
AN2088
Rev. 0, 3/2001

Integrating the DSP563xx in
Distributed Computing

Environments
Application Note

 by

 Mihai V. MICEA,
Mircea TRIFU

and Adrian TRIFU

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Freescale Semiconductor

© Freescale Semiconductor, Inc., 2004. All rights reserved.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

Abstract and Contents

Distributed digital signal processing is the most suitable solution for many real-life applications involving
digital data acquisition and processing from multiple signal sources scattered over large areas. The
advantages of distributed computing over single-processor or other multi-processor architectures include
high computing power at a low cost, flexibility, and scalability.

Several ways to implement distributed digital signal processing exist, each with certain strengths and
weaknesses. Choosing the optimum implementation for a particular application is often difficult,
depending largely on the requirements of the application.

This paper proposes a hardware and software structure for distributed digital signal processing which
offers flexibility and scalability for many real-life applications.

1 Introduction . 1

1.1 Architecture . 1
1.2 Communication. 2
1.3 Monitor Program. 3
1.4 High-Level Software. 3

2 Workstation-DSP Communication Protocol . 3

2.1 The Command Protocol . 4
2.2 Communication Library Functions Overview . 5
2.2.1 Low-Level Functions . 6
2.2.1.1 scom_init. 6
2.2.1.2 scom_shut_down . 7
2.2.1.3 scom_write_buf . 7
2.2.1.4 scom_read_buf . 7
2.2.1.5 mdps_get_error . 8
2.2.2 High-Level Functions . 8
2.2.2.1 scsom_reset_dsp . 8
2.2.2.2 scsom_run . 8
2.2.2.3 scom_load_program . 8
2.2.2.4 scom_write_dsp . 9
2.2.2.5 Helper Functions. 9

3 The DSP56307 in a Distributed Environment . 9

3.1 General Description of the Monitor Program . 10
3.2 Monitor Program Implementation on DSP56307. 11
3.2.1 Definitions . 12
3.2.2 Initialization . 13
3.2.3 Receive Routine . 14

Abstract and Contents

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.2.4 Load Procedure . 15
3.2.5 Run Command Procedure . 16
3.2.6 Transmit Routine . 18

4 Case Study . 20

4.1 General Architecture. 20
4.1.1 Controlling Computer . 20
4.1.2 Workstation. 21
4.1.3 DSP-Based Board . 22
4.2 DSP Algorithms . 23
4.2.1 Adder Algorithm. 23
4.2.2 FFT Algorithm . 24
4.3 The KHOROS Environment . 24
4.3.1 Cantata . 24
4.3.2 The Glyph . 25
4.3.3 Toolboxes . 26
4.3.4 Software Objects. 26
4.3.5 Development Tools. 26
4.3.6 Data Structure . 26
4.4 Using the KHOROS Software . 27
4.4.1 Building a Toolbox . 27
4.4.2 Adding a Glyph to a Toolbox . 27
4.4.2.1 Defining the Glyph Tasks . 28
4.4.2.2 Creating a Directory Structure . 28
4.4.3 Defining the Glyph User Interface . 28

5 Conclusion . 34

6 References . 35

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Introduction

1 Introduction
Distributed digital signal processing is a top research and development topic, backed up by an ever-
increasing number of real-life applications and IT companies involved. Because it is still an advanced
research topic and depends strongly on the application, distributed DSP does not have a standard approach
or a unified concept of design.

Distributed digital signal processing is the most suitable solution for most real-life applications involving
digital data acquisition and processing from multiple signal sources scattered over large areas. The
advantages of distributed computing over single-processor or other multi-processor architectures include
high computing power at a low cost, flexibility, and scalability.

There are several ways to implement distributed digital signal processing, each of which has its strong and
weak points. Choosing the optimum implementation for a particular application is often difficult,
depending largely on the requirements of the application.

This paper proposes a hardware and software structure for distributed digital signal processing which
offers good flexibility and scalability for many real-life applications.

1.1 Architecture
The general architecture of the proposed system uses an Ethernet-based distributed computing
environment running TCP/IP protocols on a LINUX platform. The digital signal processing hardware core
of the system consists of one or more DSP-based boards, each connected to a host computer in the
network, as illustrated in Figure 1.

Figure 1. Distributed DSP System

Networked
Computer

Networked
Computer

DSP-based
Board

Controlling
Computer

DSP-based
Board

E
th

er
ne

t

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

The primary challenge in such a distributed computing environment is to implement and manage multiple
digital signal acquisitions and processing without increasing the workload of the host computer processor.

There are three main components of the system:

1. A controlling computer, which assists the user in building and running specific DSP-based
applications or algorithms, and controls the flow of commands and data through the
distributed system.

2. One or more workstations interconnected to each other and to the controlling computer
through the Ethernet. The number of workstations and the relative distance are not subject
to restrictions derived from this application. Each workstation receives and interprets DSP-
related commands from the controlling computer, passes the commands to the DSP-based
board connected to it, and sends back results from the DSP to the controlling computer.

3. A specialized DSP-based board attached to each workstation which carries out the entire
data acquisition process and implements most of the data processing algorithms. The
system architecture does not limit the number of DSP boards that can be connected to a
particular workstation (or even to the controlling computer); the only limitation is the
number of available communication interfaces on the workstation.

1.2 Communication
Digital signal processing systems usually require relatively high data throughputs, especially when the data
processing is performed in a distributed manner. DSP-based systems following the general architecture
depicted in Figure 1 present two different kinds of data links:

1. Workstation-to-workstation, or Controlling computer-to-workstation data paths.

Data and command transactions between the workstations in the system are performed through the
Ethernet using TCP/IP protocols. Featuring raw transfer rates at up to 10 Mbits per second for 10-
Base-T Ethernet or 100 Mbits per second for 100-Base-T Ethernet or Fast Ethernet, this type of data
link should provide enough throughput for the majority of digital signal acquisition and processing
applications, including multimedia and digital image acquisition and processing.

2. Workstation-to-DSP data links.

Most of the data processing required by a given application is performed by the DSP boards
connected to workstations. Thus, the workstation-DSP communication is of major importance for
the overall system performance, and can be a potential bottleneck for data transfers. Although DSPs
and DSP-based boards generally feature a variety of data communication capabilities, they typically
do not provide complete, glueless, high-performance communication interfaces to the host
computer; this task is left to the system designer.

The DSP56300 family of processors features several data communication interfaces suitable for a wide
variety of system interconnections through its built-in peripheral ports. At the higher end of the transfer
performance scale is the Host Interface Port, a DSP-to-host interconnection offering transfer rates of up to
16 Mbits per second for the ISA bus and even higher rates for the PCI bus. One potential disadvantage of
this solution is that the DSP must be physically close to the host bus slot to minimize RFI, which
drastically reduces overall system flexibility. At the lower end of the performance scale is the
asynchronous Serial Communications Interface (SCI), which can transfer data at up to 115.2 kbits per
second.

The SCI port on the DSP56307 Evaluation Module (DSP56307EVM) was chosen as the solution for this
application. This on-board solution provides a data transfer which meets communication requirements for
this application while maintaining system flexibility. With the EVM configured to transfer data at the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program

Workstation-DSP Communication Protocol

maximum speed (115.2 kbits per second) and the use of special handshaking, the DSP can easily be
controlled through user-defined applications running on the workstation. The implementation details of
this system are presented in Section 2.

1.3 Monitor Program
One of the most important components of the project is a monitor emulation program developed on the
DSP56307EVM to provide processing autonomy to the DSP and facilitate its programming and command
from higher-level user applications. The Monitor program provides low-level communication routines for
DSP algorithms and implements the DSP side of the binary command protocol described in Section 2. It is
automatically loaded at boot-time from the DSP56307EVM on-board flash memory and acts as a
command interpreter for commands sent by the workstation. The implementation of the Monitor program
is described in detail in Section 3.

1.4 High-Level Software
Another important issue related to the proper operation of a distributed DSP system is the implementation
of high-level software to provide the user with efficient control of the execution of DSP algorithms. This
software must include the following features:

• A proper user interface for controlling overall system operation. It should provide an interactive and
flexible mechanism for defining a particular DSP-based application with maximum user control
over its execution in a distributed processing system. This software component resides in the
controlling computer.

• Support for dividing a complex task into subcomponents to further distribute them for execution in
the system. This can be performed automatically or in a user-controlled manner by the controlling
computer.

