
 1

Static Constructs: Evolution and Impact
on Software Quality Aspects

PhD thesis submitted in fulfillment of
the requirements for the doctoral degree
at the Politehnica University of Timişoara

in the field of Computers and Information Technology
by

Eng. Cosmin Marşavina

University supervisor: Prof. Dr. Habil. Eng. Mihai V. MICEA

Date of thesis defense:

 2

Preface

The thesis was written as part of my PhD at the Politehnica University of
Timişoara. In the beginning I did not fully comprehend what a PhD entailed or the

effort required to complete it. With time I managed to put in the work and achieve
the goals that were set, thereby allowing me to finalize the studies. This is why I
want to express my gratitude to a number of people for aiding me throughout the
entire process.

My special thanks go to Prof. Dr. Habil. Eng. Radu Marinescu with whom I
started this journey. He had a big impact on both my professional and personal

development. He also gave me the opportunity to start teaching, an experience that
I thoroughly enjoy to this day. I would equally like to thank Prof. Dr. Habil. Eng.
Mihai V. Micea for coordinating me in the second part of this thesis. Your patience
and support have helped me immensely and I cannot thank you enough.

I also want to mention the members of the steering committee: Conf. Dr.
Eng. Petru Florin Mihancea, Conf. Dr. Eng. Marius Minea, Sl. Dr. Eng. Dan Cosma,

Conf. Dr. Eng. Ciprian Bogdan Chirilă, and Conf. Dr. Eng. Codruța Istin. They all

provided invaluable feedback on reports, scientific articles, and various other
documents that had to be developed as part of the doctorate. I really appreciate
that they were always available for discussion, thus helping me make significant
progress.

Last but not least, I would like to thank my family and especially my
parents, Liviu and Dalila, for their continuous support throughout this period. It has
been a long, grueling process and I could not have done it without you.

Timişoara, December 2021 Cosmin Marşavina

 3

CONTENTS

1. Introduction……9

1.1. Problem statement……………………………………………………………………………………9

1.2. Research questions…………………………………………………………………………………11

1.3. Relevance……………………………………………………………………………………………….13

1.4. Main Objectives…..…………………………………………………………………………………14

1.5. Outline…………………………………………………………………………………………………….15

2. Related Work……..17

2.1. Design flaw and test smell detection…………………………………………………….17

2.1.1. Detection strategies and tool support……………………………………17

2.1.2. Test smells………………………………………………………………………………18

2.2. Software evolution………………………………………………………………………………….19

2.3. Evaluating software quality aspects………………………………………………………20

2.3.1. Assessing software testability……………………………………………….20

2.3.2. Assessing change- / defect-proneness………………………………….21

2.4. Design flaws that affect software quality………………………………………………22

2.4.1. Testability……………………………………………………………………………….22

2.4.2. Change- / defect-proneness………………………………………………….23

2.4.3. Class dependencies………………………………………………………………..24

2.5. Main contributions and limitations…………………………………………………………26

3. Approach………30

3.1. Categorizing and detecting static constructs…………………………………………30

3.2. Studying evolution………………………………………………………………………………….32

3.3. Quantifying class testability……………………………………………………………………32

3.4. Identifying change- / error-prone classes…………………………………………….35

3.5. Implementation………………………………………………………………………………………38

4. Design of the Empirical Study………………………………………………………………………………..42

4.1. Main goal…………………………………………………………………………………………………42

4.2. Formulated hypotheses………………………………………………………………………….42

4.3. Independent and dependent variables………………………………………………….43

4.4. System selection…………………………………………………………………………………….45

4.5. Analyses conducted………………………………………………………………………………..48

4.5.1. Preliminary analysis……………………………………………………………….48

4.5.2. Static construct presence / usage…………………………………………49

4.5.3. Evolution of static constructs…………………………………………………49

4.5.4. Impact on software quality aspects………………………………………49

5. Results…….51

5.1. Static constructs identified…………………………………………………………………….51

5.1.1. BCEL……………………………………………………………………………………….51

5.1.2. Commons Collections…………………………………………………………….52

5.1.3. Commons Lang………………………………………………………………………53

5.1.4. Commons Math………………………………………………………………………53

5.1.5. Digester………………………………………………………………………………….54

5.1.6. Geode………………………………………………………………………………………55

5.1.7. jHotDraw…………………………………………………………………………………56

5.1.8. Pig……………………………………………………………………………………………56

 4

5.1.9. Spring Core…………………………………………………………………………….57

5.1.10. Tomcat………………………………………………………………………………….58

5.1.11. Wicket……………………………………………………………………………………59

5.2. Evolution of static constructs…………………………………………………………………60

5.2.1. BCEL……………………………………………………………………………………….60

5.2.2. Commons Collections…………………………………………………………….64

5.2.3. Commons Lang………………………………………………………………………67

5.2.4. Commons Math………………………………………………………………………70

5.2.5. Digester………………………………………………………………………………….73

5.2.6. Geode……………………………………………………………………………………..75

5.2.7. jHotDraw…………………………………………………………………………………79

5.2.8. Pig……………………………………………………………………………………………83

5.2.9. Spring Core…………………………………………………………………………….87

5.2.10. Tomcat………………………………………………………………………………….91

5.2.11. Wicket……………………………………………………………………………..…..95

5.3. Impact on class testability……………………………………………………………………..99

5.3.1. BCEL……………………………………………………………………………………….99

5.3.2. Commons Collections…………………………………………………………..100

5.3.3. Commons Lang…………………………………………………………………….101

5.3.4. Commons Math…………………………………………………………………….102

5.3.5. Digester…………………………………………………………………………………103

5.3.6. Geode……………………………………………………………………………………103

5.3.7. jHotDraw………………………………………………………………………………104

5.3.8. Pig………………………………………………………………………………..………105

5.3.9. Spring Core………………………………………………………………………….106

5.3.10. Tomcat…………………………………………………………………………..…..107

5.3.11. Wicket…………………………………………………………………………………108

5.4. Impact on change- / defect-proneness……………………………………………….109

5.4.1. BCEL……………………………………………………………………………….…….109

5.4.2. Commons Collections…………………………………………………………..113

5.4.3. Commons Lang…………………………………………………………………….115

5.4.4. Commons Math…………………………………………………………………….118

5.4.5. Digester…………………………………………………………………………………121

5.4.6. Geode……………………………………………………………………………………123

5.4.7. jHotDraw…………………………………………………………………………..….126

5.4.8. Pig…………………………………………………………………………………………128

5.4.9. Spring Core………………………………………………………………………….132

5.4.10. Tomcat…………………………………………………………………………..…..134

5.4.11. Wicket…………………………………………………………………………………138

6. Discussion………..142

6.1. Revisiting the research questions……………………………………………………….142

6.2. Threats to validity…………………………………………………………………………………151

7. Conclusions………………………………………………………………………………….……………………….155

7.1. Contributions…………………………………………………….………………………………….155

7.2. Conclusions…………………………………………….…………………………………………….157

7.3. Reflection……………………………………..………………………………………………………159

7.4. Future work……………………………………..…………………………………………………..160

 5

LIST OF TABLES

Table 2.5. Main contributions and limitations of the surveyed articles…………………….26

Table 3.1. Test smells identified by tsDetect…………………………………………………………….34

Table 3.2 Categories of changes retrieved by ChangeDistiller………………………………….37

Table 4.1: Independent and dependent variables per hypothesis……………………………44

Table 4.2 Overview of the selected systems……………………………………………………………..46

Table 5.1.1: Static constructs BCEL…………………………………………………………………………..51

Table 5.1.2: Static constructs Commons Collections………………………………………………..52

Table 5.1.3: Static constructs Commons Lang………………………………………………………….53

Table 5.1.4: Static constructs Commons Math………………………………………………………….54

Table 5.1.5: Static constructs Digester………………………………………………………………………54

Table 5.1.6: Static constructs Geode…………………………………………………………………………55

Table 5.1.7: Static constructs jHotDraw……………………………………………………………………56

Table 5.1.8: Static constructs Pig………………………………………………………………………………57

Table 5.1.9: Static constructs Spring Core………………………………………………………………..57

Table 5.1.10: Static constructs Tomcat…………………………………………………………………….58

Table 5.1.11: Static constructs Wicket………………………………………………………………………59

Table 5.3.1: Testability of classes with static constructs vs. similar classes for
BCEL……….99

Table 5.3.2: Testability of classes with static constructs vs. similar classes for
Commons Collections……………………………………………………………………………………………….100

Table 5.3.3: Testability of classes with static constructs vs. similar classes for
Commons Lang…….101

Table 5.3.4: Testability of classes with static constructs vs. similar classes for
Commons Math……102

Table 5.3.5: Testability of classes with static constructs vs. similar classes for
Digester…….103

Table 5.3.6: Testability of classes with static constructs vs. similar classes for
Geode………..104

Table 5.3.8: Testability of classes with static constructs vs. similar classes for
Pig……105

Table 5.3.9: Testability of classes with static constructs vs. similar classes for Spring
Core………106

Table 5.3.10: Testability of classes with static constructs vs. similar classes for
Tomcat……….107

Table 5.3.11: Testability of classes with static constructs vs. similar classes for
Wicket………..108

Table 5.4 Bug-fix commits identified……………………………………………………………………….109

Table 5.4.1.1: Change-proneness of classes with static constructs vs. similar classes
for BCEL…….109

Table 5.4.1.2: Defect-proneness of classes with static constructs vs. similar classes
for BCEL…….111

Table 5.4.2.1: Change-proneness of classes with static constructs vs. similar classes
for Commons Collections………………………………………………………………………………………….113

 6

Table 5.4.2.2: Defect-proneness of classes with static constructs vs. similar classes
for Commons Collections………………………………………………………………………………………….114

Table 5.4.3.1: Change-proneness of classes with static constructs vs. similar classes
for Commons Lang……………………………………………………………………………………………………115

Table 5.4.3.2: Defect-proneness of classes with static constructs vs. similar classes
for Commons Lang.………..…………………………………………………………………………………………117

Table 5.4.4.1: Change-proneness of classes with static constructs vs. similar classes
for Commons Math……………………………………………………………………………………………………118

Table 5.4.4.2: Defect-proneness of classes with static constructs vs. similar classes
for Commons Math…..………………………………………………………………………………………………120

Table 5.4.5.1: Change-proneness of classes with static constructs vs. similar classes
for Digester…….121

Table 5.4.5.2: Defect-proneness of classes with static constructs vs. similar classes
for Digester…….122

Table 5.4.6.1: Change-proneness of classes with static constructs vs. similar classes
for Geode………..123

Table 5.4.6.2: Defect-proneness of classes with static constructs vs. similar classes
for Geode………..125

Table 5.4.7.1: Change-proneness of classes with static constructs vs. similar classes
for jHotDraw……126

Table 5.4.7.2: Defect-proneness of classes with static constructs vs. similar classes
for jHotDraw……127

Table 5.4.8.1: Change-proneness of classes with static constructs vs. similar classes
for Pig……128

Table 5.4.8.2: Defect-proneness of classes with static constructs vs. similar classes
for Pig………..130

Table 5.4.9.1: Change-proneness of classes with static constructs vs. similar classes
for Spring Core.....……………………………………………………………………………………………………132

Table 5.4.9.1: Defect-proneness of classes with static constructs vs. similar classes
for Spring Core…….……………………………………..……………………………………………………………133

Table 5.4.10.1: Change-proneness of classes with static constructs vs. similar
classes for Tomcat.....………………………………………………………………………………………………135

Table 5.4.10.1: Defect-proneness of classes with static constructs vs. similar classes
for Tomcat…………….……………………………………..……………………………………………………………136

Table 5.4.11.1: Change-proneness of classes with static constructs vs. similar
classes for Wicket………………………………………………………………………………………………………138

Table 5.4.11.2: Defect-proneness of classes with static constructs vs. similar classes
for Wicket……….139

Table 6.1.1: Static construct presence…………………………………………………………………….142

Table 6.1.2: Percentage of instances per category…………………………………………………143

Table 6.1.3: Evolution of static attributes and singletons………………………………………144

Table 6.1.4: Evolution of utility classes, static methods, and initialization blocks..146

Table 6.1.5: Impact of static constructs on class testability………………………………….147

Table 6.1.6: Impact of static constructs on change-proneness………………………………148

Table 6.1.7: Impact of static constructs on defect-proneness……………………………….150

 7

LIST OF FIGURES

Figure 3.1. Overview of static construct categories………………………………………………….31

Figure 3.2. Thresholds for the quantitative and qualitative aspects…………………………35

Figure 3.3. Categorizing commits as bug-fixes…………………………………………………………36

Figure 3.4. Implementation of the data collection process……………………………………….39

Figure 4.1. Evolution of the number of classes for each project………………………………47

Figure 4.2. Evolution of the number of methods for each project……………………………47

Figure 4.3. Evolution of the number of unit tests for each project……………………….…48

Figure 5.2.1.1: Evolution of static non-final attributes for BCEL………………………………60

Figure 5.2.1.2: Evolution of constants for BCEL……………………………………………………….61

Figure 5.2.1.3: Evolution of singleton usage for BCEL………………………………………………61

Figure 5.2.1.4: Evolution of utility classes for BCEL………………………………………………….62

Figure 5.2.1.5: Evolution of utility class usage for BCEL………………………………………….62

Figure 5.2.1.6: Evolution of static methods for BCEL……………………………………………….63

Figure 5.2.1.7: Evolution of static initialization blocks for BCEL………………………………63

Figure 5.2.2.1: Evolution of constants for Commons Collections…………………………….64

Figure 5.2.2.2: Evolution of singletons for Commons Collections…………………………….64

Figure 5.2.2.3: Evolution of singleton usage for Commons Collections……………………65

Figure 5.2.2.4: Evolution of utility classes for Commons Collections……………………….65

Figure 5.2.2.5: Evolution of utility class usage for Commons Collections……………….66

Figure 5.2.2.6: Evolution of static methods for Commons Collections…………………….66

Figure 5.2.3.1: Evolution of constants for Commons Lang……………………………………….67

Figure 5.2.3.2: Evolution of utility classes for Commons Lang…………………………………68

Figure 5.2.3.3: Evolution of utility class usage for Commons Lang…………………………68

Figure 5.2.3.4: Evolution of static methods for Commons Lang………………………………69

Figure 5.2.3.5: Evolution of static initialization blocks for Commons Lang……………..69

Figure 5.2.4.1: Evolution of static non-final attributes for Commons Math…………….70

Figure 5.2.4.2: Evolution of constants for Commons Math………………………………………70

Figure 5.2.4.3: Evolution of utility classes for Commons Math…………………………………71

Figure 5.2.4.4: Evolution of utility class usage for Commons Math…………………………72

Figure 5.2.4.5: Evolution of static methods for Commons Math………………………………72

Figure 5.2.4.6: Evolution of static initialization blocks for Commons Math……………..73

Figure 5.2.5.1: Evolution of static attributes for Digester…………………………………………73

Figure 5.2.5.2: Evolution of utility classes for Digester…………………………………………….74

Figure 5.2.5.3: Evolution of utility class usage for Digester…………………………………….74

Figure 5.2.6.1: Evolution of static non-final attributes for Geode……………………………75

Figure 5.2.6.2: Evolution of constants for Geode………………………………………………………76

Figure 5.2.6.3: Evolution of singletons for Geode…………………………………………………….76

Figure 5.2.6.4: Evolution of singleton usage for Geode……………………………………………77

Figure 5.2.6.5: Evolution of utility classes for Geode……………………………………………….77

Figure 5.2.6.5: Evolution of utility class usage for Geode…………………………………………78

Figure 5.2.6.7: Evolution of static methods for Geode……………………………………………..78

 8

Figure 5.2.6.8: Evolution of static initialization blocks for Geode…………………………….79

Figure 5.2.7.1: Evolution of static attributes for jHotDraw………………………………………79

Figure 5.2.7.2: Evolution of singletons for jHotDraw……………………………………………….80

Figure 5.2.7.3: Evolution of singleton usage for jHotDraw……………………………………….80

Figure 5.2.7.4: Evolution of utility classes for jHotDraw………………………………………….81

Figure 5.2.7.5: Evolution of utility class usage for jHotDraw……………………………………81

Figure 5.2.7.6: Evolution of static methods for jHotDraw…………………………………………82

Figure 5.2.7.7: Evolution of static initialization blocks for jHotDraw……………………….82

Figure 5.2.8.1: Evolution of static attributes for Pig…………………………………………………83

Figure 5.2.8.2: Evolution of singletons for Pig………………………………………………………….84

Figure 5.2.8.3: Evolution of singleton usage for Pig…………………………………………………84

Figure 5.2.8.4: Evolution of utility classes for Pig…………………………………………………….85

Figure 5.2.8.5: Evolution of utility class usage for Pig……………………………………………..85

Figure 5.2.8.6: Evolution of static methods for Pig…………………………………………………..86

Figure 5.2.8.7: Evolution of static initialization blocks for Pig………………………………….86

Figure 5.2.9.1: Evolution of static non-final attributes for Spring Core……………………87

Figure 5.2.9.2: Evolution of constants for Spring Core…………………………………………….87

Figure 5.2.9.3: Evolution of singleton usage for Spring Core…………………………………..88

Figure 5.2.9.4: Evolution of utility classes for Spring Core………………………………………89

Figure 5.2.9.5: Evolution of utility class usage for Spring Core……………………………….89

Figure 5.2.9.6: Evolution of static methods for Spring Core…………………………………….90

Figure 5.2.9.7: Evolution of static initialization blocks for Spring Core……………………90

Figure 5.2.10.1: Evolution of static non-final attributes for Tomcat………………………..91

Figure 5.2.10.2: Evolution of constants for Tomcat………………………………………………….91

Figure 5.2.10.3: Evolution of singletons for Tomcat…………………………………………………92

Figure 5.2.10.4: Evolution of singleton usage for Tomcat………………………………………..92

Figure 5.2.10.5: Evolution of utility classes for Tomcat……………………………………………93

Figure 5.2.10.6: Evolution of utility class usage for Tomcat…………………………………….93

Figure 5.2.10.7: Evolution of static methods for Tomcat………………………………………….94

Figure 5.2.10.8: Evolution of static initialization blocks for Tomcat…………………………94

Figure 5.2.11.1: Evolution of static non-final attributes for Wicket…………………………95

Figure 5.2.11.2: Evolution of constants for Wicket…………………………………………………..95

Figure 5.2.11.3: Evolution of singletons for Wicket………………………………………………….96

Figure 5.2.11.4: Evolution of singleton usage for Wicket…………………………………………96

Figure 5.2.11.5: Evolution of utility classes for Wicket…………………………………………….97

Figure 5.2.11.6: Evolution of utility class usage for Wicket………………………………………97

Figure 5.2.11.7: Evolution of static methods for Wicket………………………………………..…98

Figure 5.2.11.8: Evolution of static initialization blocks for Wicket………………………….98

 9

1. INTRODUCTION

 The chapter provides an introduction to the work that will be presented in
the thesis. First, it discusses the problem that is being addressed through this study.
Afterwards we introduce the research questions that were formulated and

emphasize their importance. The relevance of our work is also explained along with
the main contributions that were brought. We continue by describing the main
objectives that were set. The last section of the chapter contains the outline for the
rest of this thesis.

1.1. Problem statement

 Numerous studies have shown that testing is a vital part of the software
development life cycle. In [1] Brooks proves that more than half of the effort

required for developing complex software systems is spent on testing. The

importance of testing is also emphasized in [2] where Sommerville explains the
different types of development testing that can be performed and their benefits; the
categories mentioned are unit testing, component testing, and system testing. For
this study we will focus on unit testing in an object-oriented context as these tests
are directly related to specific parts of the source code. The benefits of unit testing
are discussed more in depth in [3], which describes how it should happen during
each development stage in order to be efficient.

 Closely related to the testing process is the testability aspect of software
systems. In [4] testability is defined as “the degree to which a system or component
facilitates the establishment of test criteria and performance of tests to determine
whether those criteria have been met.” According to ISO 9126-1 [5] testability is
“the capability of the software product to enable modified software to be validated”.
Other publications (such as [6]) define testability in terms of the effort required for

testing. This software quality aspect has proven difficult to quantify. Most of the

articles that address software testability assess it during the design and analysis
phase, they do not evaluate it based on already implemented code. Very few studies
have investigated metrics that can be utilized to determine the testability of a
production class. To the best of our knowledge, [7] is the first article that tries to
study this matter; it shows that there is a correlation between production code
metrics (such as Lines of Code, FANOUT, and Response for Class) and test case

metrics (such as Lines of Code for Test Class and Number of Test Cases). Similar
ideas are presented by Zhou et al. in [8], who demonstrate a connection between
testability and structural metrics. However, none of the publications that we have
encountered thus far tried to assess the testability of a production class based on its
corresponding tests. We argue that the quantity and quality of the unit tests that
cover a particular class are good indicators of how difficult it is to test the respective
class. For example, if a production class is addressed by fewer tests compared to

other similar classes, then this might suggest that it is more difficult to test.

