Freescale Semiconductor

Integrating the DSP563xx in
Distributed Computing
Environments

Application Note

by
Mihai V. MICEA,

Mircea TRIFU
and Adrian TRIFU

AN2088
Rev. 0, 3/2001

.

Z “freescale*

For More Information On This semiconductor
Go to: www.freescale

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

Freescale Semiconductor, Inc.

Abstract and Contents

Distributed digital signal processing isthe most suitable solution for many real-life applicationsinvolving
digital data acquisition and processing from multiple signal sources scattered over large areas. The
advantages of distributed computing over single-processor or other multi-processor architectures include
high computing power at alow cost, flexibility, and scalability.

Several waysto implement distributed digital signal processing exist, each with certain strengths and
weaknesses. Choosing the optimum implementation for a particular application is often difficult,
depending largely on the requirements of the application.

This paper proposes a hardware and software structure for distributed digital signal processing which
offersflexibility and scalability for many real-life applications.

1 Introduction 1
L1 ArChitectureo e 1
1.2 COmMMUNICALION. . .\ttt et e e e e e et 2
1.3 MONItOr Program.ot e 3
14 High-Level Software. e 3
2 Workstation-DSP Communication Protocol 3
21 TheCommand ProtOColot e e et e 4
2.2 Communication Library FUNCliONSOVEIVIeWt 5
2.2.1 Low-Level FUNCLIONS o e e e e 6
2211 SCOM NI, ot e 6
2212 SCOM_ShUL dOWN . ..o e e e et e e 7
2.2.1.3 scom Write buf e 7
2214 scom read buf e 7
2215 MAPS GEL BITOr . . .ottt e e e 8
2.2.2 High-Level FUNCLIONS. e e e 8
2221 SCSOM FESEL AP . o v v vttt e e 8
2222 SCSOM UM . & e et et e et et e e e e e e e e e e e e 8
2.2.2.3 SCOM _load Programo e 8
2224 SCOM WHTE OO .ot ittt e e e e e e 9
2225 Helper FUNCLIONS.o e e e e e e 9
3 The DSP56307 in a Distributed Environment 9
3.1 Genera Description of the Monitor Program. 10
3.2 Monitor Program Implementation on DSP56307.ciii i 11
321 DEfiNItiONS . ..o e 12
3.2.2 INItAliZatioNn e e e 13
3.2.3 ReCEIVEROULING e e 14

Abstract and Contents
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.24 Load Procedure.t e 15
3.25 Run Command Procedure.t e 16
3.2.6 TransSmit ROULING o e e e e e e e 18
4 Case Study 20
4.1 General Architecture. e 20
41.1 Controlling ComMPULESottt e et 20
412 WOrKStatiON. e 21
4.1.3 DSP-Based Board. 22
42 DSP AIQONthMS . .. 23
421 Adder Algorithm. e 23
422 FET Algorithm 24
43 TheKHOROS ENVIFONMENL.ottt et ettt et e e 24
431 (@7 | - - 24
432 TheGlyph. ..o e 25
4.3.3 TOOIDOXES . . . o e 26
434 Software Objects. e 26
435 Development TOOIS.o e 26
4.3.6 Dala St UCIUNE. . . o e 26
4.4 Usingthe KHOROS Softwaret e e e 27
44.1 BuildingaToolboX e 27
442 AddingaGlyphtoaToolboX.cc i e 27
4421 Definingthe Glyph Tasks.o i e 28
4422 Creating aDirectory SIrUCTUreo o v e e 28
443 DefiningtheGlyph User Interface i i 28
5 CoNCIUSION e 34
6 References 35

Integrating the DSP563xx in Distributed Computing Environments
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

1 Introduction

Distributed digital signal processing is atop research and development topic, backed up by an ever-
increasing number of real-life applications and IT companiesinvolved. Because it is still an advanced
research topic and depends strongly on the application, distributed DSP does not have a standard approach
or aunified concept of design.

Distributed digital signal processing is the most suitable solution for most real-life applications involving
digital data acquisition and processing from multiple signal sources scattered over large areas. The
advantages of distributed computing over single-processor or other multi-processor architectures include
high computing power at alow cost, flexibility, and scalahility.

There are severa waysto implement distributed digital signal processing, each of which hasits strong and
weak points. Choosing the optimum implementation for a particular application is often difficult,
depending largely on the requirements of the application.

This paper proposes a hardware and software structure for distributed digital signal processing which
offers good flexibility and scalability for many real-life applications.

1.1 Architecture

The general architecture of the proposed system uses an Ethernet-based distributed computing
environment running TCP/IP protocolson aLINUX platform. The digital signal processing hardware core
of the system consists of one or more DSP-based boards, each connected to a host computer in the
network, asillustrated in Figure 1.

D
C

Networked
Computer /2/ y y
,/ DSP-based ,’
1 7 Board
1 y !

1

Networked

Ethernet

Computer
DSP-based
Board
Controlling
Computer

D
[«ay

Figure 1. Distributed DSP System

Introduction .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

The primary challenge in such a distributed computing environment is to implement and manage multiple
digital signal acquisitions and processing without increasing the workload of the host computer processor.

There are three main components of the system:

1. A controlling computer, which assists the user in building and running specific DSP-based
applications or algorithms, and controls the flow of commands and data through the
distributed system.

2. One or more workstations interconnected to each other and to the controlling computer
through the Ethernet. The number of workstations and the relative distance are not subject
to restrictions derived from this application. Each workstation receives and interprets DSP-
related commands from the controlling computer, passes the commands to the DSP-based
board connected to it, and sends back results from the DSP to the controlling computer.

3. A specialized DSP-based board attached to each workstation which carries out the entire
data acquisition process and implements most of the data processing algorithms. The
system architecture does not limit the number of DSP boards that can be connected to a
particular workstation (or even to the controlling computer); the only limitation is the
number of available communication interfaces on the workstation.

1.2 Communication

Digital signal processing systemsusually require relatively high data throughputs, especially when the data
processing is performed in a distributed manner. DSP-based systems following the genera architecture
depicted in Figure 1 present two different kinds of datalinks:

1. Workstation-to-workstation, or Controlling computer-to-workstation data paths.

Dataand command transactions between the workstationsin the system are performed through the
Ethernet using TCP/IP protocols. Featuring raw transfer rates at up to 10 Mbits per second for 10-
Base-T Ethernet or 100 Mbits per second for 100-Base-T Ethernet or Fast Ethernet, thistype of data
link should provide enough throughput for the majority of digital signal acquisition and processing
applications, including multimedia and digital image acquisition and processing.

2. Workstation-to-DSP data links.

Most of the data processing required by a given application is performed by the DSP boards
connected to workstations. Thus, the workstation-DSP communication is of major importance for
theoverall system performance, and can be apotential bottleneck for datatransfers. Although DSPs
and DSP-based boards generally feature avariety of datacommunication capabilities, they typically
do not provide complete, glueless, high-performance communication interfaces to the host
computer; thistask is |eft to the system designer.

The DSP56300 family of processors features several data communication interfaces suitable for awide
variety of system interconnections through its built-in peripheral ports. At the higher end of the transfer
performance scale is the Host Interface Port, a DSP-to-host interconnection offering transfer rates of up to
16 Mbits per second for the ISA bus and even higher rates for the PCI bus. One potential disadvantage of
this solution is that the DSP must be physically close to the host bus slot to minimize RFI, which
drastically reduces overall system flexibility. At the lower end of the performance scale is the
asynchronous Serial Communications Interface (SCI), which can transfer data at up to 115.2 kbits per
second.

The SCI port on the DSP56307 Evaluation Module (DSP56307EV M) was chosen as the solution for this
application. This on-board solution provides a data transfer which meets communication requirements for
this application while maintaining system flexibility. With the EVM configured to transfer data at the

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc. Moni
onitor Program

maximum speed (115.2 kbits per second) and the use of special handshaking, the DSP can easily be
controlled through user-defined applications running on the workstation. The implementation details of
this system are presented in Section 2.

1.3 Monitor Program

One of the most important components of the project isamonitor emulation program developed on the
DSP56307EV M to provide processing autonomy to the DSP and facilitate its programming and command
from higher-level user applications. The Monitor program provides low-level communication routines for
DSP algorithms and implements the DSP side of the binary command protocol described in Section 2. Itis
automatically loaded at boot-time from the DSP56307EV M on-board flash memory and actsas a
command interpreter for commands sent by the workstation. The implementation of the Monitor program
is described in detail in Section 3.

1.4 High-Level Software

Another important issue related to the proper operation of adistributed DSP system is the implementation
of high-level softwareto provide the user with efficient control of the execution of DSP algorithms. This
software must include the following features:

» A proper user interfacefor controlling overall system operation. It should provide aninteractiveand
flexible mechanism for defining a particular DSP-based application with maximum user control
over its execution in adistributed processing system. This software component residesin the
controlling computer.

e Support for dividing acomplex task into subcomponents to further distribute them for executionin
the system. This can be performed automatically or in a user-controlled manner by the controlling
compulter.