• An efficient mechanism for transacting commands and data between the system workstations. The
corresponding programming model emulates a client-server architecture, with the controlling
computer as the client and the workstations servicing its various processing requests.

• Specialized server-type programs implemented on the system workstations which can communicate
with the client (controlling computer), receive processing commands and additional input data, and
send back the results. The workstations can perform a specialized set of processing algorithms
individually, or a generic pack of processing routines can be implemented on each workstation.

The KHOROS Software Package from Khoral Research, Incorporated meets all of these requirements, and
so was selected to provide the high-level control software for the proposed system.

Section 4 presents a case study describing a distributed digital signal processing system with the general
system architecture depicted in Figure 1. Two personal computers are interconnected with a TCP/IP-based
Ethernet link running on a Linux platform, one functioning as the controlling computer and the other as the
system workstation. The core of the system is the DSP56307 Evaluation Module, which performs all the
DSP-specific operations initiated by the remote station (controlling computer). The KHOROS package is
also described in detail in this section.

2 Workstation-DSP Communication Protocol
Data communication between the workstation and the DSP is of major importance for the proper operation
and satisfactory performance of a distributed DSP. The system should be flexible and portable and provide
high throughput, error control, and a simple communication protocol.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

This section focuses on the communication between the workstation and the DSP56307EVM board. It
describes the command protocol and a typical communication session, and presents an overview of the
communication library.

Most of the communication is based on the Client-Server model, in which the client is the workstation and
the server is the DSP board. The client sends various commands to the server, which services them
according to the command protocol described in this section. The only exception to this is the result buffer
sent by the digital signal processing algorithm back to the workstation. This data transfer is initiated by the
DSP board after completion of the processing.

All communication between the workstation and the DSP board in this application is carried out over an
asynchronous serial link at 115200 bps. This can be a major drawback in systems that require high
throughput. For better performance in these cases one can make use of Motorola’s more powerful
solutions, which enable data transfers over parallel, Ethernet, and ISA interfaces.

2.1 The Command Protocol
The command protocol used to control the behavior of the DSP board is tailored so that the various tasks it
performs meet the exact requirements of a distributed digital signal processing system.

Every command consists of two bytes followed by zero to two 24-bit words, depending on the particular
command issued. The first byte is always $AA, signaling the beginning of a new command. The second
byte is the actual command byte. Its bit-field encoding is shown in Figure 2.

Figure 2. Command Byte Bit Field Encoding

Table 1. Command Byte Bit Field Descriptions

The two shaded bits in the command byte are reserved for later development and should be written with 0s
for future compatibility.

The command byte is followed by zero, one or two additional 24-bit words, depending on which command
is issued. In the case of the reset command no additional word follows the command byte. For the load
command, the command byte is followed by two additional words. The first one specifies the address in P,
X or Y memory of the DSP where the data should be stored, while the second word is the size of the buffer
expressed as a number of 24-bit words. The load command is followed by a number of data words equal to
the buffer size. The run command byte is followed by one additional word containing the address in P
memory where program execution begins.

Each 24-bit word is sent as a series of three bytes, least significant byte first.

The choice of an unencoded command byte was made to reduce the amount of code needed to distinguish
between the commands on the DSP. Refer to Chapter 4 to see how this is actually done.

Bit Meaning First Data Word Second Data Word

Rs Issues a soft reset to the DSP board — —

Ld Loads a data buffer in DSP memory in
the specified address space (P, X or Y)

Address in P, X, or Y memory
where data is to be stored

Buffer size (number of 24-bit
words)

Rn Starts the execution of a program Address in P memory where
program begins

—

Rs Ld Rn P X Y

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Communication Library Functions Overview

Workstation-DSP Communication Protocol

Every command received by the DSP board is acknowledged by a command confirmation string. These
strings are shown in Table 2

.

The command confirmation string for the load command is followed by a 24-bit checksum computed as a
modulo 224 sum of all the data words in the buffer. The command confirmation string for the run command
is followed by the address supplied in the run command.

A typical communication session between the workstation and the DSP board might proceed as follows:

1. The PC sends a Reset command to the DSP board: $AA, $80.

2. The DSP board answers by sending the command confirmation string #Ready after
performing a soft reset.

3. The PC downloads all the input data buffers as well as the DSP algorithm to the DSP board.
Each buffer is downloaded in the following sequence:

a) The PC issues a Load command:

– $AA, $44 for loading into P memory

– $AA, $42 for loading into X memory

– $AA, $41 for loading into Y memory

b) The PC sends two data words to the DSP board containing the starting address where
the data is to be loaded and the number of words to be sent.

c) The PC sends the data words, which the DSP board loads into memory while
computing a checksum.

4. The DSP board answers by sending the command confirmation string #Ld followed by the
checksum of the loaded buffer.

5. The PC validates the checksum.

6. The PC sends a Run command: $AA, $20, and the start address of the program.

7. The DSP board acknowledges receiving the command by sending the string #Ok followed
by the start address supplied in the Run command.

Control is then transferred to the processing program which is responsible for sending the result buffers
back to the PC.

2.2 Communication Library Functions Overview
The SCOM (Serial COMmunication) communication library is written in C and designed to run under
Linux. It provides a set of low-level functions to perform the actual data transfer through the RS-232 serial
port of the workstation as well as some high-level functions to implement the command protocol. It was
designed to handle multiple DSP boards simultaneously, each identified by a special identifier called
‘serial device id’ (sdid).

Table 2. Command Confirmation Strings

Command String Subsequent Word

Reset #Ready —

Load #Ld Buffer checksum

Run #Ok Run address

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

All functions have a parameter sid of type (sdid *). The sdid structure is shown in Code Example 1:

Code Example 1. The sdid Structure
struct sdevid {

int fd;
struct termios oldtio;

};
typedef struct sdevid sdid;

fd - file descriptor associated with the serial device file
oldtio - structure holding the previous settings of the serial device

All functions return at least one error code. The error codes are listed in Table 3.

2.2.1 Low-Level Functions
The communications library includes a set of functions which perform the low-level operations associated
with serial I/O.

2.2.1.1 scom_init
— Initializes the serial port for:

• 8-bit mode

• 1 stop bit

• no parity

• communication speed of 115200 bps.

— Fills the sid structure with the appropriate device information
— Programs the serial device for buffered I/O.
— Sets a predefined time-out value for the receiver.

Table 3. SCOM Error Codes

Error code Description

ER_OK The operation was successful

ER_UNKNOWN Returned by scom_run when it does not receive the command
confirmation string

ER_PARM At least one argument passed to a function is invalid

ER_TOUT A time-out occurred before reading a specified number of bytes

ER_IO Returned by scom_write_buf when it fails to send the entire buffer

ER_SUM Received checksum is not the same as the computed one

ER_STX Syntax error is encountered in the LOD file

ER_DSP Attempt to reset the DSP board fails

ER_EXT Returned in all other cases. ER_EXT is a macro; the actual value
returned is (-_NO_OF_ERRS - errno)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Communication Library Functions Overview

Workstation-DSP Communication Protocol

Code Example 2. The scom_init Function
#include “scom.h”
err_t scom_init(const char *device, sdid *sid);

device - serial device file name (/dev/ttySx)
sid - serial device id

Error codes returned: ER_PARM, ER_EXT, ER_OK.

2.2.1.2 scom_shut_down
— Flushes the input and the output buffers of the serial device
— Closes the file descriptor associated with the serial device.

Code Example 3. The scom_shut_down Function
#include “scom.h”
err_t scom_shut_down(sdid *sid);

sid - serial device id

Error codes returned: ER_PARM, ER_EXT, ER_OK.

2.2.1.3 scom_write_buf
— Outputs the contents of a data buffer to the specified serial device

Code Example 4. The scom_write_buf Function
#include “scom.h”
err_t scom_write_buf(sdid *sid, u_int8_t *buf, size_t count);

sid - serial device id
buf - buffer of unsigned bytes
count - buffer size

Error codes returned: ER_IO, ER_EXT, ER_OK.

2.2.1.4 scom_read_buf
— Performs buffered input from the serial device until either count bytes are read or a time-out occurs.

Code Example 5. The scom_read_buf Function
#include “scom.h”
err_t scom_read_buf(sdid *sid, u_int8_t *buf, size_t count);

sid - serial device id
buf - buffer of unsigned bytes
count - buffer size

Error codes returned: ER_TOUT, ER_OK.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

2.2.1.5 mdps_get_error
— Returns the associated string to err_no error code.