 10

 Two other software quality aspects that are also related to testing are
change- and defect-proneness. Change-proneness is a characteristic of software

artifacts that represents their susceptibility to modifications; the changes may have
various causes, including: 1) new requirements, 2) fixing problems in the code, and
3) ripple effects. There are several publications that address the negative
consequences of having high change-proneness. For example, in [9] the authors
prove that a lot of maintenance needs to be performed on change-prone classes as
a system evolves. Change-proneness has also been associated with technical debt,

as demonstrated in [10]. The lack of applying patterns and the presence of anti-

patterns have been shown to make a production class change-prone [11].
 Another common problem in complex software projects is that they are
susceptible to errors [12]. These errors occur because of the high defect-proneness
of the system’s production classes. There are studies (such as [13], [14], or [15])
that try to assess error-proneness based on software metrics. However, [16] has
proven that metrics alone are insufficient to predict defect-prone classes as systems
evolve. We argue that the presence of certain design flaws in the production code

could make the respective classes more susceptible to faults.
 Little research has been done thus far on specific problems in the code that
have a negative effect on the 3 quality aspects discussed above. In terms of
testability, [17] presents 4 categories of design flaws that make a system difficult to
test. The ones that appear to have the highest impact are those related to class
dependencies, namely global state (and singletons) and instantiations that occur in

constructors or methods. Design flaws have also been shown to affect change- /
defect-proneness. Reference [18] tries to compile a list of flaws that make a class
susceptible to change. As mentioned by the authors, this list is by no means
complete; further investigation is needed on design flaws that impact change-
proneness. Problems in the production code have also been used to predict whether
or not a class will change in the future [19]. Therefore, it is even more important to
determine other design flaws that make a class more likely to be modified.

Error-proneness is another quality aspect that has received a significant
amount of attention in recent years. However, just as for the previous 2 aspects
(testability and change-proneness), the impact of design flaws on this quality aspect
has not been thoroughly investigated. While there are some studies that look into
this (such as [20] or [21]), most of them focus on software metrics rather than on
specific problems in the code. In [22] the authors study 5 flaws and establish that
there is a correlation (although not very significant) between 4 of them and defect-

proneness. Reference [23] presents a literature review of design flaws that may

cause software bugs. The 18 studies included in this review only cover around 30
design flaws; this further proves that there are many other flaws that still need to
be investigated.
 With the exception of [17], none of the other publications consider design
flaws related to the usage of the static keyword. We named this kind of instances

static constructs and will refer to them this way throughout the rest of the thesis.
These constructs have already been proven to have a detrimental effect on several
other quality aspects, including maintainability [25], understandability [26], and
security [27]. For example, [28] presents the most common cases in which the
static keyword is used in the code and gives a number of reasons why it has a
negative effect on maintainability. As mentioned before, Hevery showed that
mutable global state and static methods have an impact on class testability.

However, the effects of other types of static constructs (e.g., constants or static
initialization blocks) have not been studied. We have already proven 1) that mutable

 11

global state (static non-final attributes and stateful singletons) negatively affects
defect-proneness [29] and 2) that singletons and certain types of static methods

make the classes that utilize them more difficult to test [30]. Up until now, we
analysed these aspects in isolation; in this thesis, we plan to investigate every
category of static constructs both in terms of presence / usage and regarding their
impact on the 3 quality aspects.

Based on the above, there is a clear need within the scientific community to
study the different types of static constructs present in the production code. While

some may prove harmless to the software quality aspects that we are addressing,

there will surely be categories that have a negative impact on testability or change-
/ defect-proneness. For example, we expect constants to have little or no influence;
on the other hand, stateful singletons should be detrimental to all 3 quality aspects.
In order to fully understand how these static constructs are used, we do not think
that it is sufficient to examine only the latest version of a system. Valuable insight
can be obtained by studying multiple versions throughout a project’s history.
Therefore, we plan to extract and leverage historical data to further refine the

analysis. After we gain a thorough understanding on this matter, we want to study
the impact of each type of static construct on the quality aspects mentioned above.
By doing this, we will be able to pinpoint the ones that cause problems and provide
appropriate recommendations on which static constructs should be avoided.

1.2. Research questions

In this study, we try to understand 1) how static constructs are used in

complex projects and 2) whether or not they have a negative effect on several
software quality aspects. By static constructs we are referring to a broad category of
entities that use the static keyword. They can be very simple, such as static
attributes (non-final and constant) and methods, or more complex (e.g., singletons
or utility classes); therefore, an initial categorization is required. Afterwards, we
want to study their presence / usage both for the latest version of a system and for
multiple versions throughout its lifespan. This is done in order to observe if the

usage patterns have changed over the years. As an example, Singleton was initially
considered a creational design pattern; however, experience has proven that it is
rather an anti-pattern. Thus, we expect such instances to appear less frequently in

the final version analysed compared to the previous versions. If static construct
instances are actually used less, then we need to understand the reasoning behind
such a decision. The main cause would be that static constructs are detrimental to
software quality aspects. Some of the aspects, such as maintainability or

understandability, have already been investigated. We will focus on the ones that
have not been addressed thus far, namely: 1) testability, 2) change-proneness, and
3) defect-proneness. For each of these aspects we want to define models that can
be used to quantify them. Only after we are able to evaluate a quality aspect for a
specific part of the production code, can we establish if the parts that contain static
constructs are more problematic than the rest of the code. We plan to analyse the

impact of each category of constructs on the 3 quality aspects of interest. This will
allow us to specify which types of instances are the most detrimental to a particular
aspect. We expect some of the static constructs (e.g., constants) to not have any
negative effect on software quality. On the other hand, there might be others (e.g.,
singletons) which do not impact a quality aspect directly, but rather the production

 12

classes that use them are affected. This is also something that we will be
considering in our analyses. All of the above have led us to the following research

questions:

 RQ1. Are static constructs used in complex software systems?

 RQ2. How have static constructs evolved throughout the lifespan of a
project?

 RQ3. Do static constructs have a negative impact on software quality

aspects?

With the first question, we are trying to establish whether or not static
constructs are present in the production code. The following 2 research questions
would not make sense if static construct instances do not appear or are barely used.
However, we want to distinguish between different types of static constructs. We do
not believe that instances of distinct types are utilized in the same way, therefore

we need to categorize them first. The categorization is done based on 1) the size of
the construct (e.g., entire classes such as singletons or utility classes vs. a single
static method within a class) and 2) whether they represent / access state or not
(e.g., static non-final attributes vs. constants). After dividing them into categories,
each type will be studied in isolation for the latest version of a system. Some quality
aspects might not be directly affected by the presence of static constructs. For
example, the singletons themselves are easy to test, but the production classes that

utilize them are significantly harder due to the setup required to configure the

appropriate singleton state. Thus, the client classes for each instance also need to
be considered in the analysis.

The second research question addresses the evolution of static constructs.
We want to determine how instances of each type have evolved throughout a
project’s history. More specifically, we are interested in observing if more instances
of static constructs are present / utilized currently compared to the early stages of

development. We consider that if static constructs appear less frequently nowadays
then this is a clear indication of the fact that they are detrimental to different
software quality aspects. Just as for the previous research question, we will also be
examining the client classes for each instance. If the number of clients starts to
decrease while the system is continuing to grow, then this would further confirm
that static constructs are harmful.

Finally, the last research question is directly related to the 3 software quality
aspects that we are addressing in this thesis. It can be split into 3 sub-questions;

one of them would be: “Do static constructs have a negative impact on class
testability?”. Therefore, we will investigate the effect of each type of static construct
on the 3 quality aspects: 1) testability, 2) change-proneness, and 3) defect-
proneness. In order to be able to do this, we must first quantify these aspects for
specific parts of the production code. Models and procedures that can aid us in this

regard will be proposed. For the classes of interest, the assessments will be
performed in relation to other classes which are similar to them (in terms of size
and complexity). As an example, we will be capable of establishing if singletons are
more prone to error compared to other classes. By demonstrating that the usage of
static constructs is detrimental to one or more of the quality aspects investigated,
we will raise awareness regarding the types that are the most problematic.

 13

1.3. Relevance

From a research perspective, it is important to gain insight into the way in
which static constructs are used and how they evolved. This allows for a better
understanding of software development practices. Additionally, the proposed
approach could be employed to study these aspects for other design flaws, such as

object instantiations in constructors / methods or Law of Demeter violations. It
would be interesting to see if these flaws evolved differently compared to the static

construct instances. After obtaining a good understanding of static construct usage,
we also want to investigate their effect on 3 software quality aspects.

The aspects considered in this study, testability and change- / defect-
proneness, are closely related to the testing process and may affect it. The main
goal is to determine which types of static constructs have a large negative impact

on the quality aspects studied. By understanding this, we will be able to provide a
series of recommendations on which static constructs can continue to be used
during development (e.g., constants) and which should be avoided (possibly at all
cost). However, the knowledge obtained will not be limited to these aspects. For
example, when assessing testability, we want to determine particular smells that
exist in the tests covering the classes with static constructs. By doing this, we can
find correlations between certain test smells and the static constructs that cause

them to appear. For example, we expect the General Fixture smell to occur more
frequently in test classes that cover singletons and their clients. For change- and

defect-proneness, we also want to understand the exact modifications that were
performed on the classes with static constructs. It might be the case that only some
specific types of changes occurred and it would be very useful to find out which. The
effects of static constructs on other software quality aspects may be studied in a

similar way; the appropriate models have to be defined and then the impact of each
type of construct can be analysed independently.
 By investigating all the aspects mentioned above, we will bring a number of
contributions:

 A general methodology that can be followed to detect specific design flaws
in the production code, study how they evolved, and assess their impact on
a series of software quality aspects. This methodology consists of several

steps: 1) defining the detection strategies for all the instances of the flaw
(possibly categorizing them first); 2) going through the version history of a
system to understand their evolution; 3) defining the models for quantifying

each quality aspect; 4) comparing the parts of the code in which the design
flaw instances are present with other similar classes with regard to each of
the analysed aspects. Significant data will be obtained after each step, but
only by implementing all of them can we examine the entire process. We

will highlight the applicability of the proposed approach using different types
of static constructs as the flaws of interest. Three quality aspects are going
to be studied: 1) class testability, 2) change-proneness, and 3) defect-
proneness. Each category of instances shall be investigated independently in
terms of presence, evolution, and impact. Afterwards, we will make some
general observations regarding static constructs as a whole.

 A model for assessing the testability of production classes based on their
corresponding unit tests. The test suite is analysed both from a quantitative
and from a qualitative perspective. We rely on coverage data to evaluate
quantity, namely line coverage and the percentage of methods from that
part of the production code that are addressed by unit tests. For quality we

 14

detect smells in the corresponding tests and establish whether or not they
are more frequent in the classes that cover static constructs. The 2

assessments are combined into a score that represents the testability of a
certain class. By comparing this score to that of similar classes, we can
specify if a class with static constructs is less / more difficult to test.

 A method to 1) determine the modifications that were performed during a
commit and 2) categorize commits as bug-fixes. The first part is needed to
establish whether or not the classes with static constructs 1) were modified

more frequently and 2) more changes were performed on them per commit;

if this is the case, we can consider them more change-prone compared to
other classes. For defect-proneness we investigate the same aspects, but
only the commits that were identified as bug-fixes are included in the
analysis.

 A tool that can be utilized to detect design flaws, study their evolution and
quantify their impact on the 3 quality aspects discussed above (testability,
change- and defect-proneness). This tool needs to be as modular as

possible; there will be different types of modules for each of the steps from
the proposed approach. For example, there are going to be several modules
in which we define the detection strategies for every category of static
constructs. Another module shall be responsible for retrieving the historical
data necessary for studying evolution. Finally, the tool will have a group of
modules for assessing each of the software quality aspects. The

aforementioned modules can be combined to form the required analysis.
The tool also needs to be highly extendable, new modules with detection
strategies or models for other software quality aspects may be added
without too much effort.

 An empirical study in which we use this tool for different categories of static
constructs. First, we must define the appropriate detection strategy for each
type (e.g., stateful / stateless singletons). Then we can analyse their

presence / usage both for the latest version of a system and for monthly
commits. Finally, we shall use the proposed models / procedures to
determine whether or not instances of a certain type have a negative impact
on the quality aspects investigated. Through this empirical study we will
obtain a good understanding of 1) how static constructs are utilized, 2) the
way in which they have evolved, and 3) their effect on the 3 software
quality aspects. Some interesting observations are going to be made; they

will be discussed in depth in the chapters that follow.

1.4. Main objectives

We have set several objectives that must be accomplished in order to
provide the contributions presented above. The main objectives of this thesis are:

 O1. Studying the state of the art for the topics of interest: design flaw

detection (with an emphasis on static constructs) and evolution, models for
quantifying software quality aspects, and design flaws that have an impact
on the aspects we are investigating.

 O2. Categorizing the static constructs and defining detection strategies
through which instances of each type can be identified. Additionally,

 15

analysing the presence and usage of these instances both for the latest
version of a project and throughout its entire lifespan.

 O3. Developing procedures through which the quality aspects considered,
class testability, change- and defect-proneness, can be evaluated. Also
establishing whether or not the static constructs from each category have an
effect on them.

By achieving these objectives we should: 1) have a good understanding of

the related literature, 2) determine what types of static constructs appear more
frequently and how they evolved, 3) establish which instances are the most harmful
to the 3 software quality aspects investigated.

1.5. Outline

 In this section, we explain how the rest of the thesis is structured. The

following chapter discusses related work from fellow researchers. It contains 4
sections that cover: 1) different approaches to identifying design flaws; 2)
methodologies for analysing the evolution of specific parts of the production code;
3) ways of assessing software testability and change- / defect-proneness; 4) design
flaws that have been proven to have a negative impact on these quality aspects. We
end this chapter with a section that thoroughly discusses the differences between

our work and the other publications with regard to: 1) design flaw detection; 2)

studying software evolution (with an emphasis on the design flaws of interest,
namely static constructs); 3) quantifying testability and change- / defect-proneness;
4) tools for investigating one or more of the previous aspects.
 In Chapter 3, we detail the proposed approach. First, we disclose how static
constructs were categorized and present the detection strategies for each type.
Then we describe the process through which we study the evolution of static
constructs. The following sections discuss the model for quantifying class testability

and the methods for assessing change- / defect-proneness. We conclude the
chapter by providing implementation details for the entire data collection process
and presenting the tool that was developed.
 Chapter 4 explains how the empirical study was conducted. It starts by
discussing the main goal of the study, the formulated hypotheses, and the
independent and dependent variables for each hypothesis. Afterwards, we present

the criteria based on which we selected the systems included in the study. Finally,

we describe in detail each of the 4 analyses that were performed, namely: 1) static
construct presence / usage; 2) evolution of each static construct type; 3) impact on
class testability; 4) impact on change- / defect-proneness.
 Chapter 5 presents the results that were obtained for each of these
analyses. It only includes raw results; their interpretation is provided in the
following chapter. In Chapter 6 we revisit each research question and discuss the

implications of the results. We also mention a series of threats that might impact
the validity of the empirical study and explain how we tried to mitigate them.
 The final chapter of the thesis contains conclusions and future work
directions. We begin by reiterating the contributions provided through our research.
Then we summarize what has been done and discuss the main results in connection
with the research questions. In the following section, we reflect on our work and
explain what could have been done better. We end the thesis with 6 future work

directions that are being considered at the moment, namely: 1) improving the

 16

empirical study; 2) analysing other design flaws; 3) enhancing the testability model;
4) refining the process for identifying bug-fix commits; 5) studying everything at a

lower level of granularity; 6) proposing refactoring solutions for static constructs
and test smells.

In summary, this chapter discusses:

1. The problem that is being addressed in the thesis; it includes:

 The importance of testing and the software quality aspects related to
this process;

 The motivation behind choosing static constructs as the design flaws

of interest;

 A short overview of how we plan to tackle the problem.

2. The research questions that were formulated:

 RQ1. Are static constructs used in complex software systems?

 RQ2. How have static constructs evolved throughout the lifespan of a
project?

 Do static constructs have a negative impact on software quality
aspects?

3. The relevance of our work along with the main contributions:

 A methodology for studying design flaws, their evolution, and the
impact they have on software quality;

 A model for evaluating class testability based on the quantity and the
quality of its corresponding unit tests;

 A process for determining the fine-grained source code changes
performed during a commit and establishing whether or not the
respective commit is a bug-fix;

 A tool that incorporates all these aspects;

 An empirical study through which we answer the proposed research

questions.

4. The main objectives that must be accomplished through our work.

5. How the rest of the thesis is structured:

 Chapter 2 contains a comprehensive literature review of the articles
that address topics which are similar to ours;

 Chapter 3 describes the approach proposed in order to study the

aspects of interest;

 Chapter 4 presents the empirical study that was conducted;

 Chapter 5 highlights the obtained results;

 Chapter 6 provides an interpretation of the results in relation to the
research questions along with potential threats to validity that might
influence them;

 Chapter 7 has the conclusions and future work directions.

 17

2. RELATED WORK

As explained in Chapter 1, we need a thorough understanding of what has

already been done in terms of design flaw detection and evolution, models for

quantifying software quality aspects, and flaws that affect these aspects. To this
end, we surveyed the literature in order to find similar work from fellow
researchers; the rest of the chapter is structured as follows: Section 1 discusses

detection strategies and tool support for identifying design flaws and test smells;
Section 2 explains how the evolution of different parts of the source code has been
studied thus far; Section 3 describes procedures that have been utilized to evaluate
the software quality aspects of interest; Section 4 covers design flaws the negatively
impact the aforementioned quality aspects; Section 5 summarizes the main
contributions and limitations of the surveyed articles.

2.1. Design flaw and test smell detection

2.1.1. Detection strategies and tool support

Identifying design flaws is a key activity when trying to accomplish the
objectives specified in the previous chapter. In [31] Brown et al. introduce anti-
patterns and discuss ways in which they can be detected. The authors define an
anti-pattern as “a commonly occurring solution to a problem that generates
decidedly negative consequences”. They group them into three categories: software

development anti-patterns, software architecture anti-patterns, and software project
management anti-patterns. This thesis will focus on anti-patterns from the first
category, as we will analyze the production code of software systems. For each of
the anti-patterns mentioned the authors explain the problem, list the symptoms by
which it can be identified and discuss its consequences. This publication can serve
as a guideline for understanding a specific anti-pattern and provide a basis for
developing the detection techniques necessary for identifying it.

 In [32] Marinescu presents a metrics-based approach for detecting design

problems and describes concrete techniques that can be used to identify 2 well-
known flaws, God Class and Data Class. The approach consists of 4 steps: 1) a
quantitative analysis of the design-flaw used to define a detection strategy; 2)
metrics selection used to express the detection strategy as a combination of
metrics; 3) detection of suspects used to obtain a list of code fragments that might

be affected by the design flaw; iv) examination of suspects used to decide whether
or not those fragments are actually affected by the flaw. Based on the proposed
approach, the author defines detection techniques for the above-mentioned flaws.
An industrial case study was conducted in order to prove that these techniques can
successfully identify instances of the God Class and Data Class design flaws.
 The work is continued in [33], which provides a more in depth analysis of
design flaw detection using metrics. The approach is validated through more than

10 detection strategies and adequate tool support is provided. The ProDetection
toolkit is introduced, which facilitates code inspections based on the detection

 18

strategies defined. The process consists of 3 steps: 1) creating a meta-model of the
software system, 2) running the detection strategies to obtain a list of suspect

entities, and 3) manually verifying the results. The usefulness of the toolkit is
demonstrated through an industrial case study, which also highlights the accuracy of
the detection strategies that were defined.
 Reference [34] introduces a tool (HIST) that can identify 5 design defects
and provides an analysis on when they appear throughout the lifespan of a system.
Besides structural information, this tool also leverages co-changes extracted from

versioning systems to detect the following flaws: Divergent Change, Shotgun

Surgery, Parallel Inheritance, Blob, and Feature Envy. For each of the smells a
historical detector is defined using a combination of association rule discovery and
by analyzing the set of classes / methods that are co-changed. Two empirical
studies were conducted in order to evaluate HIST. The first assesses its recall
(between 58% and 100%) and precision (between 72% and 86%) on 20 open-
source Java projects. The second study involved 12 developers of 4 open-source
systems who concluded that more than 75% of the problems identified by HIST are

actual design flaws.
 In [35] Kessentini et al. go deeper than simply detecting design flaws, they
also enable the refactoring of the analyzed code in order to remove them. The
proposed approach utilizes Genetic Programming to automatically generate rules for
detecting design flaws. Afterwards, a Genetic Algorithm is used to propose
refactoring solutions that can be applied to get rid of the flaws that were identified.

The approach is validated using 6 open-source software systems; the results show
that more than 76% of the design flaws were successfully detected and the
correction solutions suggested were able to remove 74% of them.
 Besides detection strategies [36] also proposes a rigorous process (based on
precision and recall) that may be used to validate the strategies. The main
contributions of the article are: 1) a method that can be utilized to specify the steps
required for detecting design flaws (DECOR), 2) a detection technique that

instantiates this method (DETEX), and 3) an empirical validation of the detection
technique. DETEX can be used to identify 4 design smells (Blob, Functional
Decomposition, Spaghetti Code, and Swiss Army Knife) and their underlying code
smells. It was validated on 11 open-source systems and showed a precision of over
60% and 100% recall. The complexity of the obtained detection algorithms and the
computation times required are also discussed, both of which look reasonable.
 In [37] Wegrzynowicz and Krzysztof present an approach for building test

suites for design pattern detectors. The usefulness of the approach is proven by

creating a test suite for validating a set of implementation variants of the Singleton
pattern. Afterwards, 3 pattern detectors were evaluated (in terms of accuracy) using
this test suite and it was shown that each of them have their limitations in detecting
all the variants correctly. A similar approach could be used to validate design flaw
detectors.

