooth connection as shown in Fig.10 is used as a gateway/router for the
communication between the robots; the computer is transparent to all the robots, so that they are not
aware of its presence (the computer works on a lower level of a layered communication protocol).

C#
RobotC

RobotCRobotC

RobotC

RobotC

RobotC

RobotCRobotC

C#
Bluetooth

Bluetooth
Bluetooth

Bluetooth

Bluetooth
Bluetooth

Fig. 10. NXT System Architecture.

The NXT brick and the PC communicate with each other with direct commands. The communication
protocol used implements a master-slave communication in which the master is the PC computer and
the slaves are represented by the NXT bricks. The commands exchanged between the master and the
slave are MessageRead and MessageWrite. The structure of the MessageRead command is presented
below:

Byte 0: 0x00 or 0x80
Byte 1: 0x13
Byte 2: Remote inbox number (0-9) – the inbox which is receiving the message
Byte 3: Local inbox number (0-9) – the inbox which is sending the message
Byte 4: remove (if true the message is removed from the remote inbox)

The MessageRead command is issued only by the master. When the MessageRead is received by the
slave, it responds with a ResponseRead message:

Byte 0: 0x12
Byte 1: 0x13
Byte 2: Status Byte
Byte 3: Local inbox number (0-9)
Byte 4: Message Length
Byte 5-63: Message (zero filled if necessary)

The structure of the MessageWrite command is presented below:

Byte 0: 0x00 sau 0x80
Byte 1: 0x09
Byte 2: Inbox number (0-9) – the inbox which is receiving the message
Byte 3: Message length
Byte 4-N: Message;

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 30

The MessageWrite command is issued only by the master. When the MessageWrite is received by the
slave, it responds with a ResponseWrite message:

Byte 0: 0x12
Byte 1: 0x13
Byte 2: Status Byte
Byte 3: Local inbox number (0-9)

The required software resources have been created on both the PC computer master (written in C#) and
on the NXT bricks slaves (written in RobotC) Fig. 11.

Fig. 11. Bluetooth commands for the PC (left) and NXT brick (right).

All the NXT robots know their position relative to the starting position. At each step of the algorithm,
the robots compute the new direction of movement, the angle it makes with the original direction and
the distance which has to be covered at that step. This information enables the robot to know its exact
position relative to the starting position. Also, each movement the robot makes is broadcasted to all the
other robots at each step of the algorithm; this is necessary because the algorithm takes into account
the position of all the other robots (actually the center of the robot group) when deciding the next
movement.

4.3. Experimental Results

The behavior of the 6 robot system has been investigated based on a number of scenarios designed to
stress the movement algorithm. Based on these experiments, a success rate has been calculated based
on the time to reach the goal. The time to reach the goal is the sum between the number of grouping
steps and the number of parallel movement steps.

The experiments have included scenarios to test the following situations:
• Movement towards the target of a number of robots which were not in the larger group’s view

range;
• Movement towards the center of the group of a robot which was not in the group’s view range;
• Using different initial states for the algorithm: using angles of 50° and 60° for the initial placing of

the robots;
• Movement of a group of 3, 4, 5 or 6 robots towards the goal.

Scenario No. 1. Movement of a group of 3 robots situated at a distance smaller than the maximum
distance from the center of system.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 31

The robots leave from the initial position shown Fig. 12.a, they then regroup as presented in Fig. 12.b
and move in parallel until they are close to the target. Finally, the robots change their movement
pattern, heading towards the target, as depicted in Fig. 12 d-f.

Because there are only three robots, they are not attracted strongly enough to the target unless they are
very close to it.

a b c

d e f

Fig. 12. Movement of a group of 3 robots situated at a distance smaller

than the maximum distance from the center of system.

Scenario No. 2. Movement of a group of 4 robots situated at a distance smaller than the maximum
distance from the center of system.

The movement of the robots is similar to Scenario No. 1, but here the influence of the fourth robot is
making the whole system converge to the target faster, as seen in Fig. 13.

Scenario No. 3. Movement of a group of 5 robots situated at a distance smaller than the maximum
distance from the center of system.

The movement of the robots is similar to those in the previous scenarios but now the influence of the
supplementary robots is visibly making the whole system converge to the target faster. When some
robots change direction, that change is evident only to the robots closest to them; the change in
direction if propagated to the closest robots but is also dampened by the distance between them.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 32

a b c

d e f

Fig. 13. Movement of a group of 4 robots situated at a distance smaller

than the maximum distance from the center of system.

a b c

d e f

Fig. 14. Movement of a group of 5 robots situated at a distance smaller

than the maximum distance from the center of system.

Scenario No. 4. Movement of a group of 6 robots situated at a distance smaller than the maximum distance
from the center of system.

Because of the large number of robots, the changes in direction for the robots are more frequent than in
the last scenarios. These frequent changes allow the system to converge faster to the target.

The performance of the algorithm for the above studied cases using 3, 4, 5 or 6 robots respectively is

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 33

analyzed in Table 1 and Fig. 16.

Table 1. Performance of the algorithm when using a varying number of robots.