Code Example 6. The mdsp_get_error Function
#include “mdspcom.h”
char *mdsp_get_error(err_t err_no);

err_no - error code

2.2.2 High-Level Functions

2.2.2.1 scsom_reset_dsp
— Resets the DSP board connected to the serial port designated by sid.

Code Example 7. The scom_reset_dsp Function
#include “scom.h”
err_t scom_reset_dsp(sdid *sid);

sid - serial device id

Error codes returned: ER_IO, ER_TOUT, ER_EXT, ER_DSP, ER_OK.

2.2.2.2 scsom_run
— Sends a run command to the DSP. The lower 24 bits of dsp_addr specify the starting address of the

code to be run.

Code Example 8. The scom_run Function
#include “scom.h”
err_t scom_run(sdid *sid, u_int32_t dsp_addr);

sid - serial device id
dsp_addr - address in DSP memory where to start the execution

Error codes returned: ER_IO, ER_TOUT, ER_EXT, ER_UNKNOWN.

2.2.2.3 scom_load_program
— Reads a LOD file containing a DSP executable code in hex format
— Loads all the program blocks into the DSP
— Issues a run command.
— Validates check sums returned from the DSP board.

Code Example 9. The scom_load_program Function
#include “scom.h”
err_t scom_load_program(sdid *sid, const char *pathn);

sid - serial device id
pathn - name of the file containing the DSP algorithm to be loaded

Error codes returned: ER_EXT, ER_STX, ER_PARM, ER_SUM, ER_IO, ER_TOUT, ER_OK.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Communication Library Functions Overview

The DSP56307 in a Distributed Environment

2.2.2.4 scom_write_dsp
— Downloads a buffer of 8-bit integers into DSP memory at the specified address in the P, X or Y

address space. count must be a multiple of three; each three-byte group is concatenated to form a 24-
bit word in DSP memory. The first byte in the group is the least significant.

Code Example 10. The scom_write_dsp Function
#include “scom.h”
err_t scom_write_dsp(sdid *sid, u_int8_t *buf, u_int32_t dsp_addr, u_int32_t count,
u_int8_t pm);

sid - serial device id
buf - buffer of unsigned bytes to load into the DSP memory
dsp_addr - address where to load the buffer
count - size of buffer
pm - a flag specifying the address space (P, X or Y memory).

Should contain one of the following values: PMEM, XMEM or YMEM.

Error codes returned: ER_EXT, ER_PARM, ER_SUM, ER_IO, ER_TOUT, ER_OK.

2.2.2.5 Helper Functions
The following two functions are referred to as ‘helper functions’ because they perform data conversion and
are used in conjunction with specific DSP algorithms. scom_write_data_dsp is used to load a buffer of
24-bit integers to the DSP data memory. It does so by ignoring the most significant 8 bits of every 32-bit
integer. scom_read_data_dsp is used to read a buffer of 24-bit words from the DSP. It stores each word
in a 32-bit signed integer, extending its sign bit to the 8 most significant bits of the 32-bit integer.

Code Example 11. The Helper Functions
#include “scom.h”
err_t scom_write_data_dsp(sdid *sid, int *buf, u_int32_t count, u_int8_t pm);
err_t scom_read_data_dsp(sdid *sid, int *buf, u_int32_t count);

sid - serial device id
buf - buffer of 32-bit integers of data
count - size of buffer
pm - a flag specifying the address space: XMEM or YMEM.

Error codes returned:
scom_write_data_dsp: ER_EXT, ER_PARM, ER_SUM, ER_IO, ER_TOUT, ER_OK.
scom_read_data_dsp: ER_TOUT, ER_OK.

3 The DSP56307 in a Distributed Environment
This section focuses on the implementation of the code running on the DSP56307 Evaluation Module
(DSP56307EVM) as the core of a distributed DSP system as described in Section 1. This code provides a
monitor-like interface to provide processing autonomy to the DSP and to facilitate as much as possible its
programming and command from higher-level user applications.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.1 General Description of the Monitor Program
The Monitor program is certainly one of the most important parts of the entire project. Its purpose is to
provide low-level communication routines for the DSP algorithms to use, as well as to implement the DSP
side of the binary command protocol described in Section 2. It was designed to be automatically loaded at
boot-time from on-board flash memory and to act as a command interpreter for commands sent by the
workstation computer. For details regarding the selection of the boot procedure required for stand-alone
operation, refer to the DSP56307EVM User’s Manual3. The Monitor program was written in the Atmel
AT29LV010A flash memory chip using the program ‘flash’ supplied with the DSP56307EVM kit.

One of the major concerns when writing the code for the Monitor program was to make it as small as
possible. The goal was to make it less than 256 words; the actual size of the code plus temporary storage is
251 words. It is loaded at boot-time at address P:$3E00, which is the last 256-word segment of on-chip
program memory in the default memory space configuration.

The Monitor program is composed of two main parts: one part receives commands and data from the
workstation and performs specific tasks. The other part carries out all DSP-to-workstation data transfers.
Flow diagrams of these parts are shown in Figure 3 and Figure 4.

Figure 3. Transmit Routine Flowchart

Yes
Send P ?

No

Transmit

Send P
memory Yes NoSend X ?

Send X
memory

Send Y
memory

RTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program Implementation on DSP56307

The DSP56307 in a Distributed Environment

Figure 4. Receive Routine Flowchart

3.2 Monitor Program Implementation on DSP56307
This section presents the source code for the Monitor program, including

• Symbolic constant definitions

• Initialization sequence

• Receive routine

• Load procedure

• Run Command procedure

• Transmit routine

Receive

Read
command byte

Yes NoReset ?

Reset DSP

Jump bootstrap

Exit
Load P ?

Yes No

Read block size
and address

Read
program address

Set up
return address

RTI

Load ?

Read block into
P memory Load X ?

Yes

Yes

No

No

Read block into
X memory

Read block into
Y memory

Send checksum

RTI

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.2.1 Definitions
The first portion of the Monitor program defines the code defining symbolic constants for the memory-
mapped registers. It also declares string constants, and reserves memory for data storage, both of which are
used in the command confirmation strings. This code is listed in Code Example 12.

Code Example 12. Monitor Program—Equates and Defines
M_IPR_P equ $FFFFFE
M_PCTL equ $FFFFFD
M_PCRE equ $FFFF9F
M_SCR equ $FFFF9C
M_SCCR equ $FFFF9B
M_SRxH equ $FFFF9A
M_SRxM equ $FFFF99
M_SRxL equ $FFFF98
M_STxH equ $FFFF97
M_STxM equ $FFFF96
M_STxL equ $FFFF95
M_SSR equ $FFFF93

ORG P:$3E00
JMP Init

SReset DCB ’eR#yda’
SRun DCB ’kO#’
SRAdr DS 1
SLoad DCB ’dL#’
SLAdr DS 1
R0Reg DS 1
Regs DS 7
LastReg DS 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program Implementation on DSP56307

The DSP56307 in a Distributed Environment

3.2.2 Initialization
After a soft reset, the main program begins with an initialization sequence, starting at the Init label. This
sequence consists of the following steps:

1. The IPL in the SR register is set to 2 and the IPL of the SCI is set to 2 to ensure that the SCI
Receive Data interrupt is not masked out.

2. The PLL is enabled with a factor of 8.4 (42/5) to yield a core frequency of 103.2192 MHz.

3. The SCI Receive Data interrupt handler is set by writing a “JSR Receive” at P:$50, which
is the address of the interrupt vector for the SCI Receive Data interrupt.

4. The entry point for the Transmit routine is written at address P:$54, which is the address of
the SCI Transmit Data interrupt vector. The SCI Transmit Data interrupt is not used, so it
is disabled and its interrupt vector is used for storage.

5. The communication parameters are set to 10-bit asynchronous mode, Transmit Interrupt
disabled, and Receive Interrupt enabled by writing $B02 to the memory-mapped SCI
Control Register (x:$FFFF9C).

6. SCI baud rate is set to 115200 by setting the SCCR Clock Divider to 13, which actually
means a divisor of 14.

After this set up is completed, the Monitor program sends the acknowledgement string “#Ready” to the
workstation computer and the DSP goes into the WAIT state until a SCI receive interrupt occurs.

The initialization sequence is listed in Code Example 13.