» An€fficient mechanism for transacting commands and data between the system workstations. The
corresponding programming model emulates a client-server architecture, with the controlling
computer as the client and the workstations servicing its various processing requests.

» Specialized server-type programsimplemented on the system workstationswhich can communicate
with the client (controlling computer), receive processing commands and additional input data, and
send back the results. The workstations can perform a specialized set of processing algorithms
individually, or a generic pack of processing routines can be implemented on each workstation.

The KHOROS Software Package from Khoral Research, Incorporated meets all of these requirements, and
so was selected to provide the high-level control software for the proposed system.

Section 4 presents a case study describing a distributed digital signal processing system with the general
system architecture depicted in Figure 1. Two personal computers are interconnected with a TCP/I P-based
Ethernet link running on aLinux platform, one functioning as the controlling computer and the other asthe
system workstation. The core of the system is the DSP56307 Evaluation Module, which performs al the
DSP-specific operations initiated by the remote station (controlling computer). The KHOROS packageis
also described in detail in this section.

2 Workstation-DSP Communication Protocol

Data communication between the workstation and the DSP is of major importance for the proper operation
and satisfactory performance of adistributed DSP. The system should be flexible and portable and provide
high throughput, error control, and a simple communication protocol.

Workstation-DSP Communication Protocol
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

This section focuses on the communication between the workstation and the DSP56307EVM board. It
describes the command protocol and atypical communication session, and presents an overview of the
communication library.

Most of the communication is based on the Client-Server model, in which the client is the workstation and
the server isthe DSP board. The client sends various commands to the server, which services them
according to the command protocol described in this section. The only exception to thisisthe result buffer
sent by the digital signal processing algorithm back to the workstation. This data transfer isinitiated by the
DSP board after completion of the processing.

All communication between the workstation and the DSP board in this application is carried out over an
asynchronous serial link at 115200 bps. This can be a mgjor drawback in systems that require high
throughput. For better performance in these cases one can make use of Motorola' s more powerful
solutions, which enable datatransfers over paralel, Ethernet, and | SA interfaces.

2.1 The Command Protocol

The command protocol used to control the behavior of the DSP board is tailored so that the various tasks it
performs meet the exact requirements of adistributed digital signal processing system.

Every command consists of two bytes followed by zero to two 24-bit words, depending on the particular
command issued. Thefirst byteis dways $AA, signaling the beginning of a new command. The second
byteis the actual command byte. Its bit-field encoding is shown in Figure 2.

ALY | DK

Figure 2. Command Byte Bit Field Encoding

Table 1. Command Byte Bit Field Descriptions

Bit Meaning First Data Word Second Data Word

Rs Issues a soft reset to the DSP board — —

Ld Loads a data buffer in DSP memory in Address in P, X, or Y memory | Buffer size (number of 24-bit
the specified address space (P, X or Y) where data is to be stored words)

Rn Starts the execution of a program Address in P memory where —
program begins

The two shaded bitsin the command byte are reserved for later development and should be written with Os
for future compatibility.

The command byteisfollowed by zero, one or two additional 24-bit words, depending on which command
isissued. In the case of the reset command no additional word follows the command byte. For the load
command, the command byte is followed by two additional words. The first one specifies the addressin P,
X or' Y memory of the DSP where the data should be stored, while the second word isthe size of the buffer
expressed as a number of 24-bit words. The load command is followed by anumber of datawords equal to
the buffer size. The run command byte is followed by one additional word containing the addressin P
memory where program execution begins.

Each 24-bit word is sent as a series of three bytes, least significant byte first.

The choice of an unencoded command byte was made to reduce the amount of code needed to distinguish
between the commands on the DSP. Refer to Chapter 4 to see how thisis actually done.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale semlco&%%ﬁm?a‘?or!'ﬂ%r’ary Functions Overview

Every command received by the DSP board is acknowledged by acommand confirmation string. These
strings are shown in Table 2

Table 2. Command Confirmation Strings

Command String Subsequent Word
Reset #Ready —

Load #Ld Buffer checksum
Run #Ok Run address

The command confirmation string for the load command is followed by a 24-bit checksum computed as a
modulo 22* sum of all the datawords in the buffer. The command confirmation stri ng for the run command
is followed by the address supplied in the run command.

A typical communication session between the workstation and the DSP board might proceed as follows:
1. The PC sends a Reset command to the DSP board: $AA, $80.

2. The DSP board answers by sending the command confirmation string #Ready after
performing a soft reset.

3. ThePC downloadsall the input databuffersaswell asthe DSP algorithm to the DSP board.
Each buffer is downloaded in the following sequence:

a) ThePC issuesal oad command:
— $AA, $44 for loading into P memory
— $AA, $42 for loading into X memory
— $AA, $41 for loading into Y memory

b) The PC sendstwo data words to the DSP board containing the starting address where
the dataisto be loaded and the number of words to be sent.

¢) ThePC sends the data words, which the DSP board loads into memory while
computing a checksum.

4. The DSP board answers by sending the command confirmation string #L.d followed by the
checksum of the loaded buffer.

The PC validates the checksum.
The PC sends a Run command: $AA, $20, and the start address of the program.

7. TheDSP board acknowledges receiving the command by sending the string #COk followed
by the start address supplied in the Run command.

Control isthen transferred to the processing program which is responsible for sending the result buffers
back to the PC.

2.2 Communication Library Functions Overview

The SCOM (Serial COMmunication) communication library iswritten in C and designed to run under
Linux. It provides aset of low-level functions to perform the actua datatransfer through the RS-232 seria
port of the workstation as well as some high-level functions to implement the command protocol. It was
designed to handle multiple DSP boards simultaneously, each identified by a special identifier called
‘serial deviceid’ (sdid).

Workstation-DSP Communication Protocol
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

All functions have a parameter si d of type (sdi d *) . Thesdi d structure is shown in Code Example 1:

Code Example 1. The sdi d Structure

struct sdevid {
int fd;
struct termos ol dtio;

b
typedef struct sdevid sdi d;

fd - file descriptor associated with the serial device file
oldtio - structure holding the previous settings of the serial device

All functions return at least one error code. The error codes are listed in Table 3.

Table 3. SCOM Error Codes

Error code Description

ER_OK The operation was successful

ER_UNKNOWN | Returned by scom_run when it does not receive the command
confirmation string

ER_PARM At least one argument passed to a function is invalid

ER_TOUT A time-out occurred before reading a specified number of bytes
ER IO Returned by scom_write_buf when it fails to send the entire buffer
ER_SUM Received checksum is not the same as the computed one
ER_STX Syntax error is encountered in the LOD file

ER_DSP Attempt to reset the DSP board fails

ER_EXT Returned in all other cases. ER_EXT is a macro; the actual value

returned is (-_NO_OF_ERRS - errno)

2.2.1 Low-Level Functions
The communications library includes a set of functions which perform the low-level operations associated
with serid 1/0.

2.21.1 scom_linit
— Initializes the serial port for:

e 8-bit mode
e 1stop hit
* No parity

e communication speed of 115200 bps.

— Fillsthesi d structure with the appropriate device information
— Programs the seria device for buffered 1/0.
— Setsapredefined time-out value for the receiver.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale semlco&m%ﬁm?a'i?or!'ﬂ%r’ary Functions Overview

Code Example 2. The scom i ni t Function

#i ncl ude “scom h”
err_t scominit(const char *device, sdid *sid);

device - serial device file nane (/dev/ttySx)
sid - serial device id

Error codes returned: ER_PARM, ER_EXT, ER_OK.

2.21.2 scom_shut_down

— Flushesthe input and the output buffers of the serial device
— Closesthe file descriptor associated with the serial device.

Code Example 3. The scom shut _down Function

#i ncl ude “scomh”
err_t scomshut_down(sdid *sid);

sid - serial device id

Error codes returned: ER_PARM, ER_EXT, ER_OK.

2.2.1.3 scom_write_buf
— Outputs the contents of a data buffer to the specified seria device

Code Example 4. The scom w i te_buf Function

#i ncl ude “scom h”
err_t scomwite buf(sdid *sid, u_int8 t *buf, size t count);

sid - serial device id
buf - buffer of unsigned bytes
count - buffer size

Error codes returned: ER_10, ER_EXT, ER_OK.

2.21.4 scom_read_buf
— Performs buffered input from the serial device until either count bytes are read or atime-out occurs.

Code Example 5. The scom r ead_buf Function

#i ncl ude “scom h”
err_t scomread buf(sdid *sid, u_int8 t *buf, size_t count);

sid - serial device id
buf - buffer of unsigned bytes
count - buffer size

Error codesreturned: ER_TOUT, ER_OK.