No. of robots Grouping
[number of steps]

Parallel movement
[number of steps]

Reaching the goal
[number of steps]

Time to reach the
goal [%]

3 3 65 68 100
4 6 60 66 97,1
5 7 58 65 95,6
6 6 51 57 83,8

a b c

d e f

Fig. 15. Movement of a group of 6 robots situated at a distance smaller than

the maximum distance from the center of system.

As shown in Fig. 16, the time to reach the goal decreases as the number of robots increases which
demonstrates the emergent properties of the system: the more entities there are, the faster the entities
converge to the goal.

Fig. 16. The time to reach the goal for varying number of robots.

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 34

5. Conclusions

This paper presents and discusses the problem of movement in robotic collectives. An algorithm
inspired from the study of the natural world has been presented. This algorithm is derived from the
study of the movement of fish shoals and has a mathematical basis.

Emergent algorithms inspired by the natural world are part of the distributed navigation algorithms.
Such algorithms make use of local data and local interactions in order to build a global view of the
system and reach their goal [27-30]. On the opposite side from the normal distributed algorithms, the
distributed algorithms inspired from the natural world are very simple, effective and inexpensive. The
entities are very homogeneous, and losing one entity has almost no meaning on the functionality of the
whole system (the system only integrates local data, so losing a simple entity in another part of the
environment has little importance to another entity which is only aware of just a small part of the
environment).

The shoal movement algorithms in [12, 13, 19] use only three types of movement: parallel movement,
repulsion and attraction, and a larger number of constraints; this implies a limited range of motion for
the robots. The improved movement algorithm presented in this paper has fewer constraints and a
much wider range of motion which implies that the entities are reaching the goal faster and more
efficient.

The algorithm presented in this article has been implemented on a robotic collective which consists of
6 LEGO Mindstorm NXT robots with advanced communication and sensing capabilities. Various
experiments have been conducted using this system in order to prove the feasibility and efficiency of
the algorithm. All of the experiments were conducted using numerous scenarios in order to test the
movement algorithm. The emergent properties of the algorithm were studied based on these
experiments.

The experiments presented in this article have been designed in such a manner that they are able to
model some of the worst case scenarios of this algorithm. These experiments have validated the
algorithm successfully.

The main disadvantage of the algorithm presented in this article is that it does not take into account the
presence of obstacles in the environment; this algorithm is based on emergent behavior patterns which
are retrieved from the study of fish shoals, and in real world, in the ocean, fish shoals rarely meet any
obstacles. The current algorithm can be used in the presence of obstacles only if those obstacles are
marked in advance.

Future work will focus on further testing the algorithm in real world scenarios and modifying the
algorithm in order to model obstacle avoidance.

References

[1]. M. Popa, A. S. Popa, V. Cretu, M. V. Micea, Monitoring Serial Communications in Microcontroller Based

Embedded Systems, in Proceedings of the International Conference on Computer Engineering and Systems
(ICCES ’06), Cairo, Egypt, Nov. 2006, pp. 56-61.

[2]. Y.-S. Dai, M. Hinchey, M. Madhusoodan, J. L. Rash, X. Zou, A Prototype Model for Self-Healing and
Self-Reproduction In Swarm Robotics System, in Proceedings of the 2nd IEEE Symposium on Dependable,
Autonomic and Secure Computing, Sept. 2006, pp. 3-10.

[3]. Intel Research, Instrumenting the World: An Introduction to Wireless Sensor Networks, Intel Corporation,
2005 (http://www.intel.com/research/exploratory/instrument_world.htm).

[4]. R. D. Cioarga, M. V. Micea, B. Ciubotaru, D. Chiuciudean, D. Stanescu, CORE-TX: Collective Robotic

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 35

Environment - the Timisoara Experiment, in Proceedings of the 3rd Romanian-Hungarian Joint Symposium
on Applied Computational Intelligence (SACI 2006), Timisoara, Romania, May 2006, pp. 495-506.

[5]. P. Gai, L. Abeni, G. Buttazzo, Multiprocessor DSP Scheduling in System-on-a-Chip Architectures, in
Proceedings of the 14th Euromicro Conference on Real-Time Systems (ECRTS ’02), Vienna, Austria, 2002,
pp. 231–240.

[6]. Eric Bonabeau, Marco Dorigo, Guy Theraulaz, Swarm Intelligence: From Natural to Artificial Systems,
The Oxford University Press, 1990.

[7]. Scott Camazine, Nigel R. Franks, James Sneyd, Eric Bonabeau, Jean-Louis Deneubourg, Guy Theraulaz,
Self-Organization in Biological Systems, Princeton University Press, Princeton, NJ, 2001.

[8]. Julia K. Parrish, Steven V. Viscido, Daniel Grünbaum, Self-Organized Fish Schools: An Examination of
Emergent Properties, Biological Bulletin, Vol. 202, No. 3, June 2002, pp. 296-305.

[9]. Y. Inada, K. Kawachi, and H. Liu, Simulation Study of Schooling Motion of Fish based on Two Observed
Motions: Approaching Motion and Parallel Orientating Motion, in Proceedings of Modeling and
Simulation (MS 2004), California, USA, March 2004, [CD support].