2.1.2. Test smells

 The presence of design flaws in the production code might indicate that
there are also problems in the test code. These problems are generally referred to
as test smells; they represent deviations from the guidelines that were proposed to

aid developers in creating good test suites. Reference [38] is one of the first papers
to introduce test smells and proposes solutions for detecting 2 of them, General
Fixture and Eager Test. The authors present the characteristics of a good test based

 19

on the core principles of unit testing. Then they discuss the structural deficiencies
that cause test smells to appear (in terms of test concepts and their characteristics).

Based on this, a set of metrics is defined that can be used to identify the 2 test
smells mentioned above. An initial validation of the detection strategies is done
using manual inspection and code review. In [39] Bavote et al. present 2 empirical
studies on test smells. The first analyzes the distribution of smells within the test
base. The study includes 18 systems (2 industrial and 16 open-source) and shows
that test smells are widely spread throughout these systems (in 82% of the test

classes). The second study investigates their impact on program comprehension

during maintenance and testing; it proves that there is indeed a negative impact.
The authors go more in depth in [40], which demonstrates that test smells

are harmful and occur frequently in software systems. Similar to the previous paper,
2 empirical studies were conducted. The first study proves that test smells are
present in both open-source and industrial systems with 86% of the unit tests
having at least 1 smell. The second shows that these smells have a negative impact
on maintenance and program comprehension. Its main finding was that

comprehension is 30% higher if test smells are not present.
In [41] Jianping et al. present an empirical study on the relationship

between test smells and production class features. The study investigates whether
or not the complexity properties of a class can be utilized to predict test smells in its
corresponding unit tests. It was conducted using 5 open-source systems and found
that Cyclomatic Complexity (CC) and Weighted Methods per Class (WMC) are good

indicators of the presence of test smells, predominantly Eager Test and Duplicated
Code. Other class characteristics were also considered; the Lack of Cohesion of
Methods (LCOM) also correlated with the 2 test smells, while the Depth of the
Inheritance Tree (DIT) did not.

Reference [42] is a PhD thesis that addresses software testability and the
quality of the testing performed in object-oriented software systems. It contains
several important findings, including the fact that there is a correlation between

certain code smells and test smells. The study also shows that unit tests are not
distributed in line with the system’s dynamic coupling. Many of the tightly coupled
classes do not have associated unit tests, while the loosely coupled ones have at
least 1 direct test. Furthermore, the results highlighted that there is a connection
between class testability and dynamic complexity. A larger number of unit tests is
required to address classes that are executed more frequently within the code.

2.2. Software evolution

 Historical data have already been used to improve design flaw detection
[43]. We also utilized this kind of information to study the co-evolution between
production and test code [44]. We did this in order to obtain a better understanding
of the way in which tests evolve as a result of changes in the production classes. An
association rule mining technique was used to uncover 6 fine-grained co-evolution
patterns. We also established that the testing effort that was put into a project does

have an impact on the observed patterns.
 The lifespan of code smells is studied in [45]; the authors investigate the
behavior of the developers with regard to the removal of code smells and anti-
patterns. Their results indicate that software engineers are aware of the presence of
these flaws, but are not too concerned about their impact on software quality. This

 20

observation is further supported by [46], which found that code smell removal with
refactoring tools is often avoided during maintenance.

 One of the first attempts to study the evolution of a particular design flaw
(God Class) is presented in [47]. The histories of 2 open-source projects are
analyzed in order to establish how God Classes appeared, their prevalence, and
whether or not they are still part of the system or were removed during its
evolution. The authors also manage to distinguish between the God Classes that
were created by accident and those that are so by design.

 The evolution of design smells along with their impact on the change

behavior of software systems is evaluated in [48]. The proposed analysis identifies
“good” and “bad” phases in the evolution of a system, which correspond to
decreases / increases in the number of components that contain smells. It also
proves that the respective classes have a higher change frequency. However, only 2
flaws, God Class and Shotgun Surgery, are considered and the study includes just 2
open-source systems. Five other smells, Blob Class, Class Data Should be Private,
Complex Class, Functional Decomposition, and Spaghetti Code, are studied in a

similar manner in [49]. The paper is aimed at understanding when and why the
code starts to smell bad, but (just like the previous study) only addresses a limited
number of smells for a small number of systems.
 We will strive to obtain an analysis as thorough as the one presented in
[50], but with a lot more design flaws and systems. Tools that could assist us in this
regard have started to emerge. As mentioned before, [34] introduces HIST which

can identify 5 design defects and provides an analysis on when they appear during
the lifespan of a project. Another example would be Coming [51], a tool that can be
utilized to mine instances of change patterns.

2.3. Evaluating software quality aspects

2.3.1. Assessing software testability

Considering that our research is concerned with improving the testability of
object-oriented systems, there is a need to develop a model through which this
quality aspect can be quantified. In [52] Mouchawrab et al. describe one of the first
attempts to measure the testability of software systems. The proposed framework

does not start from the source code but from the UML diagrams that model the
system. The authors also introduce a set of attributes that can have an impact on
testability; they group them into 3 categories: 1) Object Constraint Language

Expression Complexity, 2) Use Case Model and System Interface Complexity, and 3)
Interactions Between Inherited and Overridden Features. Measurement procedures
are provided for each of the attributes. The authors also discuss ways in which these
measurements can be interpreted in order to assess the testability of the system.
 Reference [53] is the first publication to investigate code metrics that can be
utilized to quantify testability. Five Java systems (1 open-source and 4 industrial)

were analyzed using the GQM/MEDEA framework. It was found that there is a
correlation between production code metrics (such as Lines of Code, FANOUT, and
Response for Class) and test case metrics (such as Lines of Code for Test Class and
Number of Test Cases).
 Similar ideas are presented by Zhou et al. in [54], who show that there is
indeed a connection between testability and software structure metrics. The main

 21

findings of this empirical study are that: 1) the metrics related to size, complexity,
and coupling have a higher impact on the testability of a software system compared

to other production code metrics (related to cohesion or inheritance), but 2) metrics
alone cannot predict the amount of effort required for unit testing a class. The study
also demonstrates that it is better to apply partial least square regression (PLSR)
than multiple linear regression (MLR) when trying to correlate metrics with unit
testability.

Reference [55] contains a survey on models that can be used to determine

the testability of an object-oriented software system. For each of the analyzed

models the authors discuss the method used to assess testability along with the
achievements of the model and its main issues. They conclude that “there is no
single superior model”, thus a testability model should be chosen based on the
particularities of the analysis that is being conducted. All of the surveyed models try
to assess testability during the design and analysis phase, they do not address
already implemented code.

2.3.2. Assessing change- / defect-proneness

 Just as for testability, the first studies that focus on change-proneness try to
evaluate this software quality aspect based on the design of a system. For example,
[56] proposes a method for calculating the behavioral dependency measure (BDM),

a metric that can be utilized to predict change-proneness. The work is continued in

[57], where the authors present a case study in which they evaluate the usefulness
of this metric using a multi-version open-source project called JFlex.
 There are several articles that investigate the capability of object-oriented
metrics to predict change-proneness. However, most of them only take into account
a small amount of OO metrics or study a limited number of systems. In [58] the
authors analyze 102 Java projects and assess the effect of 62 metrics. Their results

show that size metrics have the highest ability to predict whether or not a class is
susceptible to modifications. For the coupling and cohesion metrics, the capacity is
lower, while inheritance metrics cannot be used to distinguish between the classes
that are change-prone and those which are not.
 Other studied use machine learning techniques to predict change-prone
classes. The effectiveness of such approaches is evaluated in [59] and compared
with that of statistical techniques. The article proves that both types of methods can

be used to assess this software quality aspect. It also highlights a series of OO
metrics that are more suitable in this regard.

 Reference [60] investigates the relationship between design patterns /
meta-pattern roles and change-proneness. The authors also study the effect of the
size of a class on this quality aspect. The results show that the latter has a much
larger impact on change-proneness compared to the patters and the meta-pattern

roles.
Object-oriented metrics have also been used to assess software defect-

proneness. For example, the effects of size on this software quality aspect have
been investigated in [61]. Cox proportional hazards modeling with recurrent events
is utilized for the assessment; however, only 1 project (Mozilla) is used in the
evaluation.

A considerably more complex model for quantifying defect-proneness is

proposed in [62]. It incorporates 3 types of bad design indicators, including several
code smells, high method dependency, and large file size. The study shows that
each of these types has a negative effect on defect-proneness and that these effects

 22

are relatively independent of one another. This is an important observation
considering that we plan to investigate the impact of a specific category of design

flaws (static constructs) on the aforementioned quality aspect.
There are few publications that try to leverage historical data for defect

prediction. As an example, in [63] Moser et al. categorize Java classes as defective
or defect-free based on 2 sets of metrics, product related and process related; they
prove that the metrics from the second category are more efficient for predicting
errors. This observation is further supported by [64]; it shows that code metrics do

not change that much from one version to another, thus leading to the stagnation of

the defect-proneness prediction models.

2.4. Design flaws that affect software quality

Design flaws have an impact on various aspects of software systems,
including understandability [65] and maintainability [33]. Our study complements
existing ones and focuses on their effect on testability and change- / defect-
proneness.

2.4.1. Testability

 In [66] Hevery presents several design flaws that make software projects
difficult to test. They are grouped into 4 categories: Constructor does Real Work,
Digging into Collaborators, Brittle Global State and Singletons, and Class Does Too

Much. For each of these categories the author discusses the reasons why they have
a negative impact on testability, a series of warning signs, and ways in which they
can be fixed. Additionally, concrete examples are provided that allow for a better
understanding of the underlying problems together with possible refactoring
solutions.
 Reference [67] describes a tool that was developed based on the concepts
introduced in [66]. The tool can be used to analyze software systems and generate

a testability report. This report contains information about the design flaws that
affect a system’s classes along with scores that quantify each flaw’s impact on the
testability of a certain class. Besides the testability evaluation, the tool also provides
concrete refactoring solutions that can improve the overall testability of a system.

 In [68] Sabane et al. investigate the effects of anti-patterns on the cost of
unit testing and propose a number of refactorings that can reduce this cost. The
indicator of testing cost considered is the number of test cases that satisfy the

minimal data member usage matrix (MdMUM) criterion. A study was conducted
using 4 open-source systems which shows that the classes that contain design flaws
require a higher number of unit tests compared to other classes that are not
affected by flaws. It also highlights that the testing cost can be significantly reduced
by refactoring the classes to remove the design flaws. An additional finding is that
certain flaws (such as Blob, Anti-Singleton, or Complex Classes) have a higher

impact on this cost compared to others (such as Method Chain or Lazy Classes).
 Reference [69] introduces the concept of testability anti-patterns and
discusses 2 configurations of an object-oriented design that have a negative impact
on its testability. These anti-patterns appear when “potentially concurrent client /
supplier relationships between the same classes along different paths exist in a
system”. The paper also discusses testability issues that might arise when applying

 23

certain design patterns. Based on this, the testability grid was created which can
serve as a guideline on the risk of using a specific pattern. Furthermore, the authors

define a series of testability constraints that can help minimize this risk.
 Design flaws are not the only factors that have an impact on the testability
of software projects. In [70] Tahir et al. present an empirical study on the degree of
association between runtime properties and the class-level testability of object-
oriented systems. Similar to our work, testability is evaluated at unit test level; 2
measurements are used to characterize it, size (test lines of code) and intended

design (number of test cases). The results prove that there is a correlation between

Dynamic Coupling / Key Classes and the testability of a class. Some of the Dynamic
Coupling metrics utilized (such as Export Coupling) have a stronger correlation with
the 2 testability measurements than others (such as Import Coupling).
 Other properties of software systems can make them difficult to test.
Reference [71] introduces the concept of test-critical dependencies and proposes an
approach that can be used to identify them. They are “dependencies within a
system that are critical to test complexity” and therefore should have an effect on

testability. The main findings are that a small number of dependencies have a high
impact on the testability of a system and that conventional coupling metrics cannot
be used to pinpoint them.

 2.4.2. Change- / defect-proneness

 The impact of several design flaws on software defects is discussed in [72].
The flaws considered are: Brain Method, Feature Envy, Intensive Coupling,
Dispersed Coupling, and Shotgun Surgery. The results show that although the flaws
do correlate with software defects, it was impossible to determine which ones are
the most harmful. They also prove that an increase in the number of design flaws
makes a system more susceptible to errors.

 Reference [73] assesses technical debt based on the flaws present in a
particular version of a project. A framework is proposed and its effectiveness is
proven by analysing the evolution of technical debt symptoms and uncovering past
refactoring actions. The study shows that these refactoring actions are not always
organized and coherent, not even when experienced developers are involved.
 A study on the effects of anti-patterns on change- and fault-proneness is
presented in [74]. However, there are several key differences between this research

and what we are going to do: 1) from the 13 anti-patterns investigated only 1 is
overlapping with our work, namely stateful Singleton; 2) only major releases are

considered for the studied systems, while we will adopt a more fine-grained
approach (analyse all the commits); 3) the methods for quantifying change- /
defect-proneness are different in terms of versioning system, metrics, and
categorization (e.g., bug-fix commits).

 Similar observations can be made with regard to [75]. While this study is
more elaborate than the previous one, it does not consider the category of flaws
that we will focus on (static constructs) or the ones we plan to address in the future
(e.g., object instantiations in constructors / methods or Law of Demeter violations).
Furthermore, we want to investigate a large variety of quality aspects, not just the
ones related to maintainability.
 There are also publications which suggest that design flaws have a very

limited effect on certain software quality attributes or no impact at all. One such
example would be [76] in which the authors conclude that the effect of smells on
the overall maintainability of a system is relatively minor. Reference [77] also

 24

establishes that the impact of the 12 design smells that were investigated on
maintenance effort is small. Similarly, [78] proves that even though some smells do

have an effect on fault-proneness this effect is quite limited. All these aspects are
worth investigating for other design flaws that have not been considered to date.

2.4.3. Class dependencies

By studying the design flaws that make object-oriented systems difficult to

test or more change- / error-prone, it was found that those related to class
dependencies have one of the biggest negative impact [79]. This includes global
state (and singletons) and instantiations that occur in constructors or methods, so
we have decided to investigate these flaws in greater depth.

In [80] Hevery explains why static methods have a negative impact on the
testability of software systems. He states that the main problem with this type of
methods is the fact that they represent procedural code which is difficult to test.

Unit testing assumes that a part of the application can be instantiated in isolation.
During instantiation a series of dependencies are put together using mock objects in
order to replace the real dependencies, thereby enabling that part of the code to be
tested. This is impossible for procedural programming because there are no objects
involved, the methods and the data are separate from one another.

Reference [28] presents the most common cases in which the static

keyword is used in the code and gives a number of reasons why it has a negative

impact on several aspects of object-oriented systems, including maintainability and
testability. The cases mentioned are: i) worker methods (used for different kinds of
processing tasks), ii) factory methods (used to return preconfigured instances of a
class), iii) singleton methods (used to limit the number of instantiations to a single
global instance), and iv) global variables (used to store various configurations). The
reasons why this static code is problematic are: because it causes violations of the

main principles of object-oriented programming (such as encapsulation),
encouraging tight coupling between the system’s classes and hindering unit testing.

Reference [82] introduces the concept of “Class-Oriented Programming” and
explains the main issues with this paradigm. It refers to classes that have only static
attributes and methods and are never instantiated. The article discusses the
problems caused by such classes and concludes that without objects and their
interaction it is impossible to build complex software systems. Similar ideas are

presented in [83]; the article mentions the only 2 situations in which using the static
keyword does not cause problems, global constants and constructor-like static

functions (used to replace overloaded constructors which might become
ambiguous). In all the other cases having static members may cause problems
because it is unclear in which class they should actually be placed. In general, static
methods tend not to use the attributes of the classes in which they reside, thereby

leading to violations of the Single Responsibility Principle (SRP). Some other reasons
why static methods should not be used are the fact that they cannot be called
polymorphically, they increase the complexity of a software system, and they are
difficult to test (especially when new instances of other classes are created within
them).

In [84] Feathers proposes a rule that should be followed to make the code
easier to test: “Never hide a Test Unfriendly Feature within a Test Unfriendly

Construct”. The Test Unfriendly Constructs (TUCs) mentioned include static
methods, static initialization expressions and static initialization blocks, while the
Test Unfriendly Features (TUFs) are lengthy computations, accesses to side effecting

 25

APIs and database / file system / network accesses. The author also advocates
using Test-Driven Development as a means to ensure testability.

The authors of [85] discuss both the benefits and the drawbacks of the Java
instantiation mechanism. The benefits mentioned are a clear and comprehensible
syntax, the ability to chain constructors in class hierarchies, and the fact that
correct initialization can be enforced on the class’s clients. However, there are also 2
drawbacks, namely that it is not polymorphic and that it allocates memory from the
heap. These do not occur in all the cases, memory is not allocated when the

constructor is called using super and calling constructors through reflection is

polymorphic. In the context of testability, the second drawback causes major
difficulties. Using new to instantiate a specific class in a constructor or method
creates a dependency to the concrete type of the class that is being instantiated
(because new is non-polymorphic). Nonetheless, this can be solved through
Dependency Injection. The usefulness of DI is also discussed in [86], where Hevery
provides a concrete example that highlights why Dependency Injection is better that
object instantiation.

Reference [87] contains 2 chapters in which Feathers discusses how to deal
with global mutable state and object creation in constructors when trying to refactor
legacy code. In terms of instantiations in constructors, the author specifies adding
an additional parameter (instead of the instantiation) as the recommended solution.
Overloaded constructors can be used so that not all the clients are forced to pass
the additional argument. Feathers also proposes several solutions that can be

applied when testing global state. For singletons, a static setter could be added to
the class and the constructor can be changed to protected. Afterwards the singleton
can be subclassed, and an object of the subclass will be created and passed to the
setter. For static attributes, making them non-static and passing them as
parameters is considered a better practice than accessing them as global variables.
All the refactorings mentioned above make the legacy code easier to test, thereby
providing a solid basis for restructuring it.

Feather’s book also introduces the concept of seam. The author defines it as
“a place where you can alter behavior in your program without editing in that
place”. The usefulness of seams is highlighted when trying to break dependencies in
order to test legacy code. The types of seams differ from one programming
language to another; Feathers provides examples of processing seams, link seams,
and object seams. Considering that in our investigations we will be utilizing systems
developed in an object-oriented programming language (Java), only the last 2

categories of seams are of interest. Java does not have a build stage before

compilation, therefore processing seams cannot be leveraged. Each seam has an
enabling point which is “a place where you can make the decision to use one
behavior or another”. For link seams, the author provides an example where
classpath is used as the enabling point that switches between different
implementations of a class (which is included in the class under test). Calling a

method on an object that is received as a parameter by the method in which the call
is made was the basic example given for object seams. In this case, the enabling
point is the parameter as its type can be controlled through the argument given to
the method during unit testing. The author specifies that object seams are the best
choice when trying to get portions of the code under test in object-oriented
languages. The other types of seams are not as explicit as object seams and can
make the tests that depend on them more difficult to maintain.

In [88] Gil et al. introduce a catalog of micro-patterns that can be identified
in the source code of Java systems. The authors argue that more than 75% of a

 26

system’s code is written based on these micro-patterns. The patterns are divided
into 8 main categories, 3 of which address static members (attributes or methods):

Degenerate Behavior, Degenerate State, and Controlled Creation. In terms of actual
micro-patterns, the ones of interest are: Stateless (a class with only static final
fields), Common State (a class with only static fields), Restricted Creation (a class
with no public constructors and at least 1 static fields of the same type as the class),
and Cobol Like (a class with a single static method and with no instance members).
Finally, the authors hint at nano-patterns (which are patterns of methods) and state

that a combination of micro- and nano-patterns can be used to decompose an entire

system.
Reference [89] illustrates how Java developers implement and test

singletons. Several aspects were taken into account including multithreading,
classloaders, and serialization. However, the problems introduced by singletons in
the context of testability persist. Singletons represent a global and static way of
obtaining an instance of a class, which makes mocking impossible. Similar ideas are
expressed in [90], which discusses the main issues with singletons and possible

ways in which they can be removed. The author states that singletons are
dangerous because they make debugging and unit testing difficult. The main
problems mentioned are that they create dependencies which are hidden within the
code (cannot be detected by examining the interfaces of classes or methods) and
other classes are tightly coupled with the singleton instance (thus polymorphism
cannot be used). These problems could be alleviated using Dependency Injection,

possibly through DI frameworks like Spring or Guice. The main takeaway from the
article is that object creation should be separated from business logic and singletons
are preventing this.