Workstation-DSP Communication Protocol
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

2.21.5 mdps_get_error
— Returns the associated string to er r _no error code.

Code Example 6. The mdsp_get_error Function

#i ncl ude “mdspcom h”
char *mdsp_get error(err_t err_no);

err_no - error code

2.2.2 High-Level Functions

2.2.21 scsom_reset_dsp
— Resets the DSP board connected to the seria port designated by si d.

Code Example 7. The scom r eset _dsp Function

#i ncl ude “scomh”
err_t scomreset _dsp(sdid *sid);

sid - serial device id

Error codes returned: ER_10, ER_TOUT, ER_EXT, ER_ DSP, ER_OK.

2.2.2.2 scsom_run

— Sendsarun command to the DSP. The lower 24 bits of dsp_addr specify the starting address of the
code to be run.

Code Example 8. The scom_r un Function

#i ncl ude “scomh”
err_t scomrun(sdid *sid, u_int32_t dsp_addr);

sid - serial device id
dsp_addr - address in DSP menory where to start the execution

Error codes returned: ER_10, ER_TOUT, ER_EXT, ER_UNKNOWN.

2.2.2.3 scom_load_program

— Reads a L OD file containing a DSP executable code in hex format
— Loads all the program blocks into the DSP

— Issues arun command.

— Validates check sums returned from the DSP board.

Code Example 9. The scom | oad_pr ogr amFunction

#i ncl ude “scom h”
err_t scoml oad_progran(sdid *sid, const char *pathn);

sid - serial device id
pathn - name of the file containing the DSP al gorithmto be | oaded

Error codes returned: ER_EXT, ER_STX, ER_PARM, ER_SUM, ER_|O, ER_TOUT, ER_OK.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale semlco&%%ﬁm?a‘?or!'ﬂ%r’ary Functions Overview

2.2.2.4 scom_write_dsp

— Downloads a buffer of 8-bit integersinto DSP memory at the specified addressinthe P, X or Y
address space. count must be a multiple of three; each three-byte group is concatenated to form a 24-
bit word in DSP memory. The first byte in the group is the least significant.

Code Example 10. The scom wri t e_dsp Function

#i ncl ude “scom h”
err t scomwite dsp(sdid *sid, u_int8t *buf, uint32 t dsp _addr, u int32_t count,
uint8t pm;

sid - serial device id
buf - buffer of unsigned bytes to | oad into the DSP nenory
dsp_addr - address where to | oad the buffer
count - size of buffer
pm- a flag specifying the address space (P, X or Y menory).
Shoul d contain one of the foll owing val ues: PMEM XMEM or YMEM

Error codes returned: ER_EXT, ER_PARM, ER_SUM, ER_|O, ER_TOUT, ER_OK.

2.2.2.5 Helper Functions

Thefollowing two functions are referred to as hel per functions’ because they perform data conversion and
are used in conjunction with specific DSP algorithms. scom wr i t e_dat a_dsp isused to load a buffer of
24-bit integers to the DSP data memory. It does so by ignoring the most significant 8 bits of every 32-bit
integer. scom r ead_dat a_dsp isused to read abuffer of 24-bit words from the DSP. It stores each word
in a32-bit signed integer, extending its sign bit to the 8 most significant bits of the 32-bit integer.

Code Example 11. The Helper Functions

#i ncl ude “scom h”
err_t scomwite_ data dsp(sdid *sid, int *buf, uint32_t count, u_int8t pn;
err_t scomread data dsp(sdid *sid, int *buf, u.int32_t count);

sid - serial device id

buf - buffer of 32-bit integers of data

count - size of buffer

pm- a flag specifying the address space: XMEM or YMEM

Error codes returned:
scomw ite_data_dsp: ER_ EXT, ER_PARM, ER_SUM, ER |0, ER_TOUT, ER_OK.
scom read_dat a_dsp: ER TOUT, ER_OK.

3 The DSP56307 in a Distributed Environment

This section focuses on the implementation of the code running on the DSP56307 Evaluation Module
(DSP56307EV M) as the core of adistributed DSP system as described in Section 1. This code provides a
monitor-like interface to provide processing autonomy to the DSP and to facilitate as much as possible its
programming and command from higher-level user applications.

The DSP56307 in a Distributed Environment
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.1 General Description of the Monitor Program

The Monitor program is certainly one of the most important parts of the entire project. Its purpose is to
provide low-level communication routines for the DSP algorithmsto use, aswell asto implement the DSP
side of the binary command protocol described in Section 2. It was designed to be automatically loaded at
boot-time from on-board flash memory and to act as acommand interpreter for commands sent by the
workstation computer. For details regarding the selection of the boot procedure required for stand-alone
operation, refer to the DSP56307EVM User’s Manual 3. The Monitor program was written in the Atmel
AT29LV010A flash memory chip using the program ‘flash’ supplied with the DSP56307EVM Kkit.

One of the major concerns when writing the code for the Monitor program was to make it as small as
possible. The goal was to make it less than 256 words; the actual size of the code plus temporary storageis
251 words. It isloaded at boot-time at address P:$3E00O, which is the last 256-word segment of on-chip
program memory in the default memory space configuration.

The Monitor program is composed of two main parts: one part receives commands and data from the
workstation and performs specific tasks. The other part carries out all DSP-to-workstation data transfers.
Flow diagrams of these parts are shown in Figure 3 and Figure 4.

Send X Send Y
memory memory
RTS

Figure 3. Transmit Routine Flowchart

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semi%p

Receive

y

Read
command byte

Reset DSP Yes No

i oﬂ;r':(!:g?arrh Frrli‘p%'mentation on DSP56307

h Load ?
4

v

Read block size
and address

Jump bootstrap

Read
program address

A 4

v

Set up
return address

Y

Exit

@ Yes “load P 7>, NO

Read block into Yes ‘ No
P memory

Read block into Read block into
X memory Y memory

O
Y

Send checksum

v
(RTI

Figure 4. Receive Routine Flowchart

3.2 Monitor Program Implementation on DSP56307

This section presents the source code for the Monitor program, including

Symbolic constant definitions
Initialization sequence
Receive routine

L oad procedure

Run Command procedure
Transmit routine

The DSP56307 in a Distributed Environment
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.2.1 Definitions

The first portion of the Monitor program defines the code defining symbolic constants for the memory-
mapped registers. It also declares string constants, and reserves memory for data storage, both of which are
used in the command confirmation strings. This codeis listed in Code Example 12.

Code Example 12. Monitor Program—Equates and Defines

MIPR P equ $FFFFFE
M PCTL equ $FFFFFD
M PCRE equ $FFFFIOF
M SCR equ $FFFFOC
M SCCR equ $FFFFOB
M _SRxH equ $FFFF9A
M SRxM equ $FFFF99
M SRxL equ $FFFF98
M STxH equ $FFFF97
M STxM equ $FFFF96
M STxL equ $FFFF95
M SSR equ $FFFF93
CRG P: $3E00
JMP Init
SReset DCB " eRtyda’
SRun DB k¥
SRAdr DS 1
SlLoad DCB T dL#
SLAdr DS 1
ROReg DS 1
Regs DS 7
Last Reg DS 1

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

3.2.2 Initialization

Freescale SQMI%M oﬂ;r':(!:g?arrh Frrli‘p%'mentation on DSP56307

After a soft reset, the main program begins with an initialization sequence, starting at the | ni t label. This
seguence consists of the following steps:

1. ThelPL inthe SR registerisset to 2 and the IPL of the SCI is set to 2 to ensure that the SCI
Receive Datainterrupt is not masked out.

2. ThePLL isenabled with afactor of 8.4 (42/5) to yield a core frequency of 103.2192 MHz.

The SCI Receive Datainterrupt handler is set by writing a“JSR Receive” at P:$50, which
is the address of the interrupt vector for the SCI Receive Datainterrupt.

4. Theentry point for the Transmit routine iswritten at address P:$54, which isthe address of
the SCI Transmit Data interrupt vector. The SCI Transmit Datainterrupt is not used, so it
is disabled and itsinterrupt vector is used for storage.

5. The communication parameters are set to 10-bit asynchronous mode, Transmit Interrupt
disabled, and Receive Interrupt enabled by writing $B02 to the memory-mapped SCI
Control Register (x:$FFFFC).

6. SCI baud rateis set to 115200 by setting the SCCR Clock Divider to 13, which actually
means a divisor of 14.

After this set up is completed, the Monitor program sends the acknowledgement string “#Ready” to the
workstation computer and the DSP goes into the WAIT state until a SCI receive interrupt occurs.

Theinitialization sequenceislisted in Code Example 13.