Code Example 13. Monitor Program—Initialization Sequence
Init

MOVEC #$C00200,SR ;Set IPL to 2
MOVEP X:M_IPR_P,A1
OR #$C0,A
MOVEP A1,X:M_IPR_P ;Set SCI IPL to 2
MOVEP #$460029,X:M_PCTL ;Set PLL factor to 8.4
MOVE #$50,R0
NOP
MOVE #$0BF080,A1
MOVEM A1,P:(R0)+

LRA Receive,A1
MOVEM A1,P:(R0) ;Set up receive interrupt vector
MOVE #$54,R0
LRA Transmit,A1
MOVEM A1,P:(R0) ;Set transmit entry point
MOVEP #$0B02,X:M_SCR ;Set up SCI communication parameters
MOVEP #13,X:M_SCCR ;Set SCI baud rate
MOVEP #7,X:M_PCRE ;Enable Rx,Tx and SCLK pins for SCI
MOVE #4,A2
LRA SReset,R0
MOVE #2,A0
JSR Transmit

_Loop
WAIT
JMP _Loop

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.2.3 Receive Routine
When the SCI receives a byte, it generates a SCI Receive Interrupt, which wakes the DSP from the WAIT
state. Program execution resumes by servicing the pending interrupt. The Receive Data interrupt handling
routine saves all the registers used by the routine and restores them upon exiting the routine.

After saving the registers to memory, the Monitor program reads the received byte from the lower 8 bits of
the SCI Receive Data Register, memory mapped at address $X:FFFF98. If this byte is equal to $AA, a new
command is being issued by the workstation and the Monitor program waits to read more bytes according
to the protocol. If the received byte is not equal to $AA, the routine restores the saved registers and exits,
and the DSP resumes the WAIT state. Once the $AA byte is received, the Receive Data Interrupt handling
routine does not exit until the current command is fully processed.

The next received byte after the initial $AA is the command byte, illustrated in Figure 2 on page 4. Note
that although the encoding scheme makes it possible to issue multiple commands in the same command
byte, this is not permitted in the protocol. If more than one command bit is set, the command
corresponding to the most significant bit set executed. For example, if the Reset bit is set, other command
bits are ignored. If no command bit is set, the Run command is assumed.

Bits 0–2 of the command byte are ignored and for the Reset and the Run commands. For the Load
command, these bits they are checked in the following order: P, X and Y; if none of these bits is set, Y is
assumed. Refer to the receive routine flowchart in Figure 4 on page 11.

In response to the Reset command, the routine issues a soft reset by writing the default boot-time values to
the SR, SC, SP and OMR registers and jumping to the bootstrap code at P:$FF0000. The default setting for
the MD, MC, MB and MA bits in the COM register is assumed to be 1001b, meaning boot from byte-wide
memory. The bootstrap code then reloads the Monitor program from the flash memory and runs the main
program starting at Init label. This code sets up of the DSP board and sends the #Ready command
confirmation string, indicating that the Reset was successful.

The receive routine is listed in Code Example 14.

Code Example 14. Monitor Program—Receive Routine
Receive

MOVEM R0,P:R0Reg
LRA Regs,R0
MOVEM M0,P:(LastReg)
MOVE #$FFFFFF,M0
MOVEM R1,P:(R0)+
MOVEM A2,P:(R0)+
MOVEM A1,P:(R0)+
MOVEM A0,P:(R0)+
MOVEM B2,P:(R0)+
MOVEM B1,P:(R0)+
MOVEM B0,P:(R0) ;Save regs
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,A1
MOVE #0,A0
MOVE #0,A2
CMP #$AA,A
JNE _End
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,A2 ;Read command byte
NOP
JCLR #7,A2,_LoadOrRun
RESET ;DSP Reset
MOVEC #0,SP
MOVEC #0,SC
MOVEC #$C00300,SR
MOVEC #$000309,OMR
JMP $FF0000 ;Jump to bootstrap

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program Implementation on DSP56307

The DSP56307 in a Distributed Environment

3.2.4 Load Procedure
As described in Section 2, the Load procedure downloads the number of 24-bit data words specified in the
command protocol. This is accomplished by simply moving the received bytes to the B1 register and then
right-shifting the B register. After completing a cycle of three moves and three shifts, B0 holds the
resulting 24-bit word, which is moved to P, X or Y memory according to the command protocol. After
each cycle, the content of the B register is added to the A register. At the end of the transfer, A0 holds the
checksum of the received buffer, which is then sent back to the workstation where it is validated. The
checksum is prefixed by the command confirmation string #Ld.

The Load procedure is listed in Code Example 15.

Code Example 15. Monitor Program—Load Procedure
_LoadOrRun

JCLR #6,A2,_Run
DO #6,_Loop1
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,B2
ASR #8,B,B

_Loop1 ;Read address and block size
NOP
MOVE B0,R0
MOVE #0,A0
MOVE B0,R1 ;Save start address
JCLR #2,A2,_LoadXY
DO B1,_Loop2
DO #3,_Loop21
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,B1
ASR #8,B,B

_Loop21
NOP
MOVEM B0,P:(R0)+
ADD B,A

_Loop2 ;Read block into P memory
JMP _SendCRC

_LoadXY
JCLR #1,A2,_LoadY
DO B1,_Loop3
DO #3,_Loop31
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,B1
ASR #8,B,B

_Loop31
NOP
MOVE B0,X:(R0)+
ADD B,A

_Loop3 ;Read block into X memory
JMP _SendCRC

_LoadY
DO B1,_Loop4
DO #3,_Loop41
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,B1
ASR #8,B,B

_Loop41
NOP
MOVE B0,Y:(R0)+
ADD B,A

_Loop4 ;Read block into Y memory
JMP _SendCRC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.2.5 Run Command Procedure
The Run Command procedure is implemented as follows.

1. The DSP receives the Run command, followed by the start address of the program to run.

2. The DSP sends back the command confirmation string “#Ok” followed by the received
address.

3. The address is pushed onto the upper half of the stack (SSH).

4. A value of $C00200 is pushed to the lower half of the stack (SSL).

5. Execution continues until the end of the Receive routine, where a RTI instruction is issued.

The RTI instruction loads the PC register with the address at which execution is to resume from the SSH
register, which contains the value sent by the Run command. The RTI also loads the SR from SSL, which
contains the value $C00200. This sets the core priority level to 3 and the interrupt priority level to 2, which
enables the Monitor program to continue to receive and execute commands, interrupting the running
algorithm. This ability is very useful for interrupting a lengthy operation to perform a less time-consuming
function.

The Run Command procedure is listed in Code Example 16.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program Implementation on DSP56307

The DSP56307 in a Distributed Environment

Code Example 16. Monitor Program—Run Command Procedure
_Run

JCLR #5,A2,_End
DO #3,_Loop5
JCLR #2,X:M_SSR,*
MOVEP X:M_SRxL,A2
ASR #8,A,A

_Loop5 ;Read address
NOP
LRA SRAdr,R0
MOVE A1,R1
MOVE #4,A2
MOVEM R1,P:(R0)-
MOVE #2,A0
JSR Transmit
MOVEC R1,SSH
MOVE #$C00200,A0
MOVEC A0,SSL ;Set up return address
JMP _End

_SendCRC
LRA SLAdr,R0
MOVE #4,A2
NOP
MOVEM A0,P:(R0)-
MOVE #2,A0
JSR Transmit
JMP _End

_End
LRA Regs,R0
NOP
NOP
MOVEM P:(R0)+,R1
MOVEM P:(R0)+,A2
MOVEM P:(R0)+,A1
MOVEM P:(R0)+,A0
MOVEM P:(R0)+,B2
MOVEM P:(R0)+,B1
MOVEM P:(R0)+,B0
MOVEM P:(R0),M0
MOVEM P:R0Reg,R0 ;Restore regs
RTI ;Return from interrupt

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

3.2.6 Transmit Routine
The Monitor program also provides a low-level Transmit routine which DSP algorithms can use to send
back results. Its use is simple and straightforward:

1. A memory address space code is written to A2 register:

— #4 for P memory

— #2 for X memory

— #1 for Y memory

2. The size of the buffer is written to the A0 register.

3. The starting address of the buffer is written to the R0 register.

4. A JSR is performed to the address stored at P:$54.

Again, if none of the memory spaces is specified, the 3 least significant bits of A2 are cleared, and Y
memory space is assumed. Refer to the flowchart in Figure 3 on page 10.