2.5. Main contributions and limitations

The previous sections present the research that has already been done on
the topics of interest. A series of limitations have been identified for the publications
included and we will discuss them in the current section; this information is
summarized in Table 2.5.

Table 2.5. Main contributions and limitations of the surveyed articles

Section Subsection Art. Main contributions Main limitations

Design flaw and
test smell
detection

Detection
strategies and
tool support

[32] - provides concrete
detection strategies
for God Class and
Data Class

- only 2 flaws, not
related to any software
quality aspects

[67] - only tool to address

design flaws in the
context of testability
- assesses how
difficult it is to test a
particular class

- based on the

concepts introduced in
[66]
- the testability report
is difficult to interpret,
very restrictive
interface
- analyses can only be
performed at class level

[33] - proposes strategies
for other design flaws
(Shotgun Surgery,
Refused Bequest)

- none of the tools take
into account software
quality when / after
identifying the design

 27

[34] - proposes strategies
for other design flaws
(Blob, Spaghetti
Code, Swiss Army

Knife)

flaws

[36] - uses change history
information to detect
different flaws
(Divergent Change,
Parallel Inheritance)

[35] - provides refactoring
solutions for the
flaws it can identify

[81] - can be used to
define detection
strategies for a large
variety of design
flaws
- capable of
integrating multiple
analyses into a single
uniform interface

- the platform’s
features could have
been highlighted
through a case study

Test smells [38] - describes ways to
detect test smells

- none of the articles
have used test smells
as indicators of testing
quality

[39],
[40]

- prove that test
smells are widely
spread throughout
the test code and
that they impact
program
comprehension

[41] - establishes a
correlation between
test smells and
production class
features

[42] - establishes a
correlation between
test smells and
design flaws

Software
evolution

 [43] - utilizes historical
data to improve
design flaw detection

- prove that historical
data is useful, but are
not related to the
evolution of design
flaws

[44] - utilizes historical
data to study the co-
evolution between
production and test
code

[45],
[46]

- study the lifespan
of code smell

- none of the papers
address any kind of
static constructs [47] - initial attempt to

investigate the
evolution of a
particular design flaw
(God Class)

[48],
[49]

- study the evolution
of other design flaws

 28

Evaluating
software quality
aspects

Assessing
software
testability

[52] - one of the first
models to quantify
testability

- the proposed model
evaluates testability at
the design and analysis
phase rather than at

the implementation
phase

[53],
[54]

- investigate code
metrics that can be
used to quantify
testability

- none of the models
evaluate testability
based on the
corresponding unit
tests [55] - surveys the existing

models for assessing
testability

Assessing
change- / defect-
proneness

[58] - analyzes the
capability of metrics
to predict change-
proneness

- none of the proposed
approaches utilize
process related metrics
for this prediction

[59] - uses machine
learning techniques

to predict change-
proneness

[60] - investigates the
relationship between
design patterns and
change-proneness

[61] - studies how a
system’s size affects
defect-proneness

- only 1 system is used
in the evaluation

[62] - a more complex
model for evaluating
defect-proneness

- although it considers
3 types of bad design
indicators (code smells
being one of them),
none of the static
constructs are taken
into account

[63],
[64]

- prove that process
related metrics are
more efficient for
predicting errors

Design flaws
that affect
software quality

Testability [66] - provides a list of
design flaws that
impact testability

- problems were
identified for each of
the proposed flaws
- does not try to
validate that they
actually affect
testability

[68] - investigates the
effects of anti-
patterns on the cost
of unit testing

- do not explicitly
address class testability

[69],
[70],
[71]

- other factors that
have an impact on
software testability

Change- /
defect-proneness

[72] - discusses the
impact of several
design flaws on
software defects

- do not directly
address change- /
defect-proneness
- do not consider static

 29

[73] - evaluates technical
debt based on the
design flaws present

constructs

[74],
[75]

- study the effects of
anti-patterns on
change- / defect-
proneness

- with the exception of
Singleton, none of the
publications study any
other category of static
constructs [76],

[77],
[78]

- argue that design
flaws have a limited
impact on certain
software quality
aspects

Class
dependencies

[80] - discusses the
problems introduced
by static methods

- none of the articles
provide ways in which
the design flaws can be
detected
- they do not actually
prove that the
proposed flaws make
the code more difficult
to test

[81] - discusses cases of
“bad static”

[83] - discusses cases of
“good static”

[84] - shows that static
constructs can
become even more
problematic based on
the features that are
implemented in them

[85] - explains the
problems introduced
by object
instantiation

[89],
[90]

- explain the
problems introduced
by singletons

In summary, this chapter discusses:

1. Different types of approaches that have been proposed to identify design

flaws.

2. Methodologies for studying the evolution of certain parts of the source
code.

3. Models for quantifying the software quality aspects of interest, namely

class testability, change- and defect-proneness.

4. Design flaws that were shown to have a negative effect on these quality
aspects.

5. A discussion on the differences between our work and the other articles
presented in this chapter.

 30

3. APPROACH

 The chapter discusses the approach adopted in order to study 1) how static
constructs are used (both in the latest version of a system and in previous
iterations) and 2) their effect on several software quality aspects. First, we explain

how the static constructs have been categorized and propose detection strategies
for each type. Next, we describe the process through which we analyse the
evolution of the different types of static constructs and the production classes that
utilize them. The methods used for 1) assessing the testability of a particular class
and 2) identifying change- / error-prone classes are thoroughly discussed in the
following 2 sections. We end this chapter by providing concrete implementation
details for the entire data collection process; for each decision that needed to be

taken we try to explain the reasoning behind it.

3.1. Categorizing and detecting static constructs

 As discussed in Chapter 1, we do not believe that all static constructs are
detrimental to the software quality aspects investigated. For example, constants
should not have a negative effect on the testability of 1) the production classes in
which they are declared or of 2) the classes that utilize them (if any). Because they
are final, only 1 unit test is needed to determine if the value stored in them is
correct. On the other hand, we do think that other static constructs (such as stateful

singletons) have a high impact on this quality aspect. While they themselves might
not be that difficult to test, the production classes that use them may be tested less
because of the setup required to configure the appropriate singleton state.

In order to establish which types of static constructs influence the quality
aspects studied we must first categorize them. Considering the different
granularities of the constructs in which the static keyword is used (entire classes for

singletons vs. small parts of a class for constants or static methods), we decided to

perform a multilevel categorization. At class level, we distinguish between 3 types of
static constructs: 1) singletons (both stateful and stateless), 2) utility classes, and
3) classes that contain only smaller instances. The detection strategies for the first 2
types are as follows:

 for singletons 3 conditions have to be met for the general form:

1. there are no public constructors within the class;

2. the class has a private static attribute (the ”singleton instance”) and a
public static accessor method that performs lazy instantiation on this
attribute and returns it;

3. the aforementioned method is the only way in which the respective
attribute can be accessed.

 for utility classes there are also 3 conditions:

1. there are no constructors within the class;

 31

2. the class has only static final attributes (constants);

3. all the public methods from the respective class are static.

Figure 3.1. Overview of static construct categories

 For singletons the strategy was further refined so that it can detect several
variations of the pattern, namely the ones discussed in [91]. Therefore, besides the
general, Lazy Instantiation variant, we are also able to identify 7 other forms: Eager
Instantiation, Replaceable Instance, Subclassed Singleton, Delegated Construction,
Different Placeholder, Different Access Point, and Limiton. By doing this we expect
to increase the number of detectable instances, thereby improving the quality of the

analysis. An additional condition is required to distinguish between stateful and

stateless singletons. For the stateless ones we need to check that the respective
class has only constants as attributes.

 The classes that contain static constructs but are not singletons or utility
classes are categorised based on the types of the instances present. Those that
have static methods are divided into 2 categories: a) the static methods utilize /
modify the class’s attributes and b) the static methods only operate on the received
parameters. For these 2 types of instances the detection strategies are:

1. the method is static;

2. it is not part of a singleton or a utility class;

3a. it uses at least 1 non-final attribute from the class in which it is located;

 3b. it uses only the parameters that are received and static final attributes from
the class.

 32

 Finally, there are 3 more types of static constructs included in this
categorization. The first 2 are related to attributes, namely static non-final ones and

constants. They are easily detectible by going through all the attributes of a class
and determining those that are declared static; in order to be categorized as
constants they also need to be final. The last type of constructs are static
initialization blocks, chunks of code enclosed in braces that are preceded by the
static keyword. They are identified by determining the static instances from a class
that are neither attributes nor methods. An overview of all the categories of static

constructs is depicted in Figure 3.1.

3.2. Studying evolution

We rely on Git to obtain the data necessary for studying how static
constructs and their clients have evolved throughout the lifespan of a system.
GitHub was chosen because it provides access to numerous repositories for a wide
variety of software projects. For each of the analysed systems sampling is
performed on their commits with a frequency of 1 commit per month. We consider
this time frame appropriate because although it is possible that static constructs

were added and subsequently deleted in a single month, we do not think that such
rapid changes are meaningful for our analysis. Afterwards, we compute the

differences between each commit and the one that was selected for the previous
month. We do this for every category of static constructs; these differences include:
the total number of instances per category, the number of client classes for each
instance, and the average number of clients for the entire project. Additional data

related to each static construct and all of its clients from the respective commit are
also recorded along with other useful information (e.g., a class being marked as
Deprecated). These data are then used in our analysis on the evolution of different
types of static constructs.

3.3. Quantifying class testability

Unlike previous studies that address this software quality aspect, we

evaluate the testability of a production class based on the quantity and the quality

of its corresponding unit tests. We rely on code coverage data to determine
quantity, while for quality we check for certain smells that might appear in the test
classes. Coverage information was considered because the lack of code coverage for
a specific class in comparison to other similar classes would indicate that the
respective class is more difficult to test. We look at 2 aspects when evaluating
quantity: 1) the line coverage obtained for a production class, and 2) the
percentage of methods from the class that are addressed by unit tests. Although the

first aspect would already be a good indicator of how thoroughly a class is tested,
we also investigate the second aspect in order to avoid situations in which a limited
number of large production methods are adequately covered by tests while all the
remaining ones (of smaller size) are completely disregarded. The coverage data are
collected using JaCoCo [92] as it can be utilized on both Maven and Gradle projects

 33

and provides a detailed report which also includes some class / method complexity
measurements.

Test smells are problems in the unit tests that might negatively affect the
quality of test suites, thus also having an impact on the production code that is
being addressed. Reference [93] defines them as “deviations from the guidelines
that were proposed to aid developers in creating good test suites”. The presence of
certain smells in the tests that cover classes which have / use static constructs can
indicate that they are indeed harmful to testability. Let us consider singletons as an

example. The Eager Test smell may appear because several production methods

that utilize a singleton are called in the same unit test in order to avoid recreating
the specific state needed for the singleton in multiple tests. In the same vein, the
General Fixture test smell might be present in the setup method of a test class due
to the fact that the state of a singleton is configured in the respective method even
though it is only required in some of the unit tests. Both of the above are examples
in which using singletons in the production code determines bad practices in the test
classes.

In terms of test smell detection, they are identified through tsDetect [94].

The tool takes as input a CSV file containing all the test classes of a system along

with the production classes they are covering. As output it generates a CSV file that

indicates which of the 19 smells are present in each test class. An overview of the

test smells that can be detected is provided in Table 3.1. Even though some of the

smells are quite general (e.g., Empty Test), most of them represent real problems

in the test code that may be correlated with a class's lack of testability. Simply

determining whether or not a specific smell is present in a test class is insufficient

for a thorough analysis on unit test quality. Therefore, the tool was extended so that

it can identify which (and how many) smells are present in a particular unit test.

When assessing the testability of a production class we do not compare it to

all the other classes in the system, but rather with similar classes in terms of size

and complexity. It would not make sense to compare the testability of a large,

complex class (which by its nature is difficult to test) with that of a small, trivial

one. To compute similarity, we rely on Patrools [95] to extract size metrics (such as

lines of code or number of methods) while for complexity we also integrate the

scores provided by JaCoCo. Now that we have determined the groups of production

classes which can be considered similar, we need a suitable method for comparing

the classes that are part of a group. It would be difficult to reason in terms of

individual values (e.g., line coverage or total number of smells present in the

corresponding test classes); thus, an aggregate metric is much more appropriate.

To aid us in this endeavour we introduce the testability score. This complex

metric combines both the quantitative and the qualitative aspects of the

corresponding test code and represents the difficulty of testing a certain class. If a

production class has a higher testability score than another, then the latter is harder

to test. In order to compute this score, the aspects of interest are assessed

independently. As discussed before, for test code quantity we consider 1) line

coverage and 2) the percentage of production methods addressed by unit tests,

while for quality we look at 1) the percentage of unit tests in which smells are

present and 2) the number of different types of smells that appear in a test class.

For each of these 4 aspects, a score between 0 and 5 is assigned based on a set of

threshold values; the thresholds for each aspect are summarized in Figure 3.2. For

example, the corresponding score for line coverage is: 0 if less than 10% of the

 34

code is addressed by unit tests; 1 for coverage between 10% and 25%; 2 for

coverage between 25% and 50%; 3 for coverage between 50% and 75%; 4 for

coverage between 75% and 90%; 5 if more than 90% of the code is covered by

tests.

Table 3.1. Test smells identified by tsDetect

Test smell Acronym Description

Assertion
Roulette

AR test method has multiple non-documented assertions

Conditional Test
Logic

CTL test method has 1 or more control statements

Constructor
Initialization

CI test class has a constructor declaration

Default Test DT test class has default behaviour (auto-generated by
various development environments)

Duplicate Assert DA test method has more than 1 assertion with the same
parameters

Eager Test EaT test method has multiple calls to more than 1 production
method

Empty Test EmT test method does not have a single executable statement

Exception
Handling

EH test method has at least 1 throw statement or catch clause

General Fixture GF not all the attributes instantiated in the setup method of a
test class are utilized in every unit test

Ignored Test IT test method or the entire test class has an @Ignore
annotation

Lazy Test LT multiple unit tests from a test class call the same
production method

Magic Number
Test

MNT test method has 1 or more assertions with a numeric literal
as an argument

Mystery Guest MG test method has object instances of file or database classes

Redundant Print RP test method calls 1 or more write methods from the
System class

Redundant
Assertion

RA test method has an assertion in which the expected and
actual parameters are the same

Resource
Optimism

RO test method makes an optimistic assumption that an
external resource (e.g., a file) is available

Sensitive Equality SE test method calls the toString() method in 1 or more of its
assertions

Sleepy Test ST test method calls the Thread.sleep() method

Unknown Test UT test method does not have a single assertion or
@Test(expected) annotation parameter

The scores for the 2 aspects from each category (quantity / quality) are

aggregated through a mean value; thus, we compute 2 new scores, one for quantity

and another for quality. These 2 values are aggregated once again using the same

procedure, thereby obtaining the final score for testability. As an example, we have

a production class for which we calculated the following metrics: 1) 57.5% line

coverage, 2) 46.5% of its methods are addressed by unit tests, 3) 23% of the tests

have at least 1 smell, 4) 5 different types of test smells were encountered. The

corresponding individual scores are 3, 2, 4, and 2, respectively. Therefore, the

quantitative score for this class is 2.5 while the qualitative one is 3. As a result, the

testability score for the class is 2.75. If a similar class has an overall score of 4, it

means that the class is easier to test than the one which was analysed. Both the

 35

individual scores and the aggregate ones can provide insight into how difficult it is to

test a particular class. By determining in which of the investigated aspects the

production classes suffer more, we could suggest certain improvements to the

testing process.

Figure 3.2. Thresholds for the quantitative and qualitative aspects

3.4. Identifying change- / error-prone classes

 In order to detect the classes that are more susceptible to changes / errors

we have to rely again on a system’s version history. The key difference when
evaluating these 2 quality aspects is that for error-proneness we only consider the
commits that correspond to bug-fixes. Therefore, determining whether or not errors

were resolved in a particular commit is the first step in the entire process. Besides
the information extracted from the commit message, we also need access to the Jira
instance for the respective project to retrieve a list of issue keys corresponding to
bugs. The following steps can be followed to establish if a commit is a bug-fix:

1) we check whether or not the commit message contains a Jira issue key;

2a) if it does, we test the key against the list that was computed earlier;

3a) if the list contains the key, we mark the commit as a bug-fix;

3b) otherwise, the commit is disregarded as it is related to other
development tasks (e.g., adding a new feature);

2b) if the commit message does not include an issue key, we check for
specific keywords (such as bug, error, or fix) within the message;

4a) if at least 1 keyword is present along with a production class / method
name, the commit is considered a bug-fix;

 4b) otherwise, it is ignored in the analysis concerning error-proneness.

 36

Figure 3.3. Categorizing commits as bug-fixes

As shown above, both the commit message and the information extracted

from the associated Jira issue tracker are used to categorize commits as bug-fixes.
First, the commit message is parsed in order to determine if it contains 1 or more
issue keys. If this is the case, we check whether or not the respective key
corresponds to a bug based on the list of bugs that was computed earlier. The
commits with such keys are considered bug-fixes; the others are disregarded
because the issue keys correspond to other development tasks, including but not

limited to improvements, new features, auxiliary tasks, and testing. If there is no
Jira issue key in the commit message, we check for variations of particular keywords
such as bug, error, or fix; in case we find such a keyword, we also look for class /
method names. If a class name is encountered, we consider that the respective

production class was fixed in that commit. For method names, we go through the
list of classes that were modified in that commit (computed while assessing change-
proneness) and determine the class that contains the methods of interest. If a

commit does not have any Jira issue keys or specific keywords, then it does not
represent a bug-fix; therefore, it is not included in our analysis on defect-proneness.

 After we identify all the commits in which bugs were repaired, we start our
evaluation on the impact of static constructs on change- and defect-proneness.
First, we iterate over the commits and determine what was changed between 2
consecutive versions. The basic features provided by Git dif were considered
insufficient for a thorough analysis; therefore, we use a specialized tool called
ChangeDistiller [96] to extract fine-grained source code changes. The categories of
changes that can be identified along with the specific modifications from each

category are summarized in Table 3.2. We included all types of changes in our
study, even those related to comments and documentation. These were not

 37

disregarded because, although they do not represent significant modifications (such
as adding new features or fixing bugs), they do improve the understandability of the

respective parts of the code. A class might be less susceptible to change due to the
fact that its functionalities are understood properly.
 Once all the fine-grained changes have been extracted, we can begin our
assessment on class change- / defect-proneness. The analyses are similar, but in
the one related to defect-proneness we only consider the commits that were
categorized as bug-fixes. For each type of static construct, we want to establish 2

things: 1) if the classes that contain them are modified more frequently compared

to other similar classes, and 2) whether or not more changes are performed on
them per commit. The first aspect is important because if that is the case, then the
respective classes can be considered more change-prone (or error-prone if only the
bug-fix commits are studied). The second aspect complements the first one; for
example, there might be situations in which a production class was modified in a
smaller number of commits, but the amount of changes that were performed in
each commit is significant. Such a class should be categorized as having a higher

change-proneness than one that was modified in more commits but only 1 or 2
changes occurred per commit. Both aspects will be taken into account during the
evaluation; in the particular case in which the values obtained for them when
comparing 2 classes are contradictory, we will lean towards the one for which the
difference is greater. As an example, if one class was modified in 30 commits with
an average of 2.3 changes per commit while another was changed in 10 commits

and the corresponding average is 2.6, then the first class is considered more
change-prone.

Table 3.2 Categories of changes retrieved by ChangeDistiller

Change category Change Acronym

ADDED_CLASS ADDITIONAL_CLASS AC

REMOVED_CLASS REMOVED_CLASS RC

CLASS_DECLARATION CLASS_RENAMING CR

PARENT_CLASS_CHANGE PCC

PARENT_CLASS_DELETE PCD

PARENT_CLASS_INSERT PCI

PARENT_INTERFACE_CHANGE PIC

PARENT_INTERFACE_DELETE PID

PARENT_INTERFACE_INSERT PII

REMOVED_FUNCTIONALITY RF

ADDITIONAL_FUNCTIONALITY AF

METHOD_DECLARATION RETURN_TYPE_CHANGE RTC

RETURN_TYPE_DELETE RTD

RETURN_TYPE_INSERT RTI

METHOD_RENAMING MR

PARAMETER_DELETE PD

PARAMETER_INSERT PI

PARAMETER_ORDERING_CHANGE POC

PARAMETER_RENAMING PR

PARAMETER_TYPE_CHANGE PTC

ATTRIBUTE_DECLARATION ATTRIBUTE_RENAMING AR

ATTRIBUTE_TYPE_CHANGE ATC

ADDING_ATTRIBUTE_MODIFIABILITY AAM

 38

REMOVING_ATTRIBUTE_MODIFIABILITY RAM

ADDITIONAL_OBJECT_STATE AOS

REMOVED_OBJECT_STATE ROS

BODY_STATEMENTS STATEMENT_DELETE SD

STATEMENT_INSERT SI

STATEMENT_ORDERING_CHANGE SOC

STATEMENT_PARENT_CHANGE SPC

STATEMENT_UPDATE SU

BODY_CONDITIONS CONDITION_EXPRESSION_CHANGE CEC

ALTERNATIVE_PART_DELETE APD

ALTERNATIVE_PART_INSERT API

COMMENTS COMMENT_DELETE CD

COMMENT_INSERT CI

COMMENT_MOVE CM

COMMENT_UPDATE CU

DOCUMENTATION DOC_DELETE DD

DOC_INSERT DI

DOC_UPDATE DU

OTHERS UNCLASSIFIED_CHANGE UC

DECREASING_ACCESSIBILITY_CHANGE DAC

INCREASING_ACCESSIBILITY_CHANGE IAC

ADDING_CLASS_DERIVABILITY ACD

ADDING_METHOD_OVERRIDABILITY AMO

REMOVING_CLASS_DERIVABILITY RCD

REMOVING_METHOD_OVERRIDABILITY RMO

3.5. Implementation

The process employed to collect the necessary data is summarized in Figure
3.4 and consists of 3 steps. First we address the presence / usage and the evolution
of static constructs (and their clients), as shown in Figure 3.4(a). An Eclipse plugin
called Patrools [95] was 1) used to extract data related to a system's class structure
and 2) extended by us with the proposed detection rules and other measurements

that were needed. As an example, for singletons we added a rule that checks if a
class does not have any public constructors. Once all the detection strategies have

been implemented, the analysis on static construct presence / usage can be
conducted. For the latest version of a system, we determine the number of
instances of each type (as per the categorization from Section 3.1). In terms of
static construct usage, we identify the client classes of an instance based on the
FAN-IN of the production class that contains it.