Code Example 13. Monitor Program—lInitialization Sequence

Init

MOVEC #$CD0200, SR “Set IPL to 2
MOVEP X: M| PR P, AL
R #3000, A

MOVEP A1,

X MIPRP ;Set SA IPL to 2

MOVEP #$460029, X MPCTL ;Set PLL factor to 8.4
MOVE #$50, RO

MOVE #$0BF080, Al

MOVEM A1,

P. (RO) +

LRA Recei ve, Al

MOVEM A1,

P: (RO) ;Set up receive interrupt vector

MOVE #$54, RO
LRA Transmt, Al

MOVEM A1,

P: (RO) ;Set transmt entry point

MOVEP #$0B02, X: M SCR ;Set up SCI communi cation paramneters
MOVEP #13, XX M SCCR ;Set SA baud rate

MOVEP #7, X M PCRE ; Enabl e Rx, Tx and SCLK pins for S
MOVE #4, A2

LRA SReset, RO

MOVE #2, A0

JSR Transmt

_Loop
VWA T

JWP _Loop

The DSP56307 in a Distributed Environment
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.2.3 Receive Routine

When the SCI receives a byte, it generates a SCI Receive Interrupt, which wakes the DSP from the WAIT
state. Program execution resumes by servicing the pending interrupt. The Receive Datainterrupt handling
routine saves all the registers used by the routine and restores them upon exiting the routine.

After saving the registers to memory, the Monitor program reads the received byte from the lower 8 bits of
the SCI Receive Data Register, memory mapped at address $X:FFFF98. If thisbyteisequal to $AA, anew
command is being issued by the workstation and the Monitor program waits to read more bytes according
to the protocol. If the received byte is not equal to $AA, the routine restores the saved registers and exits,
and the DSP resumes the WAIT state. Once the $AA byteisreceived, the Recelve Data I nterrupt handling
routine does not exit until the current command is fully processed.

The next received byte after the initial $AA isthe command byte, illustrated in Figure 2 on page 4. Note
that although the encoding scheme makes it possible to issue multiple commands in the same command
byte, thisis not permitted in the protocol. If more than one command bit is set, the command
corresponding to the most significant bit set executed. For example, if the Reset bit is set, other command
bits are ignored. If no command bit is set, the Run command is assumed.

Bits 0-2 of the command byte are ignored and for the Reset and the Run commands. For the Load
command, these bits they are checked in the following order: P, X and Y; if none of these bitsisset, Y is
assumed. Refer to the receive routine flowchart in Figure 4 on page 11.

In response to the Reset command, the routine issues a soft reset by writing the default boot-time valuesto
the SR, SC, SP and OMR registers and jumping to the bootstrap code at P:$FF0000. The default setting for
theMD, MC, MB and MA bitsin the COM register isassumed to be 1001b, meaning boot from byte-wide
memory. The bootstrap code then reloads the Monitor program from the flash memory and runs the main
program starting at | ni t label. This code sets up of the DSP board and sends the #Ready command
confirmation string, indicating that the Reset was successful.

Thereceiveroutineislisted in Code Example 14.

Code Example 14. Monitor Program—Receive Routine

Recei ve
MOVEM RO, P: ROReg
LRA Regs, RO
MOVEM M), P: (Last Reg)
MOVE #$FFFFFF, MD

MOVEM A2, P: (ROD) +

MOVEM A1, P: (RO) +

MOVEM AQ, P: (ROD) +

MOVEM B2, P: (RD) +

MOVEM BL, P: (RO) +

MOVEM BO, P: (RO) ; Save regs
JAR #2, X MSSR *

MOVEP X M SRxL, Al

MOVE #0, AO

MOVE #0, A2

W #$AA A

JNE _End

JAR #2, X MSSR *

MOVEP X: M SRxL, A2 ; Read command byt e
NCP

JALR #7,A2, LoadO Run

RESET ; DSP Reset
MOVEC #0, SP

MOVEC #0, SC

MOVEC #$C00300, SR
MOVEC #$000309, OVR
JMP $FF0000 ; Junp to bootstrap

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale SQMI%M oﬂ;r':(!:g?arrh Frrli‘p%'mentation on DSP56307

3.2.4 Load Procedure

Asdescribed in Section 2, the Load procedure downloads the number of 24-bit data words specified in the
command protocol. Thisis accomplished by simply moving the received bytes to the B1 register and then
right-shifting the B register. After completing a cycle of three moves and three shifts, BO holds the
resulting 24-bit word, which ismoved to P, X or Y memory according to the command protocol. After
each cycle, the content of the B register is added to the A register. At the end of the transfer, A0 holds the
checksum of the received buffer, which is then sent back to the workstation where it is validated. The

checksum is prefixed by the command confirmation string #Ld.
The Load procedure is listed in Code Example 15.

Code Example 15. Monitor Program—Load Procedure

_LoadOr Run

_Loopl

_Loop21

_Loop2
_LoadXY

_Loop31

_Loop3

_LoadY

_Loop41l

_Loop4

JWP

#6, A2, Run
#6, Loopl
#2, X M SSR *
X: M SRxL, B2
#8,B, B

888
RE83

#2, A2, LoadXY

B1, Loop2
#3, Loop21
#2, X M SSR, *
XM SRxL, Bl

#8, B, B

BO, P: (RO) +
B, A

_SendCRC

#1, A2, LoadY
Bl, Loop3

#3, Loop31
#2, X M SSR *
XM SRxL, B1
#8,B, B

BO, X (RO) +

_SendCRC

Bl, Loop4
#3, _Loop4l
#2, X M SSR *
XM SRxL, B1
#8,B, B

BO, Y: (RO) +
B, A

_SendCRC

: Read address and bl ock size

; Save start address

; Read bl ock into P nenory

; Read bl ock into X nenory

; Read bl ock into Y nenory

The DSP56307 in a Distributed Environment
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.2.5 Run Command Procedure

The Run Command procedure isimplemented as follows.
1. The DSP receives the Run command, followed by the start address of the program to run.

2. The DSP sends back the command confirmation string “#0Kk” followed by the received
address.

3. Theaddressis pushed onto the upper half of the stack (SSH).
4. A value of $C00200 is pushed to the lower half of the stack (SSL).
5. Execution continues until the end of the Receive routine, where aRT| instruction isissued.

The RTI instruction loads the PC register with the address at which execution is to resume from the SSH
register, which contains the value sent by the Run command. The RTI a so loads the SR from SSL, which
contains the value $C00200. This setsthe core priority level to 3 and the interrupt priority level to 2, which
enables the Monitor program to continue to receive and execute commands, interrupting the running
algorithm. This ability isvery useful for interrupting alengthy operation to perform aless time-consuming
function.

The Run Command procedure is listed in Code Example 16.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semi%p

i oﬂ;r':(!:g?arrh Frrli‘p%'mentation on DSP56307

Code Example 16. Monitor Program—Run Command Procedure

_Loop5

_SendCRC

End

JAR
DO
JAR
MOVEP
ASR

NCP
LRA
MOVE
MOVE
MOVEM
MOVE
JSR
MOVEC
MOVE
MOVEC
JWP

#5, A2, _End
#3, _Loop5
#2, X M SSR *
X M SRxL, A2
#8, A A

; Read address

SRAdr, RO

Al, RL

#4, A2

R1, P: (RO) -

#2, A0

Transm t

Rl, SSH

#$C00200, A0

A0, SSL ;Set up return address
End

SLAdr, RO
#4, A2

A0, P: (RO) -
#2, A0
Transmt
_End

g

VUVUUUUOTUD

ANANAN AN AN AN AN

8

88888888

3

_ArAraAr
BRBERER

&-
1S

; Restore regs
; Return frominterrupt

The DSP56307 in a Distributed Environment
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.2.6 Transmit Routine

The Monitor program also provides alow-level Transmit routine which DSP algorithms can use to send
back results. Its use is simple and straightforward:

1. A memory address space code iswritten to A2 register:
— #4 for P memory
— #2for X memory
— #1for Y memory
2. Thesize of the buffer is written to the AO register.
3. The starting address of the buffer is written to the RO register.
4. A JSRisperformed to the address stored at P:$54.

Again, if none of the memory spaces is specified, the 3 least significant bits of A2 are cleared, and Y
memory space is assumed. Refer to the flowchart in Figure 3 on page 10.