The Transmit routine is listed in Code Example 17.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Monitor Program Implementation on DSP56307

The DSP56307 in a Distributed Environment

Code Example 17. Monitor Program—Transmit Routine
; Transmit: sends a buffer through the SCI to the host computer
; A2 <- 4 - send buffer from P memory
; A2 <- 2 - send buffer from X memory
; A2 <- 1 - send buffer from Y memory
; A0 <- number of 24 bit words to send
; R0 <- start address of buffer

Transmit
JCLR #2,A2,_SaveXY
DO A0,_LoopT1
JCLR #1,X:M_SSR,*
MOVEP P:(R0),X:M_STxL
JCLR #1,X:M_SSR,*
MOVEP P:(R0),X:M_STxM
JCLR #1,X:M_SSR,*
MOVEP P:(R0)+,X:M_STxH
NOP

_LoopT1 ;Save P memory
JMP _EndT

_SaveXY
JCLR #1,A2,_SaveY
DO A0,_LoopT2
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP X:(R0),X:M_STxL
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP X:(R0),X:M_STxM
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP X:(R0)+,X:M_STxH
NOP

_LoopT2 ;Save X memory
JMP _EndT

_SaveY
DO A0,_LoopT3
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP Y:(R0),X:M_STxL
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP Y:(R0),X:M_STxM
NOP
NOP
JCLR #1,X:M_SSR,*
MOVEP Y:(R0)+,X:M_STxH
NOP

_LoopT3 ;Save Y memory

_EndT
RTS ;Return from subroutine

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

4 Case Study
As a case study, a distributed digital signal processing system was developed using two personal
computers interconnected with a TCP/IP-based Ethernet, both running the KHOROS software package
from Khoral Research, Incorporated, on the Linux platform. The core of the system is the DSP56307
Evaluation Module, which performs all the DSP-specific operations initiated by the remote station, which
is the controlling computer.

This section describes the architecture of the case study system, lists two DSP algorithms to be run in the
system, presents an overview of the KHOROS software, and shows how the KHOROS software is used to
implement one of the DSP algorithms in the system.

4.1 General Architecture
The general architecture of the proposed system is similar to the distributed computing generic architecture
presented in Section 1 and is illustrated in Figure 5.

Figure 5. Architecture of the Proposed System

The system has three main components: a controlling computer, a workstation, and a DSP56307
Evaluation Module.

4.1.1 Controlling Computer
The controlling computer is a special kind of workstation that controls overall system operation. It’s
functions include

• Assisting the user in implementing the desired DSP network

• Controlling the distribution of tasks among the various processors

• Gathering and presenting the final results.

The system requirements for the controlling computer include:

• The Linux operating system

• An Ethernet interface, running TCP/IP protocol

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

General Architecture

Case Study

• The KHOROS package, installed and configured

• The Cantata component of the KHOROS package, installed and configured

• A custom-designed ‘glyph’ toolbox created in Cantata which implements and distributes the DSP
algorithms to be run on the DSP-based board.

The Cantata application is a highly interactive graphic environment which uses a building block called a
‘glyph’ (see Section 4.3.2 on page 25). On the controlling computer, Cantata is used to build a ‘DSP
Network’ to implement DSP algorithms. This network uses signal processing glyphs provided by the
KHOROS standard distribution package as well as specialized glyphs which are custom-designed to run
corresponding DSP algorithms on the DSP-based board. These specialized glyphs can be grouped in a
custom toolbox which Cantata can use to build, run, and control the particular DSP algorithms needed in
distributed applications.

NOTE:
In this document, a ‘software object’ refers to a program that performs data
processing, while a ‘glyph’ is a graphical representation of a software
object in Cantata. For simplicity, these terms are used interchangeably.

A basic custom toolbox called ‘Freescale EVM’ was developed for this case study. It contains two
demonstration glyphs—kmsum, a simple adder of two input signals, and kmfft, a simple 256-point FFT.
The two glyphs can be used to run the corresponding algorithms directly on the system’s Freescale DSP
board in a distributed manner, over the Ethernet.

When the DSP network on the controlling computer is launched under Cantata, it processes the
corresponding data flow diagram. When a local glyph is activated, it launches the corresponding
procedures on the controlling computer’s own processor. If the data flow on the DSP Network reaches one
of the glyphs that implements a DSP algorithm on the Freescale EVM, the KHOROS system on the
controlling computer sends an execution command along with input parameters and data to the
corresponding workstation through the Ethernet and waits for the processing results to be returned from the
DSP. The received results are further used by the implemented DSP network.

The fact that some algorithms in a specific DSP network are executed by other components of the overall
system is transparent to the user.

4.1.2 Workstation
The primary function of the workstation in the proposed distributed DSP system is to serve as a remote
interface between the controlling computer’s DSP network implemented under the Cantata application and
the DSP-based board, where the actual signal processing algorithms are executed in distributed manner.

The system requirements for the workstation include:

• The LINUX operating system

• An Ethernet interface for communicating with the controlling computer

• The KHOROS package, installed and configured, to interpret the specific commands and input data
issued by the controlling computer under Cantata and received on the DSP network

• A custom-designed glyph toolbox for Cantata, implementing DSP algorithms to be run on the DSP-
based board in distributed manner. This is the same toolbox implemented on the controlling
computer

• A communication library implemented on the LINUX platform for direct interconnection with the
corresponding DSP-based board.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

The workstation communicates with the DSP-based board through its standard PC asynchronous serial
interface, which can exchange data at rates up to 115200 bps. The primary reason for using this port is that
it can connect to the SCI port on the Freescale EVM, as described in Section 1.2 on page 2. Serial program
and data communication with the DSP is implemented on the host workstation as a library of C-callable
functions on UNIX-like platforms.

When execution of the DSP network on the controlling computer reaches one of the ‘remote DSP glyphs’
it issues a specific command to the workstation, and the routine that implements the corresponding glyph is
launched. The primary actions performed by this routine include the following:

• Receive additional input data, if any

• Load the input data and parameters into the DSP through the serial data link

• Load the object code for the specific DSP routine into the DSP

• Wait for the results from the DSP

• Send the results back to the controlling computer.

4.1.3 DSP-Based Board
The Freescale DSP563xx Evaluation Modules (EVM) was selected as the DSP hardware core of the
distributed system. It uses an on-board standard serial communication interface (SCI port) to communicate
with the host workstation, using the Monitor program described in Section 3 on page 9.

The actual DSP routines to be run on the EVM resides on the host workstation in the ‘.lod’ loadable object
code format. They are loaded into the DSP along with additional input data and parameters by the
corresponding glyph routines on the host machine.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP Algorithms

Case Study

4.2 DSP Algorithms
Each of the two DSP algorithms in our case study, the adder and the FFT, starts with all input data already
loaded into memory on the DSP board. Each algorithm processes the data and calls the Transmit routine in
the Monitor program to send the results back to the workstation.

4.2.1 Adder Algorithm
This algorithm starts with two data buffers in X and Y memory spaces starting at address 1. Address 0 in
both X and Y memory hold its respective buffer size. The algorithm performs an in-place sum of the two
signals, using the larger buffer as a destination.

Code Example 18. Adder Algorithm Source Code (kmsum.asm)
org x:0

XLength ds 1

org y:0
YLength ds 1

org P:$100

Start
move #1,R0
move x:XLength,A
move y:YLength,B
cmp B,A
jgt _XSum
do A1,_Loop1
move x:(R0),A
move y:(R0),B
add B,A
move A1,y:(R0)+

_Loop1
move #1,A2
move y:YLength,A0
jmp _Send

_XSum
do B1,_Loop2
move x:(R0),A
move y:(R0),B
add B,A
move A1,x:(R0)+

_Loop2
move #2,A2
move X:XLength,A0

_Send
move #$54,R0
move p:(R0),R1
move #1,R0
jsr (R1)
rts

End

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

4.2.2 FFT Algorithm
This algorithm calls the FFTR2CN macro (© Motorola, Inc.) to perform the actual FFT.

Code Example 19. FFT Algorithm Source Code (kmfft.asm)
include ’sincos’
include ’bitrev’
include ’fftr2cn’

NoOfPoints equ 256
AddrOfInput equ 1
AddrOfCoefs equ 4096
AddrOfOutput equ 1024

org x:0
XLength ds 1

org y:0
YLength ds 1

sincos NoOfPoints,AddrOfCoefs

org P:$100
Start

fftr2cn NoOfPoints,AddrOfInput,AddrOfOutput,AddrOfCoefs
_Send

move #$FFFFFF,M0
move #$54,R0
move p:(R0),R1
move #AddrOfOutput,R0
move #NoOfPoints,A0
move #2,A2
jsr (R1)
move #AddrOfOutput,R0
move #1,A2
jsr (R1)
rts

End

4.3 The KHOROS Environment
The KHOROS software package from Khoral Research is an advanced and complete digital signal
processing and scientific software integration and development environment, featuring advanced inter-
process and distributed computing support. KHOROS originated as a research project at the University of
New Mexico. The first release of the KHOROS system, KHOROS 1.0 Beta, was made available via
anonymous FTP in October, 1990 [6].