 39

Figure 3.4. Implementation of the data collection process

 40

We also integrated the jGit API into Patrools and utilized it to retrieve the
source code of a system from the corresponding Git repository. We iterate over the

commits starting from the initial one and select the last commit of each month as
the version of interest. We run the detection strategies described in Section 3.1 in
order to identify instances of static constructs together with all the classes that use
them and compare the results with those obtained for the commit of interest from
the previous month. By doing this, we are able to determine 1) which static
constructs were added / removed since the previously studied commit and 2) how

many production classes are currently using a particular instance. Other useful

information, such as classes being marked as Deprecated, are also recorded and
considered in our analysis.

Figure 3.4(b) depicts the process through which the testability of a class is
assessed in relation to other similar classes. For the latest version of a project we
first build the entire codebase using either Maven or Gradle (depending on how the
system is structured). Then JaCoCo is utilized to collect code coverage data,
including line and branch coverage, along with an assessment of class / method

complexity. The plugin generates a coverage report that is parsed using the jDom
API in order to extract the values of interest. Besides coverage information, we have
also included test smell data in our quantification of class testability. Patrools is used
to determine all the production classes that are covered by a test class based on the
latter's FAN-OUT. A CSV file is created which contains these associations; the file is
then given as input to tsDetect [94]. The tool verifies which of the smells are

present in each unit test and generates another CSV file with the results that is
parsed using OpenCSV. We extended tsDetect so that it reports the smells per unit
test, not for an entire test class; this allows for a more thorough analysis on the
quality of the unit tests.

Patrools is also utilized to calculate size and complexity measurements for a
system's production classes. This is done in order to find classes that are similar to
those with static construct instances. Similarity is computed using both the

complexity scores provided by JaCoCo and the Patrools measurements mentioned
before. Two classes that are detected as similar can then be compared based on
their corresponding testability scores. These values are obtained by aggregating the
1) code coverage and 2) test smell data described above.

Finally, Figure 3.4(c) illustrates how change- and defect-proneness can be
evaluated. First, we establish an HTTP connection to the Jira server for the
respective system using the Java HttpURLConnection class. Afterwards, subsequent

GET requests are performed until all the information related to the issues is

collected. The data is retrieved in JSON format and parsed using the JSON.simple
library. Once this is completed, we rely again on the jGit API to fetch the system’s
source code from the Git repository and iterate over its commits. For each commit,
we apply text processing techniques on the commit message to extract the
information necessary for establishing whether or not it is a bug-fix.

We also compute the differences between each commit and the one before it
in order to determine the classes that were modified. As discussed in the previous
section, a simple Git diff would not have been enough for a thorough analysis,
therefore we use ChangeDistiller to obtain fine-grained source code changes. With
this tool we are able to gather data related to the production classes that suffered
modifications, the entities that were altered, and the changes that were performed.
After collecting all the information, we can assess if the classes with static

constructs were changed more frequently during standard / bug-fix commits and
determine the specific types of the modifications that occurred.

 41

All these aspects are integrated into a tool that was built on top of Patrools,
thereby obtaining a new Eclipse plugin. This tool has separate modules for

identifying design flaws, studying their evolution, and evaluating a specific software
quality aspect. We configured it: 1) with the appropriate detection strategies for the
different categories of static constructs; 2) to gather the information needed for
analysing the evolution of these constructs; 3) with the metrics required for
quantifying the 3 quality aspects of interest (e.g., the testability score). After
collecting all these data, we are able to perform our analyses (on which we will

detail in the following chapter).

In summary, this chapter discusses:

1. The categorization of static constructs and the detection strategies for
each of the following categories:

 singletons (both stateful and stateless), general form along with
several variations of the pattern;

 utility classes;

 static methods that access state / only operate on parameters;

 static non-final attributes and constants;

 static initialization blocks.

2. The process for studying the evolution of different types of static

constructs which includes:

 the total number of instances from a category;

 the number of client classes for each instance;

 additional information (e.g., instances being marked as Deprecated).

3. The model for evaluating class testability; more specifically, the testability
score which is an aggregate of:

 a quantitative score based on line coverage and the percentage of

production methods that are covered by unit tests;

 a qualitative score based on the percentage of tests that contain
smells and the number of different types of smells present in a test
class.

4. The method for assessing change- / error-proneness which entails:

 establishing whether or not a commit is a bug-fix;

 extracting fine-grained source code changes for all the commits of a
system;

 determining if the classes that have static constructs were modified
more frequently during normal / bug-fix commits and whether or not
more changes were performed on them per commit.

5. The implementation of the entire data collection process.

 42

4. DESIGN OF THE EMPIRICAL STUDY

This chapter explains how we designed the empirical study that was

conducted. We start by discussing the main goal of the study and the hypotheses

that were formulated. Then we describe the independent and dependent variables
considered, together with the procedures through which they were measured. The
criteria based on which we selected the systems included in the study are also

covered. Finally, the last section of this chapter presents all the analyses that were
conducted as part of the empirical study.

4.1. Main goal

 As explained in Chapter 1, the goal of this thesis is to provide a better
understanding of static constructs, their evolution, and the software quality aspects
on which they have a negative impact. In order to achieve it, we formulated 3

research questions:

 RQ1. Are static constructs used in complex software systems?

 RQ2. How have static constructs evolved throughout the lifespan of a
project?

 RQ3. Do static constructs have a negative impact on software quality
aspects?

 The main objective of the empirical study is to obtain answers to these
research questions. To do this, we analyse each of these aspects in isolation. First,
we investigate what types of static constructs are present in complex software
systems and whether or not they are utilized by other production classes. Then we
study the evolution of each category of static constructs throughout the lifespan of a

system. The effects of using these constructs on several software quality aspects
are also considered. By performing these analyses, we will understand which types
of static constructs are problematic and should be avoided, thereby aiding

developers in creating better systems.

4.2. Formulated hypotheses

 As discussed in Section 1.2, we made several assumptions in regard to
static constructs, their evolution, and the effects they cause on various software

quality aspects. The first major assumption was that instances of such constructs
are present in the production code and there are other classes that utilize them. If
this assumption does not hold, then there is no reason to proceed with our study.
The second assumption addresses the evolution of static constructs; we want to
determine if the number of instances increases as a system grows in size. If this is
not the case, then we could consider it a first sign that some static constructs are

 43

dangerous and the developers have already become aware of the potential problems
they cause. Finally, the third assumption is that static constructs have a negative

impact on the 3 quality aspects we are investigating. While we do not expect all
types of static constructs to be detrimental, we are confident that at least some of
them are (e.g., stateful singletons).
 In order to establish whether or not these assumptions are true, we
formulated a series of hypotheses corresponding to each of them. For every
hypothesis we provide a null and an alternative variant; we want to determine which

of the variants holds true.

Hypothesis 1

 Null hypothesis (H1null): Static constructs rarely appear in complex

software systems.
 Alternative hypothesis (H1alt): Static constructs are present in the

production code and there are other classes that utilize them.

Hypothesis 2

 Null hypothesis (H2null): Static constructs are being used less in later
iterations of a project compared to the initial versions.

 Alternative hypothesis (H2alt): The number of static constructs increases
as a system grows in size.

Hypothesis 3

 Null hypothesis (H3null): Static constructs do not have a negative impact
on software quality.

 Alternative hypothesis (H3alt): There are some types of static constructs
that negatively affect the software quality aspects investigated.

 The first hypothesis covers RQ1, while the second one addresses RQ2. The
last hypothesis was refined for each quality aspect of interest. As an example, for
testability the null variant would be “Static constructs do not have a negative impact
on class testability”, while the alternative one is “There are some types of static
constructs that negatively affect the testability of the production classes in which
they are present / that utilize them”. Establishing which of the variants is true for
each of these hypotheses represents the main focus of the empirical study. The

following sections describe the experiments that were performed in order to validate

these hypotheses.

4.3. Independent and dependent variables

We determined the independent and dependent variables for each of the
hypotheses and developed methods for measuring them. Table 4.1 provides an
overview of these variables along with their measurement procedures. Most of the
procedures have already been discussed in the chapter regarding the approach;

those that were not are explained in the subsections covering their corresponding
hypothesis.

 44

Table 4.1: Independent and dependent variables per hypothesis
Hypothesis Independent

Variables
Procedure Dependent

Variables
Procedure

H1 System
characteristics

Subsection 4.3.1 Types of static
constructs present

/ utilized

Section 3.1

H2 System size and

complexity

Subsection 4.3.2 Number of static

construct instances

/ client classes

Section 3.2

H3 Static construct

presence / usage

Section 3.1 Impact on the 3

software quality

aspects

Sections 3.3 and

3.4

 4.3.1. Hypothesis 1
 For the first hypothesis, the independent variables are the specific

characteristics of a software system. We want to determine if they have an impact
on the dependent variables, namely the types of static constructs that appear / are
utilized by other classes in the production code. We expect different categories of
static constructs to be encountered more frequently depending on the particular
characteristics of a project. For example, libraries should have more utility classes
compared to other types of systems.

 The static construct instances are categorized based on the procedure
discussed in Section 3.1. Both the instances and their client classes are identified
through the detection strategies introduced in the respective section. The procedure
computes the number of instances / clients from each category for the latest version

of a project. We are keen to observe which categories appear / are utilized more
depending on a system’s characteristics. Besides the general characteristics, such as
size and complexity, there are several others that will be investigated (e.g., key

functionalities). As an example, considering their nature, we expect libraries to have
a considerable amount of static methods.

 4.3.2. Hypothesis 2
 The second hypothesis addresses the evolution of static constructs and their
usage. It tries to establish whether or not more static constructs are introduced as a

system grows in size and becomes more complex. While additional instances should
appear as new classes are created for the respective project, this may not
necessarily be the case; if some types of static constructs have been proven harmful
to one or more software quality aspects, then the developers might refrain
themselves from using them in the future. Therefore, of particular interest are

instances 1) for which the number of client classes has decreased or 2) that were

completely removed from the production code.
 The independent variables for this hypothesis are the metrics related to size
and complexity for a particular version of the project. While the general trend is that
more classes are added and the existing ones become increasingly more complex as
a system evolves, there might be some versions (e.g., refactorings) in which the
number of classes / methods or their complexity decreases. We want to see what
happens with the number of instances of static constructs and the classes that

utilize them especially when such situations occur. Also, we will try to go beyond
just the numbers and understand the reasons why a static construct was removed
or lost a considerable amount of clients. The measurement procedure for the
dependent variables was discussed extensively in Section 3.2.

 45

 4.3.3. Hypothesis 3
 For the final hypothesis, the independent variables are the different
categories of static constructs and their client classes. We want to establish whether
or not they have a negative impact on the 3 software quality aspects that are
investigated, namely class testability, change-proneness, and defect-proneness.
While some types (such as constants) should not make testing more difficult, there
are others (e.g., stateful singletons or static non-final attributes) that might be
extremely harmful. We will investigate every category of static constructs in

isolation for each quality aspect.
 As previously mentioned, the process for categorizing and detecting the
instances (and their clients) is described in Section 3.1. Sections 3.3 and 3.4 contain
the methods through which we quantify the 3 quality aspects. Class testability is
evaluated from both a qualitative and a quantitative perspective; this assessment
enables us to obtain a testability score for each production class. Change- and
defect-proneness are determined in a similar manner, the only difference being that

for the latter only bug-fix commits are taken into account (not the entire commit
history). A class is considered change- / error-prone if it was modified more
frequently throughout its existence and more changes were performed on it
compared to other similar production classes.

4.4. System selection

When choosing the systems for the empirical study we took into account a

number of criteria, including the ones discussed by Pinto et al. in [97]. The projects
needed to be:

 relevant in terms of size and complexity (especially the production code).
We tried to avoid trivial systems as they do not represent appropriate
examples. Therefore, we selected projects that have a large number of
classes / methods and complex hierarchies. The smallest system
(Digester) has roughly 200 classes, while others have up to 2000 (e.g.,

Tomcat).
 available through Git and have a substantial number of versions.

Considering that we are studying the evolution of different types of static
constructs, each system needed to have a corresponding Git repository

that contains its commit history. We selected projects with a large amount
of commits; the number of versions ranges from 800 (jHotDraw) to more
than 23000 (Tomcat). Additionally, all the systems are still in active

maintenance; there are no projects that have not received an update in
more than several months.

 extensively covered by unit tests. Class testability is one of the three
software quality aspects investigated in our study. We evaluate it based
on the quantity and the quality of the associated unit tests; thus, it would
not make sense to include projects that do not have an appropriate test

suite. The only exception is jHotDraw, a system which is not tested
properly; we decided to include this system because it is used as
reference in [91], an article which addresses the different variations of the
Singleton anti-pattern (that we are also detecting). Besides this project,
the ratio between the number of lines of test and production code for the
rest of the systems is above 0.5.

 46

 associated with a Jira issue tracker. To study defect-proneness we need to
identify the commits in which bugs were fixed. As explained in Section

3.4, if the commit message contains a Jira key, then we rely on the
corresponding issue tracker to determine whether or not the respective
key is related to a bug. Therefore, the selected projects should have a Jira
instance with all the issues that were created during development
available for analysis.

Table 4.2 Overview of the selected systems
System #

Versions

First version Last version Test /

code

ratio

Classes

Methods

Tests

Release

date

Classes

Methods

Tests

Release

date

BCEL 1704 359 2897 0 29/09/2001 432 3749 383 19/04/2021 0.99

Commons

Collections

3567 6 113 64 14/03/2001 525 4451 3523 19/04/2021 1.44

Commons

Lang

6330 14 199 294 19/06/2002 318 3599 4567 19/04/2021 1.76

Commons

Math

6622 4 85 22 12/04/2003 820 5800 5471 13/04/2021 0.69

Digester 2187 14 176 9 22/04/2001 188 927 768 19/04/2021 0.70

Geode 10173 4992 56289 29812 29/03/2015 4528 55799 24775 20/04/2021 0.52

jHotDraw 804 1 6 0 12/09/2000 291 2713 200 22/05/2020 0.05

Pig 3696 177 932 177 29/09/2007 1756 11870 5706 15/10/2020 0.59

Spring

Core

22423 167 1059 608 21/09/2008 646 4827 4124 21/04/2021 0.54

Tomcat 23127 1024 10771 0 27/02/2006 2126 21180 6637 20/04/2021 0.53

Wicket 21060 188 1068 502 01/09/2004 1235 8094 5217 21/04/2021 0.56

 Based on the above criteria, we selected 11 projects to be included in the
empirical study. We tried to choose systems that differ in terms of 1) size and
complexity, 2) development practices, and 3) testing effort, while still meeting the

criteria. Table 4.2 presents an overview of the main characteristics of the chosen
projects; it shows the number of versions studied (column 2), metrics gathered for
the first version of a system and the last release considered (columns 3-10), and
the test / production code ratio for the latest version (column 11). A visual
representation of the collected metrics is provided in Figures 4.1-4.3. Geode was not
included in these visualizations because of its considerably higher values compared

to the other projects, which would make the rest of the data more difficult to
interpret.
 The initial version considered is the first commit in which actual code was

present (not just configuration files and documentation). Besides the initial and final
versions of a project, we also included intermediate ones when trying to illustrate
how the 11 systems have grown in terms of number of classes, methods, and unit
tests. These intermediate versions are the last commits of each year for the entire

lifespan of a project. A general observation would be that the number of classes /
methods increased considerably in the first years of development, and then they
remained constant or even decreased (e.g., Commons Math) once a system reached
maturity. This is an important consideration that should be kept in mind when
studying the evolution of static constructs. The number of unit tests follows a similar
evolutionary pattern (especially for the systems that are extensively tested).
However, there are several cases in which no unit tests were present in the initial

version; they were added in subsequent commits.

 47

Figure 4.1. Evolution of the number of classes for each project

Figure 4.2. Evolution of the number of methods for each project

 48

Figure 4.3. Evolution of the number of unit tests for each project

4.5. Analyses conducted

 We begin the empirical study with a preliminary analysis of the selected
systems; this allows for a better understanding of 1) a system’s size and structure,
2) its history, and 3) the quantity and quality of the testing that was performed on

its latest version. The following 3 analyses are directly related to the research
questions that were formulated. The first one addresses the static construct
instances present in the production code, their types, and the other classes that
utilize them (their clients). In the second analysis, we study how instances from
each category have evolved throughout a project’s lifespan. Finally, the last analysis
evaluates the impact of each type of static construct on the 3 software quality

aspects considered.

4.5.1. Preliminary analysis

This analysis goes beyond the initial measurements that were performed on

the selected systems (which were presented in the previous section). Besides the

number of classes and methods, we are also interested in the overall complexity of
a system and the class hierarchy. Several other characteristics (such as key
functionalities) are also recorded. All this information is extremely important
considering that for the first hypothesis the independent variables are the specific
characteristics of a project.

With regard to evolution, in addition to the number of versions we also want
to determine 1) the average number of classes that were modified during a commit

and 2) the average number of fine-grained source code changes that were
performed. This allows us to have an idea of the general patterns by which a system

 49

evolves. It can serve as a basis for studying if classes that have static constructs
evolve differently, a topic which will be addressed in a following analysis. During this

preliminary analysis, we also establish which of the commits are bug-fixes (by
following the procedure from Section 3.4).

Last but not least, we evaluate the overall quantity and quality of the unit
tests for the latest version of a project. For quantity we first perform code coverage
measurements; however, we also want to calculate the percentage of production
methods that are addressed by at least 1 test. In terms of quality, we are keen to

observe 1) which types of smells are present in the test code (based on the

categorization from Section 3.3) and 2) the average number of smells per test class.
These metrics will allow for an initial assessment of the testing that was performed
on the respective system.

4.5.2. Static construct presence / usage

As mentioned above, the main analysis is split into 3 parts. First, we study
the latest version of a system in order to establish 1) if static constructs are present
and 2) how they are utilized. Besides the number of instances, we are also
interested in their types (as categorized in Section 3.1). Each category of constructs
is analysed in great detail. As an example, for singletons we distinguish between
stateful and stateless ones; moreover, the analysis is further refined so that all the

singleton variations discussed in [91] are considered.

In terms of usage, we want to go beyond the number of client classes and
understand if they are localized in several packages or spread throughout the source
code. We compare the results with those obtained for other entities of the same
type, thus allowing us to determine if certain types of static constructs are used
differently.

4.5.3. Evolution of static constructs

Regarding the evolution of the instances from each category, we analyse

monthly commits to establish whether or not such instances / classes that utilize
them were added / removed within this timeframe. We are keen to observe if the
number of static constructs increased as a system grew in size. Similar to the

previous analysis, the instances from each category are studied separately. Special
attention is dedicated to cases in which an instance was deleted or marked as
Deprecated because we want to understand the reasons behind such a decision.

The number of client classes for each instance is also examined from its
creation up to the latest version considered (or until it was removed) and compared
to that of similar classes. We are very interested in cases in which the number of

clients suddenly dropped and want to see what happened with the respective static
construct in previous commits. In our analysis on evolution, we use graphs to
display how each category of instances / their clients have evolved for every system
included in the study. By doing this, we are able to visualize the entire process and
uncover certain patterns that might appear.

4.5.4. Impact on software quality aspects

In the last analysis, we are looking for correlations between the usage of

static constructs and lower values for the 3 software quality aspects that are
investigated. Each category of static constructs is studied in isolation, thereby

 50

allowing us to determine which types have the highest effect on the respective
quality aspects. For example, to study the impact of static non-final attributes on

class testability, we compare the testability scores of the classes that have such
instances with the scores obtained for other similar classes. More specifically, we
want to establish if the former 1) are covered more thoroughly by unit tests and 2)
the tests are of better quality (in terms of test smells). As explained in Section 3.3,
the testing effort is quantified based on line coverage and the percentage of
production methods that are addressed by tests. For the test code quality, we look

at the percentage of unit tests that contain smells and the different categories of

smells present in a test class. The process is repeated for all the other categories of
static constructs, thus obtaining a better understanding of the impact of each type
on testability.