The Transmit routineis listed in Code Example 17.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale SQMI%M oﬂ;r':(!:g?arrh Frrli‘p%'mentation on DSP56307

Code Example 17. Monitor Program—Transmit Routine

Transnit: sends a buffer through the SO to the host conputer

; A2 <- 4 - send buffer fromP nenory
; A2 <- 2 - send buffer from X nenory
; A2 <- 1 - send buffer fromY nenory
; A0 <- nunber of 24 bit words to send
; RO <- start address of buffer
Transnit

JAR #2, A2, SaveXY

DO AO, LoopTl

JAR #1, X MSSR *

MOVEP P: (RO), XX M STxL

JAR #1, X MSSR *

MOVEP P: (RO), X M STxM

JALR #1, X M SSR *

MOVEP P: (R0)+, X M STxH

NCP
_LoopTl ; Save P nenory

JW _EndT
_SaveXY

JAR #1, A2, SaveY

DO AO, LoopT2

NCP

NCP

JOLR #1, X M SSR *

MOVEP X (RO), X: M STxL

NCP

NCP

JAR #1, X MSSR *

MOVEP X (RO), X M_STxM

NCP

NCP

JALR #1, X M SSR *

MOVEP X (R0)+, X M STxH

NCP
_LoopT2 ; Save X nenory

JW _EndT
_SaveY

DO AO, LoopT3

NCP

NCP

JOLR #1, X M SSR *

MOVEP VY: (RO), XX M STxL

NCP

NCP

JALR #1, X M SSR *

MOVEP Y: (RO), X M STxM

NCP

NCP

JAR #1, X MSSR *

MOVEP Y:(R0)+, X M STxH

NCP
_LoopT3 ; Save Y nenory
_EndT

RTS ; Return from subroutine

The DSP56307 in a Distributed Environment
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

A Case Study

Asa case study, adistributed digital signal processing system was developed using two personal
computers interconnected with a TCP/IP-based Ethernet, both running the KHOROS software package
from Khoral Research, Incorporated, on the Linux platform. The core of the system is the DSP56307
Evaluation Module, which performs all the DSP-specific operations initiated by the remote station, which
is the controlling computer.

This section describes the architecture of the case study system, liststwo DSP algorithms to be run in the
system, presents an overview of the KHOROS software, and shows how the KHOROS software is used to
implement one of the DSP algorithmsin the system.

4.1 General Architecture

The general architecture of the proposed system is similar to the distributed computing generic architecture
presented in Section 1 and isillustrated in Figure 5.

(= DI AR E b

DSP Hetwork

Ccontrolling
computer

HHHHHHEHAHE

workstation

DSPLE207ETH

Figure 5. Architecture of the Proposed System

The system has three main components: a controlling computer, aworkstation, and a DSP56307
Evaluation Module.

4.1.1 Controlling Computer

The controlling computer is a special kind of workstation that controls overall system operation. It's
functionsinclude

e Assisting the user in implementing the desired DSP network
e Controlling the distribution of tasks among the various processors
e Gathering and presenting the final results.
The system requirements for the controlling computer include:
e TheLinux operating system
e An Ethernet interface, running TCP/IP protocol

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc. G :
eneral Architecture

e The KHOROS package, installed and configured
e The Cantata component of the KHOROS package, installed and configured

e A custom-designed ‘glyph’ toolbox created in Cantata which implements and distributes the DSP
algorithmsto be run on the DSP-based board.

The Cantata application is a highly interactive graphic environment which uses a building block called a
‘glyph’ (see Section 4.3.2 on page 25). On the controlling computer, Cantata is used to build a‘DSP
Network’ to implement DSP algorithms. This network uses signal processing glyphs provided by the
KHOROS standard distribution package as well as specialized glyphs which are custom-designed to run
corresponding DSP algorithms on the DSP-based board. These specialized glyphs can be grouped in a
custom toolbox which Cantata can use to build, run, and control the particular DSP algorithms needed in
distributed applications.

NOTE:

Inthisdocument, a‘ software object’ refersto aprogram that performsdata
processing, while a ‘glyph’ is a graphical representation of a software
object in Cantata. For simplicity, these terms are used interchangeably.

A basic custom toolbox called ‘ Freescale EVM’ was developed for this case study. It contains two
demonstration glyphs—knsum asimple adder of two input signals, and knf f t , asimple 256-point FFT.
The two glyphs can be used to run the corresponding algorithms directly on the system’s Freescale DSP
board in a distributed manner, over the Ethernet.

When the DSP network on the controlling computer is launched under Cantata, it processes the
corresponding data flow diagram. When alocal glyph is activated, it launches the corresponding
procedures on the controlling computer’ s own processor. If the data flow on the DSP Network reaches one
of the glyphs that implements a DSP a gorithm on the Freescale EVM, the KHOROS system on the
controlling computer sends an execution command along with input parameters and data to the
corresponding workstation through the Ethernet and waits for the processing resultsto be returned from the
DSP. The received results are further used by the implemented DSP network.

The fact that some algorithmsin a specific DSP network are executed by other components of the overall
system is transparent to the user.

4.1.2 Workstation

The primary function of the workstation in the proposed distributed DSP system is to serve as a remote
interface between the controlling computer’ s DSP network implemented under the Cantata application and
the DSP-based board, where the actual signal processing algorithms are executed in distributed manner.

The system requirements for the workstation include:
e TheLINUX operating system
e An Ethernet interface for communicating with the controlling computer

» TheKHOROS package, installed and configured, to interpret the specific commands and input data
issued by the controlling computer under Cantata and received on the DSP network

» A custom-designed glyph toolbox for Cantata, implementing DSP a gorithmsto be run on the DSP-
based board in distributed manner. Thisis the same toolbox implemented on the controlling
computer

e A communication library implemented on the LINUX platform for direct interconnection with the
corresponding DSP-based board.

Case _Studg .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

The workstation communicates with the DSP-based board through its standard PC asynchronous serial
interface, which can exchange data at rates up to 115200 bps. The primary reason for using this port is that
it can connect to the SCI port on the Freescale EVM, as described in Section 1.2 on page 2. Serial program
and data communication with the DSP isimplemented on the host workstation as a library of C-callable
functions on UNIX-like platforms.

When execution of the DSP network on the controlling computer reaches one of the ‘remote DSP glyphs
it issues a specific command to the workstation, and the routine that implements the corresponding glyphis
launched. The primary actions performed by this routine include the following:

« Receive additional input data, if any

e Load the input data and parameters into the DSP through the serial datalink
< Load the object code for the specific DSP routine into the DSP

e Wait for the results from the DSP

« Send the results back to the controlling computer.

4.1.3 DSP-Based Board

The Freescale DSP563xx Evaluation Modules (EVM) was selected as the DSP hardware core of the
distributed system. It uses an on-board standard serial communication interface (SCI port) to communicate
with the host workstation, using the Monitor program described in Section 3 on page 9.

The actual DSP routines to be run on the EVM resides on the host workstation in the * .lod’ |oadable object
code format. They are |loaded into the DSP along with additional input data and parameters by the
corresponding glyph routines on the host machine.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc. DSP Algorithms

4.2 DSP Algorithms

Each of the two DSP algorithms in our case study, the adder and the FFT, starts with all input data already
loaded into memory on the DSP board. Each algorithm processes the data and calls the Transmit routine in
the Monitor program to send the results back to the workstation.

4.2.1 Adder Algorithm

This algorithm starts with two data buffersin X and Y memory spaces starting at address 1. Address0Qin
both X and Y memory hold its respective buffer size. The algorithm performs an in-place sum of the two
signals, using the larger buffer as a destination.

Code Example 18. Adder Algorithm Source Code (knsum asmnj

org x:0
XLengt h ds 1

org y:0
YLength ds 1

org P:$100

Start
nove #1, RO
nove x: XLength, A
nmove y: YLength, B
cnp B A
jogt _XSum
do Al, Loopl
nove x: (RO), A
nove y: (RO), B
add B, A
nove Al,y: (RO)+
_Loopl
nove #1, A2
nove y: YLengt h, A0
jnmp _Send
_XSum
do B1, Loop2
nove Xx: (RO), A
nmove y: (RO), B
add B, A
nove Al, x: (RO) +
_Loop2
nmove #2, A2
nove X XLength, A0
Send
nove #$54, RO
nove p: (RO), RL
nove #1, RO
jsr (R1)
res
End

Case _Studg .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

4.2.2 FFT Algorithm

This algorithm calls the FFTR2CN macro (© Motorola, Inc.) to perform the actual FFT.
Code Example 19. FFT Algorithm Source Code (knfft. asm

i ncl ude ’ si ncos’
include "bitrev’
include '"fftr2cn’

NoCf Points equ 256
AddrOf I nput equ 1
Addr O Coefs equ 4096
Addr O Qut put equ 1024

org x:0
XLengt h ds 1

org y:0
YLengt h ds 1

si ncos NoCf Poi nt s, Addr f Coef s
org P:$100
fftr2cn NoCF Poi nt's, Addr O | nput , Addr O Qut put , Addr & Coef s

nove #$FFFFFF, MD

nove #3$54, RO

nmove p: (RO), RL

nmove #Addr OF Qut put, RO
nove #NoCf Poi nt's, AD
nmove #2, A2

jsr (R

nove #Addr O Qut put, RO
nmove #1, A2

jsr (R1)

rts

Start
Send

End

4.3 The KHOROS Environment

The KHOROS software package from Khoral Research is an advanced and complete digital signal
processing and scientific software integration and development environment, featuring advanced inter-
process and distributed computing support. KHOROS originated as aresearch project at the University of
New Mexico. Thefirst release of the KHOROS system, KHOROS 1.0 Beta, was made available via
anonymous FTP in October, 1990 [6].