The goal of the KHOROS software is to provide a complete application development environment that
redefines the software engineering process to include all members of the project group, from the
application end-user to the infrastructure programmer [6].

4.3.1 Cantata
The primary component of KHOROS is its visual design and simulation tool, called Cantata, a data flow
visual language integrated in a powerful visual programming environment. It is extremely useful for
developing and testing DSP algorithms in a very intuitive manner. Cantata enables a user to visually design
a graphical data flow structure called a ‘DSP network’, assign nodes of the DSP network to the various
computers on the network, and simulate the network while taking care of the various synchronization
issues involved. A screen capture of a DSP network is shown in Figure 6.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

The KHOROS Environment

Case Study

Figure 6. Example of a Cantata Screen Layout

4.3.2 The Glyph
The building block of the DSP network is the ‘glyph’. A glyph is a visual representation of a process which
runs on either a local or remote machine and performs a specific task such as the generation of a signal,
processing of a previously generated set of signals, visualization of signals, etc. These fundamental
construction blocks can be linked together in various ways to form the desired DSP network.

A glyph can best be viewed as a ‘black-box’, with inputs, outputs, and other specific controls, as illustrated
in Figure 7.

Figure 7. Glyph Layout and Components

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

There are three basic types of glyphs used in a typical DSP network:

• Input glyphs—input procedures and programs such as signal generators or data import nodes

• Data processing glyphs—procedures that implement a large variety of algorithms

• Output glyphs—used for visualization or storage of results.

4.3.3 Toolboxes
The various types of glyphs can be grouped together in a ‘toolbox’ to clarify the way in which they are
organized. A toolbox can be regarded as a collections of related ‘software objects’ as they are referred to in
KHOROS terminology. The purpose of a toolbox is to facilitate domain-specific work while
simultaneously enabling cross-domain collaboration [6]. Users can define their own toolboxes containing
their own software objects, in relation to or based on others if desired. There is a one-to-one
correspondence between software objects in a toolbox and their graphical representations as glyphs.

4.3.4 Software Objects
Software objects can be of several types, including the following:

• Kroutines—non-interactive programs which read their data from a standard input, process the data
and write results to a standard output. Every aspect of their execution is determined before running
the program, and once the execution has begun, users have no means of intervening. An example
of a Kroutine could be a data processing glyph or an input glyph.

• XVroutines—interactive, graphical programs. Interaction with XVroutines is achieved by means of
a standardized set of graphical user interface elements, provided by KHOROS. An example of a
typical XVroutine is a visualization glyph.

• Libraries—collections of routines that can be called from within other software objects. These
routines can be LKroutines, public functions and private functions [11]. Refer to the Advanced
KHOROS Manuals for a more detailed description.

4.3.5 Development Tools
In addition to designing and simulating custom DSP networks, KHOROS provides a set of very powerful
software development tools which allows full access to the KHOROS core. Programmers can conveniently
design and implement their own software objects or libraries, group them into custom toolboxes, or extend
the existing ones.

Two of the most important development tools are ‘Craftsman’ and ‘Composer.’ Their purpose is to assist
the programmer in every phase of the software development process by automating specific tasks. Another
very important tool is the ‘Graphical User Interface Specification Editor’ or GUISE. This tool allows the
programmer to visually design the user interface component of a software object.

4.3.6 Data Structure
KHOROS uses a unified data structure model to implement all of its procedures, thus providing
comprehensive support for a very large set of real-life applications. This model, called a ‘polymorphic data
model,’ is based on the premise that data in DSP applications is generated either to model, or acquired
from, real-world phenomena, and consequently is suitable for these purposes [9]. Polymorphic data is
composed of five so-called ‘segments,’ including VALUE, LOCATION, TIME, MASK and MAP.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Using the KHOROS Software

Case Study

The primary segment is the VALUE segment, in which the actual data is stored as a time-series of volumes
in space [9]. The VALUE segment has five dimensions—three positional coordinates, a time coordinate,
and an ‘element,’ which is the size (number of components) of one point in space-time, as illustrated in
Figure 8. VALUE data can be given explicit positioning in space and time with the LOCATION and TIME
segments.

Figure 8. Structure of the VALUE Segment

The MASK and MAP segments are provided for convenience. The MASK segment is used to mark the
validity of each point of VALUE data. The MAP segment is provided as an extension to the VALUE data;
VALUE data can be used to index into the MAP data [9].

4.4 Using the KHOROS Software
This section illustrates how the KHOROS software is used to incorporate a DSP algorithm into a software
object which KHOROS can use to implement the algorithm in a distributed processing network. The
general steps involved in creating a KHOROS software object include the following:

• Create a new toolbox or open an existing one using the Craftsman tool.

• Create the new software object using the Composer tool.

• Design the user interface for the created software object, using either Ghostwriter for a command
line interface or GUISE for a graphical interface.

The adder algorithm is used to illustrate the process of building the glyphs and toolboxes KHOROS uses to
implement a distributed processing system.

4.4.1 Building a Toolbox
Before a glyph can be created in KHOROS, the user must first configure a toolbox in which it will reside.
The Craftsman tool is used either to modify a predefined toolbox or to create a new toolbox. For the case
study, a new toolbox called ‘MotorolaEVM’ was created to contain all the data processing glyphs that
make use of the Freescale evaluation modules. The creation of a toolbox is quite straightforward and is
described in the KHOROS manuals.

4.4.2 Adding a Glyph to a Toolbox
Adding software objects to a toolbox is also straightforward thanks to Composer. This tool features a C
code editor, plus predefined operators and data structures which can be used to create the software object.
If the user wishes to write custom code to create the object, Composer can be configured to generate just a

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

‘skeleton’ C code file to which the user can add the C statements needed to completely define all the object
functions. The code written by the user inside the skeleton file is placed between a corresponding pair of
special tags.

In this case study, two glyphs were added to the MotorolaEVM toolbox, kmsum and kmfft. The following
paragraphs describe implementing kmsum to illustrate the process.

4.4.2.1 Defining the Glyph Tasks
The kmsum Kroutine must perform the following tasks:

• Open its two inputs and one output

• Initialize communication with the attached DSP evaluation board (local or remote)

• Send data from the two inputs to the X and Y data memory on the DSP board

• Download the adder software routine to the DSP board

• Run the adder software

• Receive the results from the DSP board

• Write these results to the output

• Close the inputs and output and perform any other required cleanup tasks.

4.4.2.2 Creating a Directory Structure
The KHOROS software automatically creates the directory structure it requires. In our case study, the
following directories were created within the ~/freescale/objects/ directory:

• kroutine/—the directory in which all Kroutines (source code) of the current toolbox are stored

• kroutine/kmsum—the root of the Kroutine in this toolbox

• kroutine/kmsum/src—contains the actual source code of the software object

• kroutine/kmsum/uis—contains the User Interface Specification (UIS) of the software object

• kroutine/kmsum/help
kroutine/kmsum/man
vtkroutine/kmsum/html—contain manual pages and help files for the software object

The skeleton files for all of these directories are automatically generated by Craftsman.

4.4.3 Defining the Glyph User Interface
After a glyph has been added to a toolbox, a User Interface Specification (UIS) must be constructed. The
UIS defines all the interaction between the user and the software object. For the kmsum software object,
which is a non-interactive Kroutine, this interaction is limited to setting the command line parameters to
the object code, inputs, output, and flags before the routine is run. For a command line type of interface,
the Ghostwriter tool is used to create the UIS. If a graphical user interface is needed instead, the GUISE
application assists in the GUI design. Both tools generate code inside the software object skeleton file that
was created in Composer. User-written code in the skeleton file is enclosed in special comment fields
called ‘tags’ to prevent it from being altered. The most commonly used tags are summarized in Table 4.
The last three sets of tags are not required; they are used to clarify the organization of the user code.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Using the KHOROS Software

Case Study

When a Kroutine is created in Composer, one input field and one output field are defined by default. The
kmsum Kroutine requires one additional input and a communications port to which the evaluation module
is connected (either locally or to a remote workstation). For the case study, these elements were added
using the GUISE program and the GUI it generates.