The effect on the other 2 quality aspects is investigated in a similar manner.
Both for change- and defect-proneness we try to determine if the classes that
contain different types of static constructs 1) were modified more frequently and 2)
more changes were performed on them compared to other production classes. The

only difference between the 2 quality aspects is that for error-proneness we only
consider the commits that were categorized as bug-fixes (as explained in Section
3.4). This is done for each category of static constructs, thus enabling us to pinpoint
which types are the most detrimental. Some types may have a negative impact on
only 1 or 2 of the aspects, while others might affect all 3. The latter are the most
problematic and should be avoided at all cost.

In summary, this chapter discusses:

1. The main goal of the empirical study, namely to answer the 3 research
questions that address:

 static construct presence / usage;

 the evolution of different types of static constructs;

 their impact on 3 software quality aspects: testability, change-
proneness, and defect-proneness.

2. The hypotheses that were formulated; for each research question there
are 2 hypotheses, a null version and an alternative one.

3. The independent and dependent variables for each hypothesis along with
their corresponding measurement procedures.

4. The system selection process with an emphasis on the criteria based on
which the projects were chosen:

 relevancy in terms of size and complexity;

 availability on Git and a considerable amount of versions;

 appropriate coverage through unit testing;

 availability of a corresponding Jira issue tracker.

5. The analyses that were conducted as part of the empirical study:

 a preliminary analysis on the size and structure of the systems, their
history, and the effort that was put into testing them;

 an analysis on the presence / usage of different types of static

constructs;

 an analysis on the evolution of each of the respective types;

 3 analyses on the impact of static constructs on the quality aspects.
investigated.

 51

5. RESULTS

5.1. Static constructs identified

 First, we studied the different types of static constructs that appear in the
latest version of a project. Besides the number of instances, we also wanted to
determine how they are utilized and whether or not their clients are localized or
spread throughout the system. For attributes we only computed the average
number of methods that access them from other production classes; because the
values were so low (there are very few such methods), we decided not to calculate

the average number of packages from which the attributes are accessed as those
values would have been even lower. Also, the initialization blocks are a special kind
of static constructs, they do not have any clients nor are there any other constructs
that can be considered similar to them; therefore, for this category we only
calculated the total number of instances. Finally, for static methods we regarded the
other methods that invoke them as clients (rather than the classes that contain the
respective methods); the classes from which they are called were utilized afterwards

to study the client spread (instead of packages, which were used for singletons /

utility classes). For each category of static constructs, we compare the clients and
their localization to those of the remaining entities of the same type.

 5.1.1. BCEL

Table 5.1.1: Static constructs BCEL

Category Total #
instances

Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 20 0.05 - 0.1401 -

Constants 694 0.2983 -

Singletons Stateful 1 65 4 9.331 2.0886

Stateless 2 1 1

Static
methods

Utility classes 11 35 2.4545 8.753 2.0831

Access state 13 5.1538 2.1538 18.0181 6.1455

Operate on
parameters

119 4.2941 1.5126

Static initialization blocks 5 - - - -

 There are 1706 attributes in BCEL, 714 (41.85%) of which are static; most
of them are constants, only 20 being non-final (1.17%). The constants seem to be
used by more classes compared to the non-static attributes (average number of
clients of 0.2983 vs. 0.1401), while the non-final ones are not (usage of only 0.05).
 From the 432 classes found in the latest version of the system, only 3

(0.69%) singletons were identified. The first one, Type, is stateful; however, the 2
non-final attributes are marked as Deprecated and the developers specify that they
should be final. The other 2 singletons, DOUBLE_Upper and LONG_Upper, extend
the aforementioned class, therefore they were categorized as Subclassed
Singletons. The number of clients / packages for the stateful singleton are
significantly higher than the averages for the stateless variants or the other

 52

production classes, but the results might be skewed due to the fact that this class
has several Deprecated attributes and a lot of methods still use them.

 There are 11 utility classes (2.55%) that contain a total of 107 methods.
Although they have considerably more clients (an average of 35) compared to other
classes (8.753), the package distribution for the client classes is very similar
(2.4545 vs. 2.0831). The system has 3749 methods in total, but only 132 (3.52%)
are static methods that are not part of singletons or utility classes. From them 13
(0.35%) access their class’s state, while 119 (3.17%) only operate on parameters.

Both types of methods have fewer clients compared to other methods and their

usage is more localized; on average, they are used by roughly 5 methods from 1-2
other classes, while for their non-static counterparts these values are much higher
(over 18 methods from more than 6 classes).
 Finally, there are 5 classes that contain 1 static initialization block each:
Utility, ConstantUtf8, InstructionConst, Class2HTML, and InstructionFinder.

 5.1.2. Commons Collections

Table 5.1.2: Static constructs Commons Collections

Category Total #
instances

Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 0 - - 0.3044 -

Constants 260 0.0731 -

Singletons Stateful 0 - - 1.0519 0.7058

Stateless 5 0.8 0.6

Static
methods

Utility classes 31 3.4194 1.3226 0.9008 0.668

Access state 1 2 1 15.1232 9.7912

Operate on
parameters

198 2.5909 1.5404

Static initialization blocks 1 - - - -

 There are 871 attributes in the latest version studied, 260 (29.85%) of
which are static. All the static attributes are constants, no static non-final ones were
encountered. They have, on average, a lower number of client classes compared to

the attributes that are not static (0.0731 vs. 0.3044).
 Five of the 525 classes analysed are singletons; they are all stateless and
their average number of clients is slightly lower than that of the other classes (0.8
vs. 1.0519). This observation also holds true for the average number of packages

from which they are utilized (0.6 vs. 0.7058). In terms of actual types, they are all
Eager Instantiations.
 There are 4451 methods in the system’s production classes. With regard to

utility classes, 31 such instances containing 512 methods (11.5%) were found. They
have a much higher average number of clients than other production classes
(3.4194 vs. 0.9008). Furthermore, they are utilized from more packages (1.3226
vs. 0.668). This suggests that such classes are a key part of Commons Collections,
a project which is structured as a library.
 We encountered only 199 static methods (4.47%) that are not part of
singletons or utility classes. One of them accesses its class’s state, while the other

198 (4.45%) solely operate on parameters. These methods are called, on average,
by roughly 2 other methods from 1-2 classes; the values are significantly lower than
for non-static methods (15.1232 methods and 9.7912 classes, respectively).
 Only 1 static initialization block was found in the version of Commons
Collections that was analysed; it is part of the FunctorException class.

 53

5.1.3. Commons Lang

For Commons Lang, which is also structured as a library, there are

numerous static attributes and methods. From the 862 attributes present in the
system’s classes 526 of them are static (over 61%). Most of the static attributes
represent constants and are generally used only in the class in which they are
declared, therefore their average number of clients is very low (0.0913). It is

surprising that the corresponding value for non-static attributes is even lower
(0.0774), however the difference is not significant. Only 1 of the static attributes is
non-final, defaultStyle from the ToStringBuilder class, which has 0 clients. In terms

of packages from which the attributes are utilized, it is difficult to make a distinction
between the different types of attributes due to the small number of client classes.

Table 5.1.3: Static constructs Commons Lang
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 1 0 - 0.0774 -

Constants 525 0.0913 -

Singletons Stateful 0 - - 1.4227 0.7828

Stateless 1 0 0

Static
methods

Utility classes 51 2.6471 1.4847 1.1835 0.6448

Access state 3 1.3333 0.6667 3.0867 1.6488

Operate on
parameters

204 1.049 0.5931

Static initialization blocks 15 - - - -

 With regard to singletons, only 1 instance was identified.
ObjectToStringComparator is a stateless singleton of type Eager Instantiation; there

are no production classes in the latest version of Commons Lang that utilize it.
 Similarly to attributes, 1702 out of the 3599 methods are static (47.29%).
There are 51 utility classes which contain a total of 1495 methods (41.54%). They
have, on average, more clients (2.6471 vs. 1.1835) from more packages (1.4847
vs. 0.6448) compared to other production classes. The rest of the static methods
are divided into 2 categories, the ones that access their class’s state (3) and those
that only operate on parameters (204). It can be observed that these types of static

methods have, on average, a lower number of client methods compared to the non-

static methods and are utilized from fewer classes (around 0.6 for both types vs.
1.6488).
 Finally, 15 static initialization blocks were found in 11 production classes.
Most of the classes contain 1 such instance, but there are 2 which have more
(ClassUtils and FieldUtils with 4 and 2 instances, respectively).

 5.1.4. Commons Math

There are 644 static attributes (30.31%) from a total of 2125; only 12
(0.56%) are non-final while the other 632 (29.74%) are constants. The non-final
ones are only used in the class in which they are declared; the constants are rarely
utilized in other production classes, the average number of clients is comparable to
that of the non-static attributes (0.0934 vs. 0.1141).

 54

Table 5.1.4: Static constructs Commons Math
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 12 0 0 0.1141 -

Constants 632 0.0934 -

Singletons Stateful 0 - - 3.9048 1.3443

Stateless 1 1 1

Static
methods

Utility classes 25 17.72 4.4 3.4667 1.2478

Access state 10 5.9 3.2 27.9794 6.8239

Operate on
parameters

181 4.453 1.8287

Static initialization blocks 12 - - - -

 Only 1 singleton was detected in the latest version of the system,

Decimal64Field. It is of type Lazy Instantiation and has a single client (Decimal64).
From the 820 production classes in the project 25 are utility classes (3.05%), much
fewer than for the previous 2 libraries. They contain 414 static methods and are
used, on average, by 17.72 classes, which is significantly higher than the average
number of clients for the other classes (3.4667). In terms of localization, the clients
are more spread out in the project. From the total of 5800 methods, 10 (0.17%) are
static and access their class’s state while 181 (3.12%) operate solely on

parameters. These categories of methods have a smaller number of clients (on
average 5.9 and 4.453, respectively) compared to the non-static methods

(27.9794). Correspondingly, the average number of classes from which they are
utilized is also lower.
 There are 12 static initialization blocks in the system’s production classes.
Only 1 class contains more than 1 initialization block, FashMath which has 3 such
instances.

 5.1.5. Digester

Table 5.1.5: Static constructs Digester

Category Total #
instances

Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 0 - - 0.0311 -

Constants 36 0 -

Singletons Stateful 0 - - - -

Stateless 0 - -

Static
methods

Utility classes 2 1.5 1 2.6882 1.3011

Access state 0 - - 4.1058 1.9593

Operate on
parameters

7 2 2

Static initialization blocks 0 - - - -

 For the smallest system that was analysed, several types of static constructs

are missing. From the 325 attributes found in the latest version of Digester, only 36
are static (which is roughly 10%). All of them are constants, there are no static non-
final attributes. The constants do not have any clients, they are utilized only in the
classes that declare them. The average number of classes from which the non-static
attributes are used is also very low, thus suggesting that the developers have a
strict policy of not accessing attributes from other classes directly.

 55

 No singletons were identified in this system, which only has 188 classes.
There are however 2 utility classes (1.06%), AnnotationsUtils and LogUtils, that

have a total of 8 static methods. They have less clients (1.5 vs. 2.6882) compared
to the other production classes and are utilized from fewer packages (1 vs. 1.3011).
Out of 927 methods, there are no static methods that access their class’s state and
only 7 static methods that operate on parameters (0.76%). Their average number
of clients is considerably lower than for non-static methods (2 vs. 4.1058), but the
average number of classes from which they are called is roughly the same (2 vs.

1.9593). Just as for singletons, there are no production classes that contain static

initialization blocks.

 5.1.6. Geode

Table 5.1.6: Static constructs Geode

Category Total #
instances

Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 308 0.3019 - 0.2832 -

Constants 8030 0.2391 -

Singletons Stateful 17 7.2611 2.2906 6.8429 2.2489

Stateless 64 2.5601 0.8804

Static
methods

Utility classes 243 8.5144 2.4198 8.8869 2.9502

Access state 184 18.8587 10.0271 39.9615 17.3232

Operate on
parameters

1804 20.5937 12.0061

Static initialization blocks 107 - - - -

 There are 22176 attributes in total in Geode’s production classes, 8338

(over 37.5%) of which are static. From the static ones, 8030 (96.31%) of them are
constants while the remaining 308 are non-final. There is no significant difference
between the average number of clients for the static non-final attributes (0.3019)
compared to constants (0.2391). The values obtained are also similar to the one for
the non-static attributes (0.2832).
 From a total of 4992 production classes, 81 are singletons (1.62%); 17 of

them are stateful and 64 stateless. Subclassed Singleton appears to be the
predominant type as 51 singletons are children of BaseCommand and 4 are of
InternalFunction. The rest of the singletons are either Lazy Instantiations or Eager
Instantiations, the sole exception being HexThreadIdPatternConverter which is a

Limiton. Unlike the other systems, Geode has 3 singletons that are marked as
Deprecated in its latest version. In terms of usage, the average number of clients /
packages from which stateful singletons are utilized is comparable to that of other

classes (7.2611 vs. 6.8429 and 2.2906 vs. 2.2489, respectively). However, the
corresponding values for the stateless variants are considerably lower (2.5601 for
clients and 0.8804 for packages).
 The version studied has 243 utility classes (4.87%) that contain 1391 static
methods. Both their average number of clients and the average number of packages
from which they are used resemble the ones obtained for the other classes (8.5144
vs. 8.8869 and 2.4198 vs. 2.9502, respectively); this shows that for Geode the

usage patterns for utility classes are no different to those of other production
classes. Out of a total of 55671 methods, only 3379 are static. From these 184
access their class’s state (0.33%) while 1804 solely operate on parameters
(3.24%). Both types are invoked by a comparable number of other methods
(18.8587 and 20.5937); these averages are lower than the one obtained for the

 56

non-static methods (39.9615). Consequently, the average number of classes from
which they are called is also smaller (10.0271 and 12.0061 vs. 17.3232).

 Only 107 static initialization blocks were found in the system’s production
classes. Most of the classes have 1 such instance, but there are some that have
more; the ones with more than 2 static initialization blocks are: NativeCallsJNAImpl
(5), LinuxNativeCalls (4), and FreeListManager (3).

 5.1.7. jHotDraw

Table 5.1.7: Static constructs jHotDraw

Category Total #
instances

Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 25 0.04 - 0.1992 -

Constants 369 0.0705 -

Singletons Stateful 0 - - 4.11 1.3093

Stateless 1 3 2

Static
methods

Utility classes 4 6.75 2.25 4.0694 1.2986

Access state 6 0.8333 0.8333 9.8773 4.5476

Operate on
parameters

39 2.9231 2.8462

Static initialization blocks 2 - - - -

 From the 866 attributes present in the latest version of jHotDraw, 394 are

static (which is roughly 45.5%). Only 25 of them are non-final (2.89%), while the
other 369 are constants (42.61%). Both types of static attributes have less clients
than their non-static counterparts, but all the averages are very low.
 In terms of singletons, only 1 stateless instance was found

(FigureLayerComparator) which is of the Eager Instantiation type. It has 3 clients
that are localized in 2 nested packages; the other production classes have, on
average, more clients (4.11), but they are generally from the same package.

Out of the 292 production classes 4 (1.37%) are utility classes:
ResizeHandleKey, AttributeKeys, TransformHandleKit, and PaletteUtilities. They
contain a total of 45 static methods, have more clients than the other production

classes (6.75 vs. 4.0694), and these clients are more spread out through the code
(2.25 vs. 1.2986 packages on average). There are 2719 methods in the version
analysed, but only 45 (1.66%) of them are static and not part of singletons or utility
classes. Six (0.22%) access state, while the other 39 (1.43%) only operate on their

parameters. These static methods have fewer clients than their non-static
counterparts (especially the ones from the first category) and their utilization is
more localized (0.8333 classes for the former and 2.8462 for the latter vs. 4.5476

for non-static methods).
 There are only 2 classes that contain 1 static initialization block each,
DefaultDrawingView and AttributeKeys.

 5.1.8. Pig

The system’s production classes have 4423 attributes, out of which 1346
(30.43%) are static. From these 1101 are constants (24.89%) while the remaining
245 are non-final (5.54%). The average number of clients for the attributes that are
static non-final is lower (0.151) than the corresponding values for constants
(0.3406) or non-static attributes (0.3133), which are comparable.

 57

Table 5.1.8: Static constructs Pig
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 245 0.151 - 0.3133 -

Constants 1101 0.3406 -

Singletons Stateful 14 13.9286 4.9286 6.435 2.8546

Stateless 4 37.5 10.75

Static
methods

Utility classes 75 11.2667 4.2133 6.356 2.5172

Access state 86 26.4651 13.4186 42.4463 15.8513

Operate on
parameters

451 9.6186 3.8315

Static initialization blocks 34 - - - -

From the 1756 classes in the latest version studied, 18 of them are

singletons (1.03%). Unlike what was observed thus far, Pig is a project in which
most of the singletons (14) are stateful. The stateful singletons have more than
double (13.9286) the number of clients when compared to the average for the other
production classes (6.435). However, the most surprising finding would be the
average number of clients for the 4 stateless singletons (37.5); this is mainly due to
1 class, TupleFactory, having a large amount of clients (128). The average number
of packages from which singletons are utilized is also considerably higher (4.9286

for stateful and 10.75 for stateless singletons vs. 2.8546 for the other classes).
There are 75 utility classes (4.27%) containing 520 static methods. They

have, on average, 11.2667 clients, which is almost double than the corresponding
value for the other production classes (6.356). Furthermore, the average number of
packages from which utility classes are called is also higher (4.2133 vs. 2.5172).
From the 9050 methods found, only 86 (0.95%) are static ones that access state
while 451 (4.98%) are static and solely operate on their parameters. They also have

fewer clients (26.4651 the ones from the first category and 9.6186 those from the
latter), thus suggesting that such methods are not called as frequently in projects of
this kind.

Finally, we encountered 34 static initialization blocks in 31 of the system’s
classes. Most of the production classes have 1 such block, but there are 3 classes
that contain 2, TezJobSplitWriter, JrubyScriptEngine, and Main.

 5.1.9. Spring Core

Table 5.1.9: Static constructs Spring Core
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 10 0.3 - 0.6 -

Constants 611 0.5827 -

Singletons Stateful 0 - - 3.3239 1.0845

Stateless 5 2 0.8

Static
methods

Utility classes 63 7.5397 2.1111 2.9177 0.9811

Access state 13 3.6923 2.2308 5.2999 2.7307

Operate on
parameters

236 3.6017 2.0593

Static initialization blocks 27 - - - -

Roughly a third (621) of the project’s 1911 attributes are static. Most of

them (611) are constants, while the remaining 10 are non-final. The average

 58

number of clients for the static non-final attributes is lower (0.3) than the values
obtained for constants (0.5827) and non-static ones (0.6).
 Five classes (0.77%) were categorized as singletons from the system’s 646
classes. All the singletons are of type Eager Instantiation and have on average 2
clients, a value which is lower than the average number of clients for the other
production classes (3.3239). The average number of packages from which they are
accessed is also slightly lower (0.8 vs. 1.0845).
 There are 63 utility classes, which is almost 10% of Spring Core’s production

classes. They contain 768 static methods and have considerably more clients

(7.5397 on average) than the rest of the classes (2.9177); their clients are also
more spread out, they are part of 2 or more packages while the ones of the other
classes are either from the same package or in 1 more. There are 4827 methods in
total for the latest version of the project, but only 13 (0.27%) access state and 236
(4.89%) operate on parameters. They have a lower number of clients (3.6923 and
3.6017, respectively) compared to the non-static methods (5.2999); the average
number of packages from which the static methods are called is also smaller, albeit

not by much (2.2308 and 2.0593 vs. 2.7307).
 The latest version of Spring Core studied contains 27 static initialization
blocks. There are only 2 production classes that have more than 1 such block,
ReflectUtils and ReflectionUtils (both with 2).

 5.1.10. Tomcat

Table 5.1.10: Static constructs Tomcat
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 134 0.1119 - 0.1344 -

Constants 3106 0.1806 -

Singletons Stateful 8 1.5 0.625 1.5724 0.6555

Stateless 5 3.2 1.4

Static
methods

Utility classes 149 0.8322 0.4966 1.2004 0.5105

Access state 46 3.1304 1.8478 5.7686 2.689

Operate on
parameters

420 3.669 1.1024

Static initialization blocks 99 - - - -

 From a total of 9652 attributes there are 134 static non-final ones (1.39%)

and 3106 constants (32.18%). The average number of clients is very small for both
types (0.1119 for the former and 0.1806 for the latter); they are comparable to the
value obtained for the non-static attributes (0.1344).