[10]. R. Cioarga, M. V. Micea, B. Ciubotaru, D. Chiciudean, V. Cretu, V. Groza, eBML: A Formal Language for
Behavior Modeling and Application Development in Robotic Collectives, in Proceedings of the
International Workshop on Robotic and Sensors Environments (ROSE 2007), Ottawa, Canada, Oct. 2007,
pp. 80-85.

[11]. R. Cioarga, B. Panus, C. Oancea, M. Micea, V. Cretu, E.M. Petriu, Fish Shoal Inspired Movement in
Robotic Collectives, in Proceedings of the IEEE International Workshop on Robotic and Sensors
Environments (ROSE 2008), Ottawa, Canada, October 2008, pp. 7-12.

[12]. Aoki, I., A simulation study on the schooling mechanism in fish, Bulletin of the Japan Society of Scientific
Fisheries, Vol. 48, Aug. 1982, pp. 1081-1088.

[13]. Huth, A., and Wissel, C, The simulation of the movement of fish schools, Journal of Theoretical Biology,
Vol. 156, 1992, pp. 365-385.

[14]. M. Dorigo, L. M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling
Salesman Problem, IEEE Transactions on Evolutionary Computation, Vol. 1, Issue. 1, 1997.

[15]. V. Maniezzo, L. M. Gambardella, F. de Luigi, Ant Colony Optimization: New Optimization Techniques in
Engineering, by G. C. Onwubolu, B. V. Babu, Springer-Verlag Berlin Heidelberg, 2004, pp. 101-117.

[16]. H. Van Dyke Parunak, S. Brueckner, J. Sauter, R. Matthews, Global Convergence of Local Agent
Behaviors, in Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), Jul. 2005, Utrecht, Netherlands, pp. 305–312.

[17]. W. Truszkowski, M. Hinchey, J. Rash, C. Rouff; NASA’s swarm missions: The challenge of building
autonomous software, IEEE IT Professional, Vol. 6, No. 5, Sept-Oct 2004, pp. 47–52.

[18]. M. Hinchey, C. Rouff, J. Rash, Requirements of an Integrated Formal Method for Intelligent Swarms, in
Proceedings of the 10th International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2005), Sep 2005, Lisbon, Portugal, pp. 125 – 133.

[19]. N. Bhooshan, The Simulation of the Movement of Fish Schools, Technical Report for The Institute for
Systems Research, ISR, UG-2001-4, University of Maryland.

[20]. LEGO Group, LEGO MINDSTORMS NXT Hardware Developer Kit, 2006
(http://mindstorms.lego.com/Overview/nxtreme.aspx).

[21]. LEGO Group, LEGO MINDSTORMS NXT Communication protocol, 2006
(http://mindstorms.lego.com/Overview/nxtreme.aspx).

[22]. LEGO Group, “LEGO MINDSTORMS NXT Bluetooth Developer Kit”, 2006
(http://mindstorms.lego.com/Overview/nxtreme.aspx).

[23]. T. Friez, D. Swan, “ROBOTC for LEGO® MINDSTORMS™ 1.30 - Users Manual”, 2008.
[24]. ARM, “ARM7TDMI, Technical Reference Manual”, Rev. 3

(http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/DDI0210B.pdf).
[25]. D. J. Perdue, The Unofficial Lego Mindstorms NXT Inventor’s Guide, No Starch Press, October, 2007.
[26]. R. Cioarga, B. Ciubotaru, D. Chiciudean, M. V. Micea, V. Cretu, V. Groza, Emergent Behavioral Modeling

Language in Obstacle Avoidance, in Proceedings of the 24th IEEE Instrumentation and Measurement
Technology Conference (IMTC 2007), Warsaw, Poland, May 2007, [CD support].

[27]. R. Cioarga, I. Nalatan, S. Tura-Bob, M. Micea, V. Cretu, M. Biriescu, V. Groza, Emergent Exploration and
Resource Gathering in Collaborative Robotic Environments, Proceedings of the IEEE International
Workshop on Robotic and Sensors Environments (ROSE 2008), Ottawa, Canada, October 2008, pp. 13-18.

[28]. Prassler, E., Milios, E., Parallel distributed robot navigation in the presence of obstacles, in Proceedings of
the Second IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, USA, 9-13 Dec 1990,

Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 18-36

 36

pp. 475 – 478.
[29]. Konolige, K. Fox, D. Limketkai, B. Ko, J.; Stewart, B., Map merging for distributed robot navigation, in

Proceedings of International Conference on Intelligent Robots and Systems (IROS 2003), Volume 1,
27-31 Oct. 2003, pp. 212 – 217.

[30]. D. F. Hougen, J. C. Bonney, J. R. Budenske, M. Dvorak, M. Gini, D. G. Krantz, F. Malver, B. Nelson, N.
Papanikolopoulos, P. E. Rybski, S. A. Stoeter, R. Voyles, and K. B. Yesin. Reconfigurable robots for
distributed robotics, Government Microcircuit Applications Conference, Anaheim, CA, March 2000.

2009 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved.
(http://www.sensorsportal.com)