When GUISE is started, two dialog boxes appear. One is the graphical user interface for the software
object, which is called a ‘pane,’ and the other is a form on which to make changes to the pane. The form
was used to add a second input for the second signal source as well as an additional ‘String Selection’
control with a default value of /dev/ttyS1’ (the second serial device on a standard PC). Figure 9 shows the
pane for kmsum after these additions.

Figure 9. Final Pane for kmsum

The final source code of the adder glyph is listed in Code Example 20. Due to the length of the code, only
the main C file, kmsum.c, is listed.

Table 4. User Code Tags in Skeleton File

Tags Denotes

/* -main_variable_list */
/* -main_variable_list_end */

Program variables

/* -main_get_args_call */
/* -main_get_args_call_end */

Call to a special function which initializes the UIS, the structure containing the
input parameters / command line arguments of the program.

/* -main_before_lib_call */
/* -main_before_lib_call_end */

Initialization code

/* -main_library_call */
/* -main_library_call_end */

Code that performs actual processing

/* -main_after_lib_call */
/* -main_after_lib_call_end */

Cleanup code

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

Code Example 20. Final Source Code of the Adder Glyph, kmsum.c
/*
 * KHOROS: Id
 */

#if !defined(__lint) && !defined(__CODECENTER__)
static char rcsid[] = “KHOROS: Id”;
#endif

/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<
 >>>>
 >>>> Main program for kmsum
 >>>>
 >>>> Private:
 >>>> main
 >>>>
 >>>> Static:
 >>>> Public:
 >>>>
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<< */

#include “kmsum.h”

clui_info_struct *clui_info = NULL;

/*---
|
| Routine Name: main() - Output is the sum of two inputs
|
| Purpose: main program for kmsum
|
| Input:
| char *clui_info->i1_file; {First Input data object}
| int clui_info->i1_flag; {TRUE if -i1 specified}
|
| char *clui_info->i2_file; {Second Input data object}
| int clui_info->i2_flag; {TRUE if -i2 specified}
|
| char *clui_info->o_file; {Resulting output data object}
| int clui_info->o_flag; {TRUE if -o specified}
|
| char *clui_info->commport_string; {Communications Port for the EVM}
| int clui_info->commport_flag; {TRUE if -commport specified}
|
| Output:
| Returns:
|
| Written By: Adrian Trifu
| Date: May 10, 2000
| Modifications:
|
--*/

int main(
 int argc,
 char **argv)
{

/* -main_variable_list */

 char *lib = “kmsum”, *rtn = “main”;
 kobject inobj1 = NULL; /* The inputs and the output are represented by */
 kobject inobj2 = NULL; /* kobjects - data structures identifying polymorphic */
 kobject outobj = NULL; /* data sets (see Section 4.3, "The KHOROS */

/* Environment"). Every I/O operation on polymorphic */
/* data is done on these objects. */

 kaddr inbuf1 = NULL; /* The only reason for having two separate */
 kaddr inbuf2 = NULL; /* input buffers is to make the source code */

/* easier to understand. */

 u_int32_t w1, w2, h, d, t, e, max; /* Used in determining the input’s size. */
 sdid did; /* Device ID for the communications library. */
 err_t res; /* Return code. */
 char *lodpathname = NULL;

/* -main_variable_list_end */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Using the KHOROS Software

Case Study

KHOROS_init(argc, argv, “FREESCALE”, PRODUCT_RELEASE_DATE,
 PRODUCT_RELEASE_NAME, PRODUCT_RELEASE_VERSION,
 PRODUCT_RELEASE_MAJOR, PRODUCT_RELEASE_MINOR,
 “$FREESCALE/objects/kroutine/kmsum”);
kexit_handler(kmsum_free_args, NULL);

/* -main_get_args_call */
kclui_init(“FREESCALE”, “kmsum”, KGEN_KROUTINE, &clui_uis_spec,

 kmsum_usage_additions, kmsum_get_args,
 kmsum_free_args);

/* -main_get_args_call_end */

/* -main_before_lib_call */ /* Open the input and output objects, using */
/* kpds_open_input_object() and */
/* kpds_open_output_object(), which are part */
/* of the KHOROS Polymorphic Data Services. */
/* Note that error reporting is done via
/* specialized methods because errors */
/* are most often reported graphically */
/* inside Cantata, although they can also be */
/* reported to stderr when the kroutine is */
/* run in command-line. */

 if ((inobj1 = kpds_open_input_object(clui_info->i1_file)) == KOBJECT_INVALID) {
kerror(lib, rtn, “Cannot open input object %s.\n”, clui_info->i1_file);
kexit(KEXIT_FAILURE);

 }
 if ((inobj2 = kpds_open_input_object(clui_info->i2_file)) == KOBJECT_INVALID) {

kerror(lib, rtn, “Cannot open input object %s.\n”, clui_info->i2_file);
kexit(KEXIT_FAILURE);

 }
 if ((outobj = kpds_open_output_object(clui_info->o_file)) == KOBJECT_INVALID) {

kerror(lib, rtn, “Cannot open output object %s.\n”, clui_info->o_file);
kexit(KEXIT_FAILURE);

 }

/* Set the input data type to integer. This is */
/* only the type in which data is read, NOT the */
/* type of the actual data. All type */
/* conversions are made automatically by the */
/* read/write functions. */

 kpds_set_attribute(inobj1, KPDS_VALUE_DATA_TYPE, KINT);
 kpds_set_attribute(inobj2, KPDS_VALUE_DATA_TYPE, KINT);

 /* To determine how much data must be processed */
/* (taking into account that the two inputs can
/* have different lengths), the greater of */
/* the two sizes is taken as the size of the output. */

kpds_get_attribute(inobj1, KPDS_VALUE_SIZE, &w1, &h, &d, &t, &e);
kpds_get_attribute(inobj2, KPDS_VALUE_SIZE, &w2, &h, &d, &t, &e);
max = (w1 > w2)? w1 : w2;

/* Finally, create the value segment in the output */
/* object and set its dimensions according to the */
/* maximum value determined earlier. The input and */
/* output objects are now ready to be used. */

kpds_create_value(outobj);
kpds_set_attribute(outobj, KPDS_VALUE_SIZE, max, 1, 1, 1, 1);
kpds_set_attribute(outobj, KPDS_VALUE_DATA_TYPE, KINT);

/* Before moving on to the next pair of tags, the */
/* the serial communication must be initialized with */
/* the evaluation board. This is done with a call to */
/* scom_init(), part of the communications library which
/* is described in Chapter 2. */
/* For simplicity it is assumed that the size of the */
/* inputs does not exceed the size of the X and Y */
/* memories. Otherwise, the data would have to be*/
/* tested and eventually sent in “slices”. However, */
/* this is not relevant, to our discussion. */

res = scom_init(clui_info->commport_string, &did);
if (res != ER_OK) {

kerror(lib, rtn, “Error in scom_init(). Invalid tty specified.\n”);
kexit(KEXIT_FAILURE);

}

/* -main_before_lib_call_end */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

/* -main_library_call */
/* Read the input data into the two defined buffers. */

if ((inbuf1 = kpds_get_data(inobj1, KPDS_VALUE_ALL, NULL)) == NULL) {
kerror(lib, rtn, “Error reading input object %s\n”, clui_info->i1_file);
kexit(KEXIT_FAILURE);

}
if ((inbuf2 = kpds_get_data(inobj2, KPDS_VALUE_ALL, NULL)) == NULL) {

kerror(lib, rtn, “Error reading input object %s\n”, clui_info->i2_file);
kexit(KEXIT_FAILURE);

}

/* Send the data from the input buffers to the */
/* the DSP X: and Y: memory spaces respectively. */

res = scom_write_data_dsp(&did, (int *)inbuf1, (u_int32_t)w1, XMEM);
if (res != ER_OK) {

kerror(lib, rtn, “Error %d writing X memory: %s\n”, res, mdsp_get_error(res));
kexit(KEXIT_FAILURE);

}

res = scom_write_data_dsp(&did, (int *)inbuf2, (u_int32_t)w2, YMEM);
if (res != ER_OK) {

kerror(lib, rtn, “Error %d writing Y memory: %s\n”, res, mdsp_get_error(res));
kexit(KEXIT_FAILURE);