 There are 13 singletons (0.61%) from the system’s 2126 production classes,
8 of which are stateful; Tomcat is only the second project for which we found more
stateful variants than stateless ones. There is little difference between the average
number of clients / packages for stateful singletons and the remaining classes (1.5 /
0.625 vs. 1.5724 / 0.6555). For stateless singletons the corresponding values are
significantly higher (3.2 for clients and 1.4 for packages).
 The number of utility classes is also quite low; there are only 149 instances

(around 7%). They are utilized less compared to singletons or the other production
classes; the average number of clients is 0.8322, while for packages it is 0.4966.
Similar observations can be made with regard to other static methods; there are
only 46 that access state and 420 which solely operate on parameters. All these
values are low considering the size of Tomcat. The average number of methods that

 59

invoke these instances is also lower than the one obtained for the non-static
methods (3.1304 and 3.669 vs. 5.7686); furthermore, they are called from fewer

classes (1.8478 and 1.1024 vs. 2.689).
 Finally, we encountered 99 instances of static initialization blocks in 95 of
Tomcat’s production classes; there are 4 classes that contain 2 such instances.

 5.1.11. Wicket

Table 5.1.11: Static constructs Wicket
Category Total #

instances
Avg. #
clients

Avg. #
packages

Avg. # clients
similar type

Avg. # pack.
similar type

Static
attributes

Non-final 22 0.0857 - 0.1059 -

Constants 1036 0.0998 -

Singletons Stateful 0 - - 3.8 1.8973

Stateless 8 4 2.125

Static
methods

Utility classes 25 3.6774 2.6452 3.8032 1.8851

Access state 6 49.1667 25.1667 15.1127 7.4537

Operate on
parameters

209 22.8995 24.5694

Static initialization blocks 3 - - - -

 There are 2617 attributes in all of Wicket’s classes, 1058 of which are static

(roughly 40%); 22 of the static ones are non-final, while the vast majority are

constants. The average number of clients is very similar for all 3 types of attributes
(static non-final, constants, and non-static); it can be observed that they are rarely
utilized by other production classes.
 From the 1423 classes present in the latest version of the project, 8 were
categorized as singletons (0.63%). All the singletons are stateless and of type Eager
Instantiation. One of the instances, EmailAddressPatternValidator, is marked as
Deprecated in the version studied. In terms of client classes, there seems to be very

little difference between the average number of clients / packages from which
stateless singletons are utilized compared to the other production classes (4 vs. 3.8
/ 2.125 vs. 1.8973).
 There are 25 utility classes (1.76%) that contain a total of 172 static
methods. The observation that was made with regard to the average number of
clients / packages for stateless singletons also applies to utility classes, although

their usage is a little bit more spread out (2.6452 vs. 1.8851 packages). Out of the
9162 methods found, only 6 are static and access state (0.07%) while 209 solely
operate on parameters (2.28%). Both types are called by more methods (49.1667
and 22.8995 vs. 15.1127) than their non-static counterparts; the methods that
invoke them are also part of more classes (roughly 25 in both cases compared to
7.4537).
 Only 3 classes have static initialization blocks, WicketTagIdentifier (2 such

instances), TagUtils, and JavaSerializer (both with 1 instance).

 60

5.2. Evolution of static constructs

Next, we studied the evolution of the different types of static constructs. We
did not focus solely on the number of instances present in a specific version of the
system; we also wanted to establish the reasoning behind the addition / removal of
certain instances or their clients. Furthermore, for the class-level constructs

(singletons and utility classes) we also analysed their usage throughout the lifespan
of the project. It would have been difficult to study this aspect for the more fine-

grained static constructs (e.g., static non-final attributes or initialization blocks) due
to the reasons discussed in the previous section. For each case we created a graph
that depicts the total number of instances / the percentage of production classes
that utilize instances of that type (y-axis) over time (x-axis). We try to explain why
certain situations occur, such as a large decrease of the instances of interest or a

class losing most of its clients.

 5.2.1. BCEL

Figure 5.2.1.1: Evolution of static non-final attributes for BCEL

 There are very few static non-final attributes compared to constants or non-
static ones. We found 25 such instances in the initial version studied. Then this
number increased to 33 in May 2003 and remained constant for roughly 6 years
even though other types of attributes were being added. From there on it started to

decrease with one exception; between May 2013 and August 2015 the number of
static non-final attributes increased from 23 to 29, remained constant for about 1
year, and then dropped to 25. Finally, there are only 20 instances in the latest
version that was analysed.

 61

Figure 5.2.1.2: Evolution of constants for BCEL

 In the first version of BCEL 514 (54.68%) of the 940 attributes were
constants. Up until September 2015 both the number of constants and the total

number of attributes increased constantly; at that moment there were 1138
constants (over 70%) out of 1618 attributes. From there on the number of
attributes continued to grow while the number of constants dropped to 648. Then it

slowly increased; in the latest version of BCEL there are 694 such attributes
(40.75%) from a total of 1703.

Four singletons were found in the very first version of BCEL. Two of them,
LONG_Upper and DOUBLE_Upper, were stateless and of type Subclassed Singleton

while the others (Type and BranchHandle) were stateful. With the exception of
BranchHandle they were part of the project for its entire existence. In August 2002
another stateless singleton was introduced, InstructionComparator; it was of type
Eager Instantiation and remained in the system until August 2015. A series of
interesting events occurred in the respective time period; for example,
BranchHandle became a stateless singleton and remained in that form until June

2016 when state was added to it once again. Finally, in February 2019
BranchHandle was removed along with its superclass.

Figure 5.2.1.3: Evolution of singleton usage for BCEL

 62

 The usage of stateful singletons is high due to the fact that Type (a class
with 61 clients) was implemented as a loose variation of the pattern. Initially, the

percentage of production classes that utilize such singletons was around 30%; then
it started to slowly decrease until reaching 26.04% in 2018. During that time one of
the singletons (BrachHandle) was removed, thereby causing the percentage to drop
to 14.8%. At the end of the development process a number of production classes
were removed; this caused a slight increase in stateful singleton usage (to 15.05%).
The percentages for the usage of stateless singletons are very low compared to their

stateful counterparts. Between 2002 and 2015 they were roughly around 0.75%.

The value increased to 1.67% when BranchHandle became stateless and dropped all
the way to 0.23% when state was added back to it.

Figure 5.2.1.4: Evolution of utility classes for BCEL

 The initial version of the project contained 6 utility classes. The number of

instances remained the same until August 2015 when it grew to 9; then it increased
again to 10 in May 2016 and to 11 in July 2019. It can be observed that the number
of utility classes does not grow constantly as the system increases in size. In terms
of usage, while there were only 6 utility classes the percentage of production classes
that utilized them was constant (between 10% and 11%). When new instances were
added, this percentage spiked to 64.82% because one of them (Constants) had 259

clients (from a total of 415 classes). Then the usage increased by a small margin to
66.2% for the latest version studied.

Figure 5.2.1.5: Evolution of utility class usage for BCEL

 63

Figure 5.2.1.6: Evolution of static methods for BCEL

 In the first version there were 12 static methods that access state (0.43%)
and 63 that only operate on parameters (2.23%) out of a total of 2822 methods.
The number of methods from the first category increased slightly in the first years of

development until reaching a maximum of 20 in June 2006. It remained constant for
almost 4 years, then it dropped to 11 in May 2010. From there on, the number of

instances fluctuated; there are 13 static methods that access state (0.35%) in the
latest version of the system. On the other hand, the amount of static methods that
solely operate on parameters increased constantly over the years. There were 87
such instances in 2003, 101 in 2010, and 113 in 2018. A maximum value of 119
(3.27%) was reached in April 2020; no such methods were added ever since, but

their percentage decreased to 3.17%.

Figure 5.2.1.7: Evolution of static initialization blocks for BCEL

There were 4 static initialization blocks in the first version of BCEL that was

studies. However, a class that contained such an instance (Repository) was removed
in June 2002. Another instance was added in May 2013 as part of the ConstantUtf8
class. Finally, the fifth and last static initialization block was created in August 2015
in Class2HTML; the number of instances has remained constant ever since.

 64

 5.2.2. Commons Collections

There were 1 static non-final attribute and 1 constant in the initial version of

the project which contained a total of 35 attributes. The number of static non-final
attributes grew in the first year of development until reaching 7 in February 2002.
From there it dropped to 3 (even though the number of attributes was continuously
growing) and remained constant until June 2018. All 3 instances were removed the
following month; there are no static non-final attributes in the latest version of

Commons Collections that was studied.

Figure 5.2.2.1: Evolution of constants for Commons Collections

 Just like the total number of attributes, the number of constants increased
rapidly in the first 2 years of development. At the end of 2003 there were 204
constants (20.54%) from the existing 993 attributes (the peak value in terms of

number of attributes). Since then, the number of constants increased slowly until
reaching the maximum value of 265 in August 2012. From there on, this number
fluctuated as some minor refactorings occurred within the system. It can be
observed that the evolutions of the number of constants and the total number of
attributes are very similar. Finally, the latest version of the system has 260
constants (29.85%) out of the 871 attributes present.

Figure 5.2.2.2: Evolution of singletons for Commons Collections

 65

 There were no singletons in the earlier versions of Commons Collections. In
July 2012 7 such instances were created, all corresponding to different types of key

analyzers (e.g., StringKeyAnalyzer, ByteKeyAnalyzer, or IntegerKeyAnalyzer). They
were all stateless and from the Eager Instantiation category. However, most of
them were part of the system for less than 1 year; in June 2013 StringKeyAnalyzer
was the only singleton left. From there on, the number of singletons started to
increase; DefaultEquator was added in November 2013, PropertiesFactory and
SortedPropertiesFactory in June 2019 and NoValuesIterator in February 2020.

Similar to before, all the singletons were stateless and of type Eager Instantiation;

this shows that the developers refrained themselves from creating stateful
singletons.

Figure 5.2.2.3: Evolution of singleton usage for Commons Collections

The usage of singletons is very low throughout the project’s lifespan, less

than 1% of the production classes utilize such instances. Oddly enough, no client
classes were found when the first 7 singletons were added. Three clients were

encountered in 2013, 1 for StringKeyAnalyzer and 2 for DefaultEquator, making the
usage 0.72%. Since then, the percentage started to decrease as no new clients
appeared and the system was still growing in size. The only increase occurred in
2020 when the last singleton (NoValuesIterator) was created.

Figure 5.2.2.4: Evolution of utility classes for Commons Collections

 66

 The number of utility classes increased rapidly in the first 3 years of
development; there were 3 instances in 2001, 8 in 2002, and 27 at the end of 2003.

From there on, this number remained rather constant between 2003 and 2019. The
least amount of instances (22) were found between September 2009 and June
2012. In the last 2 years of development, the number of utility classes reached a
peak value of 31.

Figure 5.2.2.5: Evolution of utility class usage for Commons Collections

The usage of utility classes also increased in the earlier stages of

development to around 8% between 2002 and 2004. Then we can observe a slight
decrease followed by a spike to over 10% in 2009. Afterwards the usage remained
constant at around 10% for almost 10 years; during this period 4 instances were

added along with their client classes, but the project was also growing in size.
Finally, in the last 2 years the usage increased to over 12% during the time when
the number of instances reached its highest value (31).

Figure 5.2.2.6: Evolution of static methods for Commons Collections

 67

In the first version of Commons Collections there were no static methods
that access state and only 1 that solely operates on parameters. The number of

instances from the first category is very low throughout the lifespan of the project.
There were 2 instances between 2002-2003 and 1 between 2004-2008. No static
methods that access state were found afterwards, until April 2013 when 1 such
methods was added; it remained part of the system ever since. In terms of static
methods that only operate on parameters, their number increased considerably in
the first 3 years of development; there were 164 instances (4.78%) in June 2004.

From there on, this number fluctuated until June 2015 when it reached a value of

181 (4.99%). It continued to increase in the last years of development; there are
198 static methods that solely operate on parameters in the latest version studied.
 Very few static initialization blocks were found for Commons Collections
throughout the project’s history. One such instance was encountered in the very
first commits; it was located in the BeanMap class and remained part of the system
until the respective class was remove in September 2009. In May 2003 another
static initialization block was used in the FunctorException class. No initialization

blocks were added ever since.

 5.2.3. Commons Lang

 The number of static non-final attributes increased rapidly in the first year of

development (from 2 to 23 instances). Afterwards, this number started to decrease

with some fluctuations; for example, it went from 12 in July 2003 to 18 in
September 2007 and back to 12 again in August 2011. From there on, the number
continued to decrease until April 2017 when it reached a minimum value of 1. The
respective attribute, defaultStyle, is still part of the system.

Figure 5.2.3.1: Evolution of constants for Commons Lang

 The image shows that the number of constants evolved similarly to the total
number of attributes. Both values grew constantly year after year, the only

exception being February 2008 when the constants dropped from 327 instances to
302 while the total number of attributes decreased from 549 to 515; during this
refactoring the number of classes also went from 139 to 127. Since then, the 2

 68

values co-evolved gracefully; in the latest version studied there are 530 constants
(over 60%) from a total of 875 attributes.

 The only singletons found for Commons Lang, ObjectToStringComparator,
was created in January 2020 and is still part of the system. It is a stateless
singleton of type Eager Instantiation that does not have any clients in the latest
version of the project; however, it did have 1 client when it was first added.

Figure 5.2.3.2: Evolution of utility classes for Commons Lang

 There were 7 utility classes in the initial release of the system. Their number
rose fast in the first year of development; 27 instances were found in a version from
April 2003. Then it remained relatively constant the following 4 years. Afterwards,
the number of utility classes increased continuously over the lifespan of the project.
A maximum of 51 instances was encountered in the latest version of Commons Lang
that was studied.

Figure 5.2.3.3: Evolution of utility class usage for Commons Lang

 69

 Utility class usage increased in the first years of development from 13.33%
in the initial version to 30.89% in January 2010. From there on, this value fluctuates

as both utility classes and other production classes are being created. In May 2018 a
peak usage of 35.77% was reached; since then, the value has started to decrease.
The utility class usage for the latest version analysed is 24.84%.

Figure 5.2.3.4: Evolution of static methods for Commons Lang

 There were no static methods that were not part of utility classes in the
initial version of Commons Lang. The number of static methods that access state
increased slightly in the first years of development until reaching a maximum of 17
(1.3%) in September 2007. From there on, it decreased to 5 (0.42%) instances in
March 2009 and remained relatively constant ever since. There are 3 static methods

that access state (0.08%) in the last version of the system. On the other hand, for
static methods that solely operate on parameters the amount of instances grew
constantly over the years. There are nonetheless 2 exceptions, 2011 when this
value decreased from 127 to 112 and 2015 when it went from 166 to 141. The
maximum was reached in the last year of development; 204 (5.67%) such methods
were found in the latest version studied.

Figure 5.2.3.5: Evolution of static initialization blocks for Commons Lang

 70

 The number of initialization blocks increased rapidly in the project’s first
years of development. For example, there were 2 such constructs in January 2003,

5 in April, 7 in August, and 9 in December 2003. Then it continued to grow along
with the system until reaching a maximum of 16 in May 2008. From there on, it
started to fluctuate even though the project was still growing in size. The number of
instances decreased to 8 in February 2010 and then it started to increase again to
15 in March 2017; the value remained constant ever since.

 5.2.4. Commons Math

Figure 5.2.4.1: Evolution of static non-final attributes for Commons Math

 There were no static non-final attributes in the initial version of Commons
Math. The number of instances increased slowly in the first 2 years of development
until reaching 16 in June 2005. In February 2007 new functionalities were added to
the project and the number of static non-final attributes increased almost 4 times to

61 such instances. Most of these attributes were part of the system for less than 1
year; in January 2008 only 20 were still present. From there on, this number
fluctuated until November 2015 when it dropped to 11. Only 1 more instance was
created ever since, there are 12 in the latest version studied.

Figure 5.2.4.2: Evolution of constants for Commons Math

 71

In the first version of Commons Math there were 13 constants (17.33%)
from a total of 75 attributes. The number of instances increased over time until

December 2014 when 988 constants (33.34%) were found out of 2963 attributes.
Then there was a small decline followed by an increase, thereby obtaining a
maximum of 993 instances in December 2016. From there on, both the number of
constants and the total number of attributes decreased continuously; there are 632
instances (under 30%) from 2125 attributes in the last version analysed.

The first singleton, DummyStepHandler, was created in February 2007; it

was stateless, of type Lazy Instantiation, and had 2 clients (RungeKuttaIntegrator

and AdaptiveStepsizeIntegrator). This instance was part of the project for 2 and a
half years until it was removed in September 2009. The only other instance to ever
be created, Decimal64Field, was introduced in March 2012 and is still present in the
latest version studied. It is also stateless but of type Eager Instantiation and had
only 1 client throughout its existence (Decimal64). Singleton usage peaked when an
instance was created and slowly decreased as new classes were added to the
project. For example, when DummyStepHandler was introduced it was 0.9%, then it

dropped to 0 for the last commits in which the singleton was present (because the
class did not have any clients anymore). Similarly, the usage was 0.14% at
Decimal64Field’s creation and is 0.12% for the latest commit.

Figure 5.2.4.3: Evolution of utility classes for Commons Math

 The number of utility classes was rather constant in the first 6 years of
development, then it rapidly increased from 9 to 38 in the following years. The
amount of instances that were added was significantly higher than the number of
production classes that were created. For example, 5 new utility classes appeared
between 2012-2013 and 7 between 2013-2014; during these periods around 100
production classes were developed, a number which is comparable to the ones

obtained for the previous 1 year intervals (in which little to no utility classes were
added). From 2016 onwards, the number of instances started to decrease until it
reached a value of 25 for the latest version studied. This is in concordance with the
refactorings that occurred in these later years of development, which caused the
total number of production classes to also decrease.

 72

Figure 5.2.4.4: Evolution of utility class usage for Commons Math

 The usage of utility classes for Commons Math is much higher compared to
the other systems that were studied. Even at the beginning of the development

process between 10% and 17.5% of the production classes utilized at least 1 utility
class (although there were only 6-9 instances). Since 2010 when the number of
instances started to increase considerably, the percentage of client classes is much

higher (over 30%). It continued to grow until reaching a maximum of 38.37% in
February 2016; from there on it decreased by a small margin, but was still around
34%-36%. It proves once again that this type of classes are very important in

projects such as Commons Math (that are structured as libraries).

Figure 5.2.4.5: Evolution of static methods for Commons Math

 The first static methods that access state (4 instances) were created in
February 2007. Since then, the amount of instances grew to a maximum of 36
(0.75%) in May 2011. It immediately dropped to 4 and started to increase once

again. There were 14 such methods in February 2013 and 17 (0.23%) in April 2014.
This number remained constant for roughly 3 years and began to decrease

 73

afterwards. There are 10 static methods that access state (0.17%) in the final
version of Commons Math that was analysed. For static methods that solely operate

on parameters the situation is quite different. The number of instances increased
from 1 in the initial version of the project until reaching a maximum of 291 in
December 2014. From there on it started to decrease, albeit with some fluctuations;
there are 181 static methods that only operate on parameters (3.12%) in the latest
version of the system.

Figure 5.2.4.6: Evolution of static initialization blocks for Commons Math

Unlike what was observed thus far for this system, there were very few
instances of static initialization blocks in the first 8 years of development although
the project was growing rapidly. The number of instances spiked from 3 in 2010 to
10 in 2011 and to 15 in 2012. From there on, it remained rather constant until 2016

when it reached a peak value of 19. Since then the system has undergone a series
of refactorings, thereby reducing the amount of production classes from 1011
(January 2016) to 820 (January 2021). Unsurprisingly, the number of static
initialization blocks also decreased from 19 to 12.

 5.2.5. Digester

Figure 5.2.5.1: Evolution of static attributes for Digester

 74

There was only 1 static non-final attribute in the initial version of the
system, factory from the Digester class, which was removed in August 2002.

Afterwards, the number of instances started to increase as more classes were being
added until reaching a maximum value of 21 in April 2004. This value remained
constant until March 2011 when a major refactoring occurred in which all the static
non-final attributes were either made final or removed. No new instances were
created ever since.

The evolution of the number of constants is similar to that of the total

number of attributes. There was 1 instance in the first version of Digester out of 67

attributes. Then this number started to increase with minor fluctuations until
reaching 21 in August 2010. As mentioned before, a refactoring took place in the
following months in which some of the static non-final attributes became constants,
thus obtaining a peak value of 36 in December 2011. Since then, the value
remained constant as no attributes were added / removed afterwards.

Throughout the entire lifespan of the project only 1 stateless singleton was
created, RuleSetCache. It appeared in August 2010 and was part of the system in

that form for a couple of commits. It initially had 1 client from a total of 152 classes
for the respective commit. In the commit that was studied from September 2010, it
was observed that the instance was refactored into a final class; no singletons were
introduced from there on.