The goal of the KHOROS software is to provide a complete application development environment that
redefines the software engineering process to include all members of the project group, from the
application end-user to the infrastructure programmer [6].

4.3.1 Cantata

The primary component of KHOROS is its visual design and simulation tool, called Cantata, a data flow
visual language integrated in a powerful visual programming environment. It is extremely useful for
developing and testing DSP algorithmsin avery intuitive manner. Cantata enables a user to visually design
agraphical dataflow structure called a‘ DSP network’, assign nodes of the DSP network to the various
computers on the network, and simul ate the network while taking care of the various synchronization
issuesinvolved. A screen capture of a DSP network is shown in Figure 6.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Freescale Semiconductor,

Inl%é KHOROS Environment

File Edit Workspace Options Control Glyphs

Help

==

.r

3 =" Display 2D Plot
ID "

i MainWorkspace]

(new) TATAMANIP kgsin Sinusoid
STATAMANIPRINAkg=in -usize 256 -hsize 1 -dsize 1 -tsize 1 -esize 1 -wnum

(new! DATAMANIP kosin Sinusoid
L - EC_ L.

Figure 6. Example of a Cantata Screen Layout

4.3.2 The Glyph

The building block of the DSP network isthe‘glyph’. A glyphisavisual representation of a processwhich
runs on either alocal or remote machine and performs a specific task such as the generation of asignal,
processing of a previously generated set of signals, visualization of signals, etc. These fundamental
construction blocks can be linked together in various ways to form the desired DSP network.

A glyph can best be viewed as a‘ black-box’, with inputs, outputs, and other specific controls, asillustrated

inFigure 7.

Pane Azceds

— | output Connection
Input Connection

Output Data
Commact ion

Input Data
Connect ion

Figure 7. Glyph Layout and Components

Case _Studd .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

There are three basic types of glyphs used in atypical DSP network:
* Input glyphs—input procedures and programs such as signal generators or dataimport nodes
» Dataprocessing glyphs—procedures that implement alarge variety of algorithms
e Output glyphs—used for visualization or storage of results.

4.3.3 Toolboxes

The various types of glyphs can be grouped together in a ‘toolbox’ to clarify the way in which they are
organized. A toolbox can be regarded as a collections of related ‘ software objects' asthey arereferredtoin
KHOROS terminology. The purpose of atoolbox is to facilitate domain-specific work while
simultaneously enabling cross-domain collaboration [6]. Users can define their own toolboxes containing
their own software objects, in relation to or based on othersif desired. There is a one-to-one
correspondence between software objects in atoolbox and their graphical representations as glyphs.

4.3.4 Software Objects

Software objects can be of several types, including the following:

« Kroutines—non-interactive programs which read their data from a standard input, processthe data
and writeresultsto a standard output. Every aspect of their execution is determined before running
the program, and once the execution has begun, users have no means of intervening. An example
of aKroutine could be a data processing glyph or an input glyph.

e XVroutines—interactive, graphical programs. Interaction with XVroutinesisachieved by means of
astandardized set of graphical user interface elements, provided by KHOROS. An example of a
typical XVroutineis avisualization glyph.

« Libraries—collections of routines that can be called from within other software objects. These
routines can be LKroutines, public functions and private functions [11]. Refer to the Advanced
KHOROS Manuals for amore detail ed description.

4.3.5 Development Tools

In addition to designing and simulating custom DSP networks, KHOROS provides a set of very powerful
software development tools which allows full accessto the KHOROS core. Programmers can conveniently
design and implement their own software objects or libraries, group them into custom toolboxes, or extend
the existing ones.

Two of the most important development tools are ‘ Craftsman’ and ‘ Composer.” Their purpose isto assist
the programmer in every phase of the software development process by automating specific tasks. Another
very important tool is the ‘ Graphical User Interface Specification Editor’ or GUISE. Thistool alowsthe
programmer to visually design the user interface component of a software object.

4.3.6 Data Structure

KHOROS uses a unified data structure model to implement all of its procedures, thus providing
comprehensive support for avery large set of real-life applications. Thismodel, called a* polymorphic data
model,’ is based on the premise that datain DSP applications is generated either to model, or acquired
from, real-world phenomena, and consequently is suitable for these purposes [9]. Polymorphic datais
composed of five so-called ‘ segments,” including VALUE, LOCATION, TIME, MASK and MAP.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, U!ﬁa the KHOROS Software

The primary segment isthe VALUE segment, in which the actual datais stored as atime-series of volumes
in space[9]. The VALUE segment has five dimensions—three positional coordinates, atime coordinate,
and an ‘element,’” which isthe size (number of components) of one point in space-time, asillustrated in
Figure 8. VALUE datacan be given explicit positioning in space and time with the LOCATION and TIME
segments.

alements postion it the vakis data

“'“”"'/ ! 4D TE= [3]

vahw element
VALUE Data ﬁ veohr each element has an implici
!

helght

—e time
width

Figure 8. Structure of the VALUE Segment

The MASK and MAP segments are provided for convenience. The MASK segment is used to mark the
validity of each point of VALUE data. The MAP segment is provided as an extension to the VALUE data;
VALUE data can be used to index into the MAP data[9].

4.4 Using the KHOROS Software

This section illustrates how the KHOROS software is used to incorporate a DSP algorithm into a software
object which KHOROS can use to implement the algorithm in a distributed processing network. The
genera stepsinvolved in creating a KHOROS software object include the following:

« Create anew toolbox or open an existing one using the Craftsman tool.
e Create the new software object using the Composer tool.

» Design the user interface for the created software object, using either Ghostwriter for a command
line interface or GUISE for a graphical interface.

The adder algorithm is used to illustrate the process of building the glyphs and toolboxes KHOROS usesto
implement a distributed processing system.

4.4.1 Building a Toolbox

Before aglyph can be created in KHOROS, the user must first configure atoolbox in which it will reside.
The Craftsman tool is used either to modify a predefined toolbox or to create a new toolbox. For the case
study, a new toolbox called ‘MotorolaEV M’ was created to contain all the data processing glyphs that
make use of the Freescale evaluation modules. The creation of atoolbox is quite straightforward and is
described in the KHOROS manuals.

4.4.2 Adding a Glyph to a Toolbox

Adding software objects to atoolbox is also straightforward thanks to Composer. This tool featuresaC
code editor, plus predefined operators and data structures which can be used to create the software object.
If the user wishes to write custom code to create the object, Composer can be configured to generate just a

Case _Studg .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

‘skeleton’ C code fileto which the user can add the C statements needed to compl etely define all the object
functions. The code written by the user inside the skeleton file is placed between a corresponding pair of
special tags.

In this case study, two glyphs were added to the MotorolaEV M toolbox, knmsumand knf f t . The following
paragraphs describe implementing knsumto illustrate the process.

4.4.2.1 Defining the Glyph Tasks
The ks umKroutine must perform the following tasks:
e Openitstwo inputs and one output
e Initialize communication with the attached DSP evaluation board (local or remote)
e Send datafrom the two inputs to the X and Y data memory on the DSP board
* Download the adder software routine to the DSP board
* Runthe adder software
* Receive the results from the DSP board
e Write these results to the output
e Close the inputs and output and perform any other required cleanup tasks.

4.4.2.2 Creating a Directory Structure

The KHOROS software automatically creates the directory structure it requires. In our case study, the
following directories were created within the ~/freescale/objects directory:

« kroutine/—the directory in which all Kroutines (source code) of the current toolbox are stored
e kroutine/lkmsum—the root of the Kroutine in this toolbox

« kroutine/lkmsum/src—contains the actual source code of the software object

« kroutine/lkmsum/uis—contains the User Interface Specification (UIS) of the software object

e kroutine/lkmsum/help
kroutine/lkmsum/man
vtkroutine/kmsum/html—contain manual pages and help files for the software object

The skeleton files for all of these directories are automatically generated by Craftsman.