}

/* Load the object code of the actual DSP routine to be */
/* currently executed on the DSP56307. */
/* For simplicity, the code to synchronize the */
/* execution on the DSP side with the execution */
/* on the PC side has been omitted. In this simple */
/* case the sync code is not even necessary since */
/* the time-out value in the read_data_dsp() function */
/* is much larger than the amount of time taken to do */
/* the actual calculations on the DSP. */

lodpathname = kfullpath(“kmsum.lod”, “$MOTOROLABIN”, NULL);
res = scom_load_program(&did, lodpathname);
if (res != ER_OK) {

kerror(lib, rtn, “Error %d loading program: %s\n”, res, mdsp_get_error(res));
kexit(KEXIT_FAILURE);

}

/* Receive the resulting signal from the DSP and write */
/* it into the output object, using kpds_put_data(), */
/* part of the KHOROS Polymorphic Data Services. */

res = scom_read_data_dsp(&did, (int *)inbuf1, max);
if (res != ER_OK) {

kerror(lib, rtn, “Error %d reading from DSP: %s\n”, res, mdsp_get_error(res));
kexit(KEXIT_FAILURE);

}

if (kpds_put_data(outobj, KPDS_VALUE_ALL, (kaddr)inbuf1) == FALSE) {
kerror(lib, rtn, “Error writing to output object %s\n”, clui_info->o_file);
kexit(KEXIT_FAILURE);

}

/* -main_library_call_end */

/* -main_after_lib_call */
/* Finally, close all the open kobjects, shut down */
/* communications and do other cleanup tasks. */

scom_shut_down(&did);

if (!kpds_set_attribute(outobj, KPDS_HISTORY, kpds_history_string())) {
kerror(lib,rtn,”Unable to set history on destination object”);
kexit(KEXIT_FAILURE);

}

kpds_close_object(inobj1);
 kpds_close_object(inobj2);

kpds_close_object(outobj);
if (lodpathname) kfree_and_NULL(lodpathname);

/* -main_after_lib_call_end */
/* Execution of the glyph ends here and data is */
/* available to the next node in the dataflow chain. */

kexit(KEXIT_SUCCESS);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Using the KHOROS Software

Case Study

}
/* Additional routines needed by the "kmsum" glyph: */

/*---
|
| Routine Name: kmsum_usage_additions
|
| Purpose: Prints usage additions in kmsum_usage routine
|
| Input: None
|
| Output: None
| Written By: ghostwriter -oname kmsum
| Date: July 1, 1997
| Modifications:
|
--*/
void kmsum_usage_additions(void)
{

kfprintf(kstderr, “\tOutput is the sum of two inputs\n”);

/* -usage_additions */
/* -usage_additions_end */

}

/*---
|
| Routine Name: kmsum_free_args
|
| Purpose: Frees CLUI struct allocated in kmsum_get_args()
|
| Input: None
|
| Output: None
| Written By: ghostwriter -oname kmsum
| Date: July 1, 1997
| Modifications:
|
--*/
/* ARGSUSED */
void
kmsum_free_args(
 kexit_status status,
 kaddr client_data)
{

/* do the wild and free thing */
if (clui_info != NULL)
{

kfree_and_NULL(clui_info->i1_file);
kfree_and_NULL(clui_info->i2_file);
kfree_and_NULL(clui_info->o_file);
kfree_and_NULL(clui_info->commport_string);
kfree_and_NULL(clui_info);

}

/* -free_handler_additions */
/* -free_handler_additions_end */
}

This simple source code can be regarded as a general skeleton of any software object that uses Freescale
EVMs to process data. The basic steps to be taken are exactly the same, no matter how complex the
software object is. For example, a Freescale EVM-based data acquisition glyph can be added which brings
real-world signals to KHOROS for further analysis and processing.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

5 Conclusion
This paper provides a general framework for integrating Freescale DSP563xx-based boards in distributed
digital data acquisition and processing systems, with special focus on the data communication between the
DSP-based board and the host workstation.

A specific communication protocol was developed using the asynchronous serial interface, able to transact
data up to 115200 bps. To improve the autonomy of the Freescale DSP563xx-based boards, a special
Monitor program was developed to transfer programs and data between the DSP and the workstation
through the serial communication interface (SCI), as well as the corresponding communication library for
the workstation.

A case study distributed digital signal processing system was designed using two personal computers, one
as a controlling computer and one as a workstation. The computers were connected by a TCP/IP-based
Ethernet. Both computers used the KHOROS Software Package from Khoral Research, Incorporated,
running on the Linux platform. All DSP-specific operations were initiated on the controlling computer and
run on a DSP56307 Evaluation Module attached to the workstation through the SCI.

A custom toolbox called ‘Freescale EVM’ was created containing two specific DSP routines (‘Glyphs’)—
kmsum, for adding two input signals, and kmfft, a 256-point Fast Fourier Transform, both running on
Freescale DSPs in a distributed manner. The kmsum glyph was used illustrate the use of the KHOROS
software.

The principles developed here can be applied to any DSP-based application that can be implemented in a
distributed manner, such as digital signal acquisition and processing from sources scattered over large
areas, and integrating multiple measurement and instrumentation units into a larger digital signal analysis
structure.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Using the KHOROS Software

References

6 References
 [1] DSP56300 Family User’s Manual, Motorola, Incorporated, 1999.

 [2] DSP56307 24-Bit Digital Signal Processor User’s Manual, Motorola, Incorporated, 1999.

 [3] DSP56307EVM User’s Manual, Motorola, Incorporated, 1999.

 [4] Freescale DSP Assembler Reference Manual, Motorola Incorporated, 1999.

 [5] Digital Signal Processing. Principles, Algorithms and Applications, A J. G. Proakis and D. G.
Manolakis, 3rd edition, Prentice-Hall, 1996.

 [6] Introduction to the KHOROS System, Khoral Research, Incorporated, Advanced Khoros Manuals,
1997.

 [7] Toolbox Programming Manual, Khoral Research, Incorporated, Advanced Khoros Manuals,
1997.

 [8] Programming Services I: Foundation Services, Khoral Research, Incorporated, Advanced Khoros
Manuals, 1997.

 [9] Programming Services II: Data Services, Khoral Research, Incorporated, Advanced Khoros Man-
uals, 1997.

 [10] Programming Services III: GUI and Visualization, Khoral Research, Incorporated, Advanced
Khoros Manuals, 1997.

 [11] Khoros Programming Tutorial, Rafael Santos, Internet Resources, 1997.

About the Authors
Mihai V. Micea is a lecturer at the Computer Software and Engineering Department at the Politehnica
University of Timisoara, and Executive Director of the DSP Applications Lab Timisoara (DALT)
sponsored by Digital DNA from Freescale.

Adrian TRIFU and Mircea TRIFU are students at the Automation and Computer Science Faculty at the
POLITEHNICA University of Timisoara, and members of the research and development team at DALT.

Contacts:

• micha@dsplabs.utt.ro

• http://dsplabs.utt.ro/dalt/

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Integrating the DSP563xx in Distributed Computing Environments

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Title Page
	Abstract and Contents
	1 Introduction
	1.1 Architecture
	1.2 Communication
	1.3 Monitor Program
	1.4 High-Level Software

	2 Workstation-DSP Communication Protocol
	2.1 The Command Protocol
	2.2 Communication Library Functions Overview
	2.2.1 Low-Level Functions
	2.2.2 High-Level Functions

	3 The DSP56307 in a Distributed Environment
	3.1 General Description of the Monitor Program
	3.2 Monitor Program Implementation on DSP56307
	3.2.1 Definitions
	3.2.2 Initialization
	3.2.3 Receive Routine
	3.2.4 Load Procedure
	3.2.5 Run Command Procedure
	3.2.6 Transmit Routine

	4 Case Study
	4.1 General Architecture
	4.1.1 Controlling Computer
	4.1.2 Workstation
	4.1.3 DSP-Based Board

	4.2 DSP Algorithms
	4.2.1 Adder Algorithm
	4.2.2 FFT Algorithm

	4.3 The KHOROS Environment
	4.3.1 Cantata
	4.3.2 The Glyph
	4.3.3 Toolboxes
	4.3.4 Software Objects
	4.3.5 Development Tools
	4.3.6 Data Structure

	4.4 Using the KHOROS Software
	4.4.1 Building a Toolbox
	4.4.2 Adding a Glyph to a Toolbox
	4.4.3 Defining the Glyph User Interface

	5 Conclusion
	6 References