4.4.3 Defining the Glyph User Interface

After aglyph has been added to atoolbox, a User Interface Specification (UIS) must be constructed. The
UIS defines all the interaction between the user and the software object. For the ks umsoftware object,
which is a non-interactive Kroutine, this interaction is limited to setting the command line parametersto
the object code, inputs, output, and flags before the routine is run. For acommand line type of interface,
the Ghostwriter tool is used to create the UIS. If agraphical user interface is needed instead, the GUISE
application assists in the GUI design. Both tools generate code inside the software object skeleton file that
was created in Composer. User-written code in the skeleton file is enclosed in special comment fields
called ‘tags’ to prevent it from being altered. The most commonly used tags are summarized in Table 4.
The last three sets of tags are not required; they are used to clarify the organization of the user code.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, lﬁﬁa the KHOROS Software

Table 4. User Code Tags in Skeleton File

Tags Denotes

/* -main_variable_list */ Program variables
[* -main_variable_list_end */

[* -main_get_args_call */ Call to a special function which initializes the UIS, the structure containing the
[* -main_get_args_call_end */ input parameters / command line arguments of the program.
/* -main_before_lib_call */ Initialization code

[* -main_before_lib_call_end */

/* -main_library_call */ Code that performs actual processing
/* -main_library_call_end */

[* -main_after_lib_call */ Cleanup code
[* -main_after_lib_call_end */

When aKroutine is created in Composer, one input field and one output field are defined by default. The
ks umKroutine requires one additional input and a communications port to which the evaluation module
is connected (either locally or to a remote workstation). For the case study, these elements were added
using the GUISE program and the GUI it generates.

When GUISE is started, two dialog boxes appear. One is the graphical user interface for the software
object, which iscalled a‘pane,’” and the other is aform on which to make changes to the pane. The form
was used to add a second input for the second signal source as well as an additional * String Selection’
control with adefault value of /dev/ttyS1’ (the second serial device on a standard PC). Figure 9 showsthe
pane for knsumafter these additions.

Output iz the sum of two inputs

- :I;u::vu:t 1||I

Figure 9. Final Pane for kmsum

Thefina source code of the adder glyph islisted in Code Example 20. Due to the length of the code, only
the main C file, knsum c, islisted.

Case _Studg .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Code Example 20. Final Source Code of the Adder Glyph, knsum c

/*
*/ KHORCS: $1 d$

#if !'defined(__lint) & !defined(__ OCCDECENTER)
static char rcsid[] = “KHOROS: Id";

#endi f
/* SSSSSSSSSSSSSSSSSSSOSOOSOESSS <<KLKLLLLLLLLLLL L L L L L L L L L LK
>>>>
>>>> Mai n program for knsum
>>>>
>>>> Prijvate:
>>>> main
>>>>

>>>> Static:

>>>> Public:

>>>>

SSSSSSSSSSSSSOSSOOOOOOOOOOOSDS <LK LLLLLLLLLLLLLLLLLLLL *f
#i ncl ude “knsum h”

clui _info_struct *clui_info = NUL;

Routine Name: nain() - Qutput is the sumof two inputs

Pur pose: main programfor knsum

I nput :
char *clui _info-> 1 file; {First Input data object}
i nt clui_info->1 flag; {TRE if -il specified}
char *clui _info->i2 file; {Second Input data object}
i nt clui _info->2_flag; {TRE if -12 specified}
char *clui _info->0 file; {Resulting output data object}
i nt clui _info->0 flag; {TRUE if -o specified}
char *cl ui _i nfo->comport_string; {Communications Port for the EVM
i nt clui _info->comport_flag; {TRUE if -comport specified}
Qut put :
Ret ur ns:

Witten By: Adrian Trifu
Date: May 10, 2000
Modi fi cati ons:

__ */
int main(
int argc,
char **argv)
{
/* -main_variable_ |list */
char *lib = “knmsunf, *rtn = “main”;
kobj ect inobj1 = NULL; /* The inputs and the output are represented by */
kobj ect inobj 2 = NULL; /* Kkobjects - data structures identifying pol ynorphic */
kobj ect outobj = NULL; /* data sets (see Section 4.3, "The KHCORCS */

/* Environnment"). Every |/O operation on pol ynorphic */
/* data is done on these objects. */

kaddr i nbufl
kaddr i nbuf2

NULL; /* The only reason for having two separate */
NULL; /* input buffers is to make the source code */
/* easier to understand. */

u_int32_t wi, w2, h, d, t, e, max; /* Used in deternining the input’s size. */
sdid did; /* Device ID for the communications library. */
err_t res; /* Return code. */

char *| odpat hnane = NULL;

/* -main_variable_|ist_end */

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, U}mg the KHOROS Software

KHORCS init (argc, argv, “FREESCALE", PRODUCT_RELEASE DATE,
PRODUCT_RELEASE NAVE, PRCUXIT RELEASE VERSI O\,
PRODUCT_RELEASE MAJOR PRCDUCT _RELEASE M NCR
“ $FREESCALE/ obj ect s/ krout i ne/ kmmsunt) ;

kexi t _handl er (kmsum free_args, NUL);

/* -main_get_args_call */
kcl ui _init(“FREESCALE”, “knsuni, KGEN KROQUTINE, &clui _uis_spec,
km;um_usage_addi tions, kmsum get_args,
kmsum free_args);

/* -main_get_args_call _end */

/* -main_before lib_call */ /* Qpen the input and output objects, using */
kpds_open_i nput _obj ect () and */
/* kpds_open_out put _obj ect(), which are part */
* of the KHORCS Pol ynorphic Data Services. */
* Note that error reporting i s done via
* specialized nmethods because errors */
/* are nost often reported graphically */
/* inside Cantata, although they can also be */
/* reported to stderr when the kroutine is */
/* run in conmand-line. */

if ((inobj1 = kpds_open_i nput _object (clui _info->i1_file)) == KCBIECT_I NVALID ({
kerror(lib, rtn, “Cannot open input object %.\n", clui_info->1 file);
kexit (KEXI T_FAI LURE) ;

}

if ((inobj2 = kpds_open_i nput _object(clui _info->i 2 file)) == KCBIECT_I NVALID {
kerror(lib, rtn, “Cannot open input object %.\n", clui_info->2_file);
kexi t (KEXI T_FAI LURE) ;

}

if ((outobj = kpds_open_out put_object(clui _info->o0_file)) == KCBIECT_I NVALID ({
kerror(llb rtn, “Cannot open output object %.\n", cI ui _info->o0 file);
kexi t (KEXI T_FAI LUE

/* Set the input data type to integer. This is */
/* only the type in which data is read, NOT the */
/* type of the actual data. Al type */

/* conversions are nmade automatically by the */

/* read/wite functions. */

kpds_set _attribute(inobj1l, KPDS VALUE DATA TYPE, KINI);
kpds_set _attribute(inobj 2, KPDS VALUE DATA TYPE, KINT);

/* To determ ne how much data nmust be processed */

/* (taking into account that the two inputs can

/* have different lengths), the greater of */

/* the two sizes is taken as the size of the output. */

kpds_get _attribute(inobjl, KPDS VALUE SIZE, &wl, &h, &d, &, &e);
kpds_ get attribut e(| nobj 2, KPDS VALUE S| ZE, &w2, &h, &d, &, &e);
max = (WL > w2)? wl @ w2;

/* Finally, create the val ue segnent in the output */
/* object and set its dimensions according to the */
/* maxi numval ue deternined earlier. The input and */
/* output objects are now ready to be used. */

kpds_creat e_val ue(out obj);
kpds_set _attribute(outobj, KPDS VALUE SIZE, max, 1, 1, 1, 1);
kpds_set _attribute(outobj, KPDS VALUE DATA TYPE, KINT);

/* Before noving on to the next pair of tags, the */

/* the serial comunication nust be initialized with */
/* the eval uation board. This is done with a call to */
/* scominit(), part of the communications |ibrary which
/* is described in Chapter 2. */

/* For sinplicity it is assuned that the size of the */
/* inputs does not exceed the size of the X and Y */

/* menories. Gherwi se, the data would have to be*/

/* tested and eventually sent in “slices”. However, */
/* this is not relevant, to our discussion. */

res = scominit(clui_info->commport_string, &did);

if (res I= ER K {
kerror(lib, rtn, “Error in scominit(). Invalid tty specified.\n");
kexit (KEXI T_FAI LURE) ;

}

/* -main_before lib_call_end */

Case Studg
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

/* -main_library_call */
/* Read the input data into the two defined buffers. */

if ((inbufl = kpds_get _dat a(inobj 1, KPDS VALUE ALL, NULL)) == NULL) {
kerror(lib, rtn, “Error reading input object %\n", clui_info->1 file);
kexit (KEXI T_FAI LURE) ;

}

if ((inbuf2 = kpds_get _dat a(inobj 2, KPDS_ VALUE ALL, NULL)) == NULL) {
kerror(lib, rtn, “Error reading input object %\n", clui _info->2 file);
kexi t (KEXI T_FAI LURE) ;

/* Send the data fromthe input buffers to the */
/* the DSP X and Y: nenory spaces respectively. */

res = scomwite data dsp(&id, (int *)inbufl, (u_int32_t)wl, XMEM);

if (res != ERX {
kerror(lib, rtn, “Error % witing X nenory: %\n", res, nmisp_get_error(res));
kexi t (KEXI T_FAI LURE) ;

}

res = scomwite data dsp(&id, (int *)inbuf2, (u_int32_t)w2, YMEM;

if (res !=ER.
kerror(lib, rtn, “Error % witing Y nenory: %\n", res, misp_get_error(res));
kexi t (KEXI T_FAI LURE) ;

}

/* Load the object code of the actual DSP routine to be */
/* currently executed on the DSP56307. */

/* For sinplicity, the code to synchronize the */

/* execution on the DSP side with the execution */

/* on the PC side has been onmtted. In this sinple */

/* case the sync code is not even necessary since */

/* the tine-out value in the read_data_dsp() function */
/* is nuch larger than the amount of time taken to do */
/* the actual calculations on the DSP. */

| odpat hnane = kful | pat h(“knmsum | od”, “$MOTORCLABIN', NULL);

res = scom| oad_progran(&di d, | odpathnane);

if (res !=ER.
kerror(lib, rtn, “Error %l | oading program 9%\n", res, ndsp_get_error(res));
kexit (KEXI T_FAl LURE) ;

/* Receive the resulting signal fromthe DSP and wite */
/* it into the output object, using kpds_put_data(), */
/* part of the KHORCS Pol ynorphic Data Services. */

res = scomread_data_dsp(&id, (int *)inbufl, max);

if (res!= ERX {
kerror(lib, rtn, “Error %l reading fromDSP. %\n", res, ndsp_get_error(res));
kexit (KEXI T_FAI LURE) ;

}

i f (kpds_put_data(outobj, KPDS VALUE ALL, (kaddr)inbufl) == FALSE) {
kerror(lib, rtn, “Error witing to output object %\n”, clui_info->0 file);
kexi t (KEXI T_FAI LURE) ;

}

/* -main_library _call_end */

/* -main_after_lib_call */
/* Finally, close all the open kobjects, shut down */
/* comuni cations and do other cleanup tasks. */
scom shut _down(&di d);

if (!'kpds_set_attribute(outobj, KPDS H STCRY, kpds_history_string())) {
kerror(lib,rtn,”Unable to set history on destination object”);
kexi t (KEXI T_FAI LURE) ;

}

kpds_cl ose_obj ect (i nobj 1) ;
kpds_cl ose_obj ect (i nobj 2) ;
kpds_cl ose_obj ect (out obj) ;
i f (1odpathnane) kfree_and_NULL(| odpat hnane);

/* -main_after_lib_call_end */
/* Execution of the glyph ends here and data is */
/* avail able to the next node in the dataflow chain. */
kexi t (KEXI T_SUCCESS) ;

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

}
/* Additional

Routi ne Nane:
Pur pose:

I nput :

- Qutput:
Witten By:

Dat e:
Modi fi cati ons:

Freescale Semiconductor, In

routi nes needed by the "knsun? glyph: */

kmsum usage_addi ti ons

Prints usage additions in knsumusage routine
None

None

ghostwriter -oname knsum
July 1, 1997

voi d knmsum usage_addi ti ons(voi d)

kf printf(kstderr, “\tQutput is the sumof two inputs\n”);

/* -usage_additions */
/* -usage_additions_end */

}

Routi ne Nane:
Pur pose:

I nput :

Qut put :
Witten By:

Dat e:
Modi fi cati ons:

/* ARGSUSED */

voi d

knsum free_args(
kexit_status
kaddr

knmsum free_args

Frees QLU struct allocated in knsumget_args()
None

None

ghostwiter -oname knsum
July 1, 1997

status,
client_data)

/* do the wild and free thing */

if (clui

}

_info !'= NULL)

kfree_and_NULL(clui _info->i 1 file);
kfree_and_NULL(clui _info->i2 file);
kfree_and_NULL(cl ui _info->0_file);
kfree_and_NULL(cl ui _i nfo->conmport _string);
kfree_and_NULL(cl ui _info);

/* -free_handl er_additions */

ﬁ@ the KHOROS Software

/* -free_handl er_additions_end */

This simple source code can be regarded as a general skeleton of any software object that uses Freescale
EVMsto process data. The basic stepsto be taken are exactly the same, no matter how complex the
software object is. For example, a Freescale EVM-based data acquisition glyph can be added which brings
real-world signals to KHOROS for further analysis and processing.

Case _Studg .
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

5 Conclusion

This paper provides ageneral framework for integrating Freescale DSP563xx-based boards in distributed
digital data acquisition and processing systems, with special focus on the data communication between the
DSP-based board and the host workstation.

A specific communication protocol was developed using the asynchronous serial interface, able to transact
data up to 115200 bps. To improve the autonomy of the Freescale D SP563xx-based boards, a special
Monitor program was developed to transfer programs and data between the DSP and the workstation
through the serial communication interface (SCI), as well as the corresponding communication library for
the workstation.

A case study distributed digital signal processing system was designed using two personal computers, one
as a controlling computer and one as a workstation. The computers were connected by a TCP/IP-based
Ethernet. Both computers used the KHOROS Software Package from Khoral Research, Incorporated,
running on the Linux platform. All DSP-specific operations were initiated on the controlling computer and
run on a DSP56307 Evaluation Module attached to the workstation through the SCI.

A custom toolbox called ‘ Freescale EVM’ was created containing two specific DSP routines (‘ Glyphs')—
knmsum for adding two input signals, and knf f t , a 256-point Fast Fourier Transform, both running on
Freescale DSPsin adistributed manner. The knsumglyph was used illustrate the use of the KHOROS
software.

The principles developed here can be applied to any DSP-based application that can be implemented in a
distributed manner, such as digital signal acquisition and processing from sources scattered over large
areas, and integrating multiple measurement and instrumentation unitsinto alarger digital signal analysis
structure.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, U!ﬁa the KHOROS Software

6 References

[1] DSP56300 Family User’s Manual, Motorola, Incorporated, 1999.

[2] DSP56307 24-Bit Digital Signal Processor User’s Manual, Motorola, Incorporated, 1999.
[3] DSP56307EVM User’s Manual, Motorola, Incorporated, 1999.

[4] Freescale DSP Assembler Reference Manual, Motorola Incorporated, 1999.

[5] Digital Signal Processing. Principles, Algorithms and Applications, A J. G. Proakis and D. G.
Manolakis, 3rd edition, Prentice-Hall, 1996.

[6] Introduction to the KHOROS System, Khoral Research, Incorporated, Advanced Khoros Manuals,
1997.

[7] Toolbox Programming Manual, Khoral Research, Incorporated, Advanced Khoros Manuals,
1997.

[8] Programming Services |: Foundation Services, Khoral Research, Incorporated, Advanced Khoros
Manuals, 1997.

[9] Programming Services |l: Data Services, Khoral Research, Incorporated, Advanced Khoros Man-
uals, 1997.

[10] Programming Services |11: GUI and Visualization, Khoral Research, Incorporated, Advanced
Khoros Manuals, 1997.

[11] Khoros Programming Tutorial, Rafael Santos, Internet Resources, 1997.

About the Authors

Mihai V. Miceais alecturer at the Computer Software and Engineering Department at the Politehnica
University of Timisoara, and Executive Director of the DSP Applications Lab Timisoara (DALT)
sponsored by Digital DNA from Freescale.

Adrian TRIFU and Mircea TRIFU are students at the Automation and Computer Science Faculty at the
POLITEHNICA University of Timisoara, and members of the research and development team at DALT.

Contacts:

e micha@dsplabs.utt.ro
e http://dsplabs.utt.ro/dalt/

References
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

IntegratingFthe DSP563xx in Distributed Computing Environments
or More Information On This Product,

Go to: www.freescale.com

	Title Page
	Abstract and Contents
	1 Introduction
	1.1 Architecture
	1.2 Communication
	1.3 Monitor Program
	1.4 High-Level Software

	2 Workstation-DSP Communication Protocol
	2.1 The Command Protocol
	2.2 Communication Library Functions Overview
	2.2.1 Low-Level Functions
	2.2.2 High-Level Functions

	3 The DSP56307 in a Distributed Environment
	3.1 General Description of the Monitor Program
	3.2 Monitor Program Implementation on DSP56307
	3.2.1 Definitions
	3.2.2 Initialization
	3.2.3 Receive Routine
	3.2.4 Load Procedure
	3.2.5 Run Command Procedure
	3.2.6 Transmit Routine

	4 Case Study
	4.1 General Architecture
	4.1.1 Controlling Computer
	4.1.2 Workstation
	4.1.3 DSP-Based Board

	4.2 DSP Algorithms
	4.2.1 Adder Algorithm
	4.2.2 FFT Algorithm

	4.3 The KHOROS Environment
	4.3.1 Cantata
	4.3.2 The Glyph
	4.3.3 Toolboxes
	4.3.4 Software Objects
	4.3.5 Development Tools
	4.3.6 Data Structure

	4.4 Using the KHOROS Software
	4.4.1 Building a Toolbox
	4.4.2 Adding a Glyph to a Toolbox
	4.4.3 Defining the Glyph User Interface

	5 Conclusion
	6 References