Figure 5.2.5.2: Evolution of utility classes for Digester

Figure 5.2.5.3: Evolution of utility class usage for Digester

 75

 The first utility class, DigesterLoader, was added to the system in December
2001. Since then, the number of instances grew constantly until reaching a

maximum of 6 in August 2010. In May 2011 a series of refactorings occurred in
which 4 of the utility classes were modified / removed, thereby causing the amount
of instances to drop to 2; only AnnotationUtils and LogUtils remained and are still
part of the project. Similar to the number of utility classes, their usage increased as
more instances were introduced. While DigesterLoader did not have any clients
initially, the percentage of production classes that utilized such instances grew over

time until reaching 6.1% in January 2004. Afterwards, even though another utility

class was created, the percentage decreased because significantly more classes
were developed (from 97 to 152). From that point on, the usage continued to drop
as no new instances appeared (4 were even modified / removed) while production
classes were still being created; thus, the utility class usage finally stabilized at
1.6% from 2015 onwards.
 There were very few static methods which were not part of utility classes
throughout the lifespan of Digester. Only 2 static methods that access state

(0.35%) were encountered; they appeared between November 2003 and March
2004. For static methods that only operate on parameters, their number increased
from 1 (0.57%) in the initial version of the system to 7 (0.77%) in 2011; it
remained constant ever since.
 Only 1 static initialization block was found in the entire history of Digester.
It was added to the ParserFeatureSetterFactory class in January 2004 and remained

part of the project until March 2011. As mentioned before, we did not study the
clients for this type of static constructs as they are supposed to be used only for
initialization purposes.

 5.2.6. Geode

Figure 5.2.6.1: Evolution of static non-final attributes for Geode

 In the first version of Geode that is available on GitHub we found 632 static

non-final attributes, which is roughly 2.5% of the total number of attributes. The
number of instances increased to 650 at the beginning of 2016, but then it began to
decrease. Between July 2018 and January 2019 this value dropped from 611

 76

(2.19%) to 343 (1.41%). The number of static non-final attributes continued to
decrease in the following year to 309 instances in January 2020. It remained almost

the same ever since; there are 308 (1.39%) such attributes in the latest version of
Geode.

Figure 5.2.6.2: Evolution of constants for Geode

 The graphs for the number of constants and the total number of attributes
are very similar. Initially, there were 13954 constants (53.18%) from 26241
attributes. The number of instances increased in the first year of development to

14583 (50.68%), then it slowly decreased to 7899 (36.03%) in January 2020. From
there on, it grew by a very small amount; there are 8030 constants (36.21%) out of
a total of 22176 attributes.

Figure 5.2.6.3: Evolution of singletons for Geode

 The total number of singletons decreased as Geode evolved. There were 25
stateful instances and 100 stateless ones in the first version available on GitHub. For
stateful singletons, this number continuously decreased until January 2021 when
there were only 16 instances. Another stateful singleton was added in February

 77

2021, thus taking the number of instances to 17 for the latest version analysed.
Similar observations can be made with regard to the stateless singletons. However,

there have been cases in which the number increased; for example, 3 stateless
singletons were created between July 2016 and January 2017, thereby increasing
the number of instances from 95 to 98. Over the years, they continued to get
removed; there are 64 stateless singletons in the last version of Geode.

Figure 5.2.6.4: Evolution of singleton usage for Geode

 In terms of singleton usage, the trend is also towards a decrease. For

stateful singletons the percentage dropped from 6.98% for the first version to
4.89% for the latest version, while for the stateless ones the corresponding values
are 4.18% and 2.76%, respectively. Throughout the system’s lifespan there were
cases in which this percentage increased (e.g., when a new instance was created or
when a bunch of production classes that were not singleton clients have been
removed), but in general singleton usage is continuously decreasing. As an
example, the percentage for the stateful variants increased from 4.31% to 5.14%

between July 2018 and January 2019 even though the number of instances
remained constant (at 20); a series of refactoring occurred during that period, in
which almost 200 production classes were removed.

Figure 5.2.6.5: Evolution of utility classes for Geode

 78

 In the first version analysed there were 275 utility classes. This number
increased in the following 6 months to 288 instances in July 2015. Then it remained

relatively constant for almost 4 years; we found 286 utility classes in January 2019.
From there on this value started to decrease, more abruptly at first (from 286 to
242 in less than 1 year) and slowly afterwards. Finally, it grew a bit in the first
months of 2021; the latest version of Geode contains 243 utility classes.

Figure 5.2.6.5: Evolution of utility class usage for Geode

The usage of utility classes fluctuates between 25% and 32% throughout

the project’s lifetime. It was 29.35% for the initial version studied; then it slowly
increased until reaching a maximum value of 32.11% at the beginning of 2018.
Utility class usage remained almost the same the following 2 years. Similar to the

number of instances, it dropped to 26.27% at the end of 2019. The usage suffered
only minor changes ever since; for the last version investigated it is 25.91%.

Figure 5.2.6.7: Evolution of static methods for Geode

 79

 There were 333 static methods that access state (0.67%) and 1892 that
only operate on parameters (3.79%) in the first version available. For the former,

the number of instances increased to 354 in August 2015, then it slowly decreased
over the years; there are 184 (0.33%) such methods in the last version studied. For
the second category of static methods, their amount fluctuated throughout the
lifespan of Geode. The maximum of 2095 was reached in June 2015. In the latest
version of the system there are 1804 (3.24%) such instances. One thing to note is
that the total number of methods decreased by roughly 4000 from the initial version

to the last release analysed.

Figure 5.2.6.8: Evolution of static initialization blocks for Geode

 Unlike the number of production classes that increases constantly and only
drops when certain refactorings occur, for static initialization blocks we can observe
a continuous decrease from the first version of the project available on GitHub to
the last one studied. There were 171 instances at the beginning and 109 in January
2020. Since then, this number has remained relatively constant; 107 static
initialization blocks were encountered in the latest version of Geode.

 5.2.7. jHotDraw

Figure 5.2.7.1: Evolution of static attributes for jHotDraw

 80

 There were 13 static non-final attributes (3.55%) and 75 constants
(20.49%) in the first version of the project which had 366 attributes in total. In the

first 6 years of development these numbers increased steadily; in 2006 we found 72
non-final ones (9.64%) and 109 constants (14.59%) from a total of 747 attributes,
thus showing that more instances from the first category were added. The values
spiked in 2007 and continued to increase rapidly until 2015 when 546 static non-
final attributes (11.18%) and 1660 constants (33.99%) were present. Since then,
the number of attributes suffered only minor modifications until the beginning of

2020 when they dropped to 25 for static non-final attributes (2.91%) and 369 for

constants (42.91%) out of a total of 860.

Figure 5.2.7.2: Evolution of singletons for jHotDraw

 There was 1 stateful singleton in the initial version of the project, Clipboard,
and no stateless ones. A second stateful singleton was added in August 2002; both

instances were part of the system until 2006 when they were removed during a
series of refactorings in which a stateless singleton (FigureLayerComparator) was
also added. In the following 5 years 3 stateful singletons, PaletteLookAndFeel (April
2008), PaletteLabelUI (May 2008) and ActivityManager (September 2011), and 1
stateless singleton, PaletteButtonUI (April 2008), were created. They were all part
of the project until March 2020 when all but FigureLayerComparator were deleted.

Figure 5.2.7.3: Evolution of singleton usage for jHotDraw

 81

 The usage of the 2 types of singletons varies depending on the number of
instances present. For the stateful ones it spiked to 10.88% when the second

instance was added; then it remained relatively constant for 4 years and dropped to
0 when both instances were removed. From there on, stateful singleton usage
started to increase again as 3 new instances were created subsequently. Finally, in
the last year of development the usage became 0 once more because the 3 stateful
singletons were deleted from the system. The usage of stateless singletons was 0
until the first instance was introduced in November 2006. Afterwards, it increased

again once the second instance was added and then slowly decreased over the

years as no new instances were created while the number of production classes
continued to rise. An interesting situation appeared in the final year of development
when 1 of the stateless singletons was removed, but the usage increased from
0.61% to 1.03%; this is due to the fact that a considerable number of production
classes were deleted during that period.

Figure 5.2.7.4: Evolution of utility classes for jHotDraw

 There were 3 utility classes in the initial version of jHotDraw. The number of
instances increased to 30 between 2002-2003, but in 2006 a series of refactorings
occurred and this value dropped to 20. Afterwards it continued to increase, thereby
reaching a maximum of 39 in May 2009. The number of utility classes remained

relatively constant between 2009-2014; in 2015 a major refactoring in which almost
400 production classes were removed caused a large decrease in utility classes
(from 39 instances to 11). Then, no major changes were performed on the system
until March 2020 when another refactoring made the number of instances drop to 3.

Figure 5.2.7.5: Evolution of utility class usage for jHotDraw

 82

 Although the number of utility classes increased during the first years of
development, utility class usage continually decreased from 14.69% in the first

version to 7.35% in September 2003. Then it started to increase until reaching
15.81% in October 2007, around the time when the maximum number of instances
was encountered. From there on, the usage slowly decreased over the years; in the
latest version studied a usage of only 8.59% was reached, which is close to the
overall minimum.

Figure 5.2.7.6: Evolution of static methods for jHotDraw

 The cases for the other 2 types of static methods are very similar, but the
values are a bit higher for those that solely operate on parameters. There were 11
static methods that access state (0.79%) and 20 from the latter category (1.44%)
out of a total of 1392 methods. In both cases, the number of instances increased

over the years until reaching a maximum in the same year (2015). There were 185
(1.53%) instances from the first category and 250 (2.08%) from the second. The
values remained constant for several years, then they dropped heavily; there are 6
static methods that access state (0.22%) and 39 that only operate on parameters
(1.43%) in the final version of jHotDraw.

Figure 5.2.7.7: Evolution of static initialization blocks for jHotDraw

 83

 There were no static initialization blocks in the initial version of jHotDraw.
The first instance was added to the TextAreaFigure class in April 2002. Since then,

the number of static initialization blocks continued to increase until reaching a
maximum of 23 in November 2010. It remained constant for several years until a
major refactoring occurred in February 2015 and the amount of instances dropped
to 8. An important observation is that the number of production classes also
decreased during this refactoring from 1043 to 663. Although the project was
modified significantly in the following years, no static initialization blocks were

added / removed ever since.

 5.2.8. Pig

Figure 5.2.8.1: Evolution of static attributes for Pig

 The number of instances for static non-final attributes, constants, and non-
static attributes all increased constantly from the initial version of Pig to 2017. For

example, there were 32 static non-final attributes (8.06%) and 64 constants
(16.12%) in the first version studied from a total of 397 attributes. These numbers
increased considerably in the first year of development; in 2008 there were 149
static non-final ones (13.24%) and 219 constants (19.47%) out of 1125 attributes.
The increase was less pronounced in the following years and then these values
remained almost the same in the final 3 years. For the last version analysed there
are 245 static non-final attributes (roughly 5.5%) and 1101 constants (almost 25%)

from the total 4423 attributes. It can be observed that the percentage of instances
grew considerably throughout the project’s lifespan for constants, while for static
non-final attributes it slightly decreased.

 84

Figure 5.2.8.2: Evolution of singletons for Pig

 There were 2 stateful singletons, BagFactory and PerformanceTimerFactory,

and 0 stateless ones in the first version of Pig. The number of stateful instances
increased over the years; there were 6 stateful singletons in 2010, 11 in 2014, and
14 in 2017. The only exception occurred in March 2011 when UDFContext was
removed. In the last 3 years of development no new stateful singletons were added;
14 instances were found in the latest version studied. The first stateless singleton,
TupleFactory, was created in June 2008. Since then, 3 new stateless instances were
introduced: DownloadResolver (November 2015), SparkShims (July 2017), and

NonWritableTuple (August 2017); they have been part of the system ever since.

Figure 5.2.8.3: Evolution of singleton usage for Pig

 In the initial version of the project stateful singleton usage was 5.65%. It
quickly increased as new instances were created to a maximum of 14.75% in
December 2009; then the usage decreased to 9.61% in 2011. From there on, the
value fluctuated by increasing when stateful singletons / singleton clients were
added and decreasing when other types of production classes were created. For the
last version investigated stateful singleton usage is 9.28%. In terms of stateless

singletons, their usage was 9.09% when the first instance was introduced.
Afterwards, it started to slowly decrease as more production classes (that were not
stateless singleton clients) were added to Pig; a minimum of 6.45% was reached in
April 2016. In the last years of development stateless singleton usage increased by
a small margin due to the fact that 2 new instances appeared; for the latest version
analysed it is 7.06%.

 85

Figure 5.2.8.4: Evolution of utility classes for Pig

 There were 5 utility classes in the first version of Pig. The number of
instances increased throughout Pig’s lifespan. At the beginning of the development
cycle this increase was higher; 20 utility classes were found in 2008, 37 in 2010,

and 62 in 2014. In the following years the rate of increase was considerably lower;

a maximum of 75 utility classes was reached in October 2018. No instances were
created ever since.

Figure 5.2.8.5: Evolution of utility class usage for Pig

 In terms of usage, it increased rapidly in the first year of development from
7.91% to a peak value of 38.63%. From there on, it started to slowly decrease even
though new utility classes were being created. This is because the number of
production classes was also rising and the added classes were not clients of utility

classes. In the last 7 years utility class usage was around 30%; for the latest
version of Pig the exact value is 29.16%.

 86

Figure 5.2.8.6: Evolution of static methods for Pig

 The number of instances for both types of static methods increased
continuously over the years. There were 7 static methods that access state (0.79%)
and 25 that solely operate on parameters (2.82%) in the first version of Pig. In the
first 3 years of development the increase was more pronounced, while in the
following years significantly fewer static methods were added. The 2 values

remained constant in the last 3 years; there are 86 static methods that access state

and 451 that only operate on parameters in the latest version of Pig that was
analysed.

Figure 5.2.8.7: Evolution of static initialization blocks for Pig

The number of static initialization blocks increased constantly from October

2007 to September 2014 when 28 such instances were present in the production
code. In October 2014 a major refactoring occurred and even though the number of
classes only increased by 3, the amount of static initialization blocks went from 28

to 37 (nearly 25% increase). The maximum was reached in October 2015 (39
instances), then it suddenly dropped to 30 the following month although the number
of production classes continued to rise. From there the number of static initialization
blocks grew again until October 2018 (34 instances) and remained constant ever
since.

 87

 5.2.9. Spring Core

Figure 5.2.9.1: Evolution of static non-final attributes for Spring Core

 There were no static non-final attributes in the first version of Spring Core.
The number of instances started to increase slowly in the first 2 years of
development, then it spiked to 30 in August 2010. The maximum was reached in

November 2012 when 34 such instances appeared. Afterwards, this number first
fluctuated and then it dropped to 6 in November 2017 even though the total number
of attributes continued to increase. From there on, the number of static non-final

attributes remained fairly constant; there are 10 instances in the latest version
investigated.

Figure 5.2.9.2: Evolution of constants for Spring Core

 Unlike the static non-final attributes, both the number of constants and the
total number of attributes increase constantly as the system evolves. In the first
years of development constants were continuously being introduced. The number of
instances spiked between 2012-2013 (from 153 to 373) as a considerable amount

 88

of functionality was added during that time period. Then it continued to increase,
just like the total number of attributes. There are 611 constants (31.97%) from a

total of 1911 attributes in the last version analysed.
The first 2 singletons to be added to this system, OrderComparator and

StaticLabeledEnumResolver, were stateless and of type Eager Instantiation. They
were introduced in February 2009 and are still part of the project. The next
singletons, ComparableComparator and AnnotationAwareOrderComparator, were
created in August 2012 and November 2012, respectively. They had similar

characteristics to the aforementioned OrderComparator; the first had the same

superclass as OrderComparator while the second directly extended it.
StaticLabeledEnumResolver was removed in April 2013. Two more stateless
singletons of type Eager Instantiation were added in 2014, SpringNamingPolicy and
DefaultOrderProviderComparator. The latter was not part of the system for long; it
was deleted during a refactoring in September 2014. Finally, in May 2020
ResourcePropertiesPersister was introduced in Spring Core; it is the fifth stateless
singleton (of the same type) that was identified in the latest version of the project.

Figure 5.2.9.3: Evolution of singleton usage for Spring Core

 For stateful singletons the usage was 2.49% in July 2013 when the first
instance was created. Then it continued to rise as more clients of the respective
class were added to the project. The highest usage (6.51%) occurred 1 month after
the second instance appeared; for the final version investigated stateful singleton
usage is 6.35%. In terms of stateless singletons, the usage started at 1.57% when
the first 2 instances were created. Then it fluctuated between 1% and 2%; even
though 3 more instances were introduced, very few of the production classes that

have been subsequently created were clients of the existing stateless singletons. For
the latest version of Spring Core the usage is 1.39%.

 89

Figure 5.2.9.4: Evolution of utility classes for Spring Core

 There were 32 utility classes in the initial version that was studied. The
number of instances increased almost linearly until reaching 63 for the latest version
of Spring Core. During the entire period we found only minor fluctuations, the most

notable one being between 2015-2016. On closer inspection, it was observed that a

major refactoring occurred during that time which caused the total number of
production classes to drop from 4745 to 4085. Utility classes have continued to be
added after that event, thereby obtaining a maximum of 63 instances in March
2019.

Figure 5.2.9.5: Evolution of utility class usage for Spring Core

The usage of utility classes is high throughout the project’s history (roughly

between 39% and 46%). However, we can observe that it was a bit higher towards
the beginning of the development process. The usage started at over 43% and
reached a peak value of 46.27% in September 2010. Then it decreased by a few

percentages to a minimum of 39.03% in Match 2014. From there on, it fluctuated
for several years until finally stabilizing at around 41% in 2019.

 90

Figure 5.2.9.6: Evolution of static methods for Spring Core

 There were no static methods that access state and 6 which solely operate
on parameters (0.43%) in the first version of Spring Core that contained code. Only
4 instances from the first category were created until 2013. From there on, their
amount started to slowly increase until reaching a maximum of 17 in March 2019. In
the last version studied there are 13 (0.27%) such methods. For static methods that

only operate on parameters, the number of instances increased more heavily
(except for 2012 when a major refactoring occurred) up to 236 in September 2018.
It remained almost the same ever since; there are also 236 static methods of this
kind (4.89%) in the latest version analysed.

Figure 5.2.9.7: Evolution of static initialization blocks for Spring Core

 The number of static initialization blocks grew constantly in the first half of
the development period, from 7 instances in October 2008 to 28 in December 2015.
From there on, the amount of initialization blocks remained more or less the same
until the final version investigated (April 2021, 27 instances). However, during these
last years of development, only a relatively small number of production classes were
added; there were 4745 in January 2016 and now there are 4827 classes.

 91

 5.2.10. Tomcat

Figure 5.2.10.1: Evolution of static non-final attributes for Tomcat

 There were 424 instances of static non-final attributes in the initial version
analysed. First, the number increased to a maximum of 520 in October 2008; then
it dropped to 229 in November 2009 even though the number of constants and the

total number of attributes were growing. The number of instances continued to
decrease over the years and remained fairly constant in the last 4 years of

development; there are 134 static non-final attributes in the latest version of
Tomcat.

Figure 5.2.10.2: Evolution of constants for Tomcat

 Just as the total number of attributes, the number of constants increases
slowly as Tomcat evolves. There were 1591 instances (28.14%) from a total of 5653
attributes in the first version of the project. In the last version that was analysed

there are 3106 constants (32.18%) out of 9652 attributes. The percentages are
very similar throughout the entire lifespan of the system.

 92

Figure 5.2.10.3: Evolution of singletons for Tomcat

 Throughout Tomcat’s lifespan there are very few singletons considering the

size of the system. In the initial version of the project there were 5 stateful
singletons and a stateless one. The number of stateful instances fluctuated in the
first 6 years of development; 4 were found in October 2012 and then their amount
increased to 8 in May 2014. From there on, 1 instance was removed in September
2015 while another was added in April 2019; the number of stateful singletons has

not changed ever since. For the stateless ones the number of instances increased to
3 in December 2011, then it remained fairly constant until 2018. Two new stateless

singletons were created in the following 2 years; there are 5 such instances in the
last version of Tomcat.

Figure 5.2.10.4: Evolution of singleton usage for Tomcat

 The usage of both types of singletons is also low for this project (less than
2.5%). For the stateful ones it was 2.47% initially and then it continuously
decreased until reaching a minimum of 0.76% in January 2013 (when there were
only 4 such instances). Since then, it began to slowly increase over the years as
new stateful singletons / singleton clients were created; for the latest version of
Tomcat stateful singleton usage is 1.44%. For the stateless variants, it is the other
way around; usage was very low at first and grew over time, although not by a

 93

significant amount. In the first version of the system this value was 0.38%. It
remained relatively constant in the first 4 years of development and then spiked to

1.32% in December 2011. The only decrease occurred between 2013-2015 when a
minimum of 0.15% was reached. Stateless singleton usage increased in the final
years of development. A peak value of 2.45% was encountered in December 2020;
not much has changed since.

Figure 5.2.10.5: Evolution of utility classes for Tomcat

 There were 75 utility classes in the first version of Tomcat. The number of
instances constantly increases throughout the system’s lifespan. The only
exceptions occurred between 2007-2008 and 2010-2011 when this number
decreased from 86 to 84 and from 95 to 92, respectively. Since then, the value only

increased; there are 149 utility classes in the latest version investigated.

Figure 5.2.10.6: Evolution of utility class usage for Tomcat

 For the initial version of the project utility class usage was 17.01%. In the
following 3 years this value decreased to 15.46% as instances were added /
removed while the number of production classes was always growing. A similar
situation can be observed between 2011-2014; although instances were created,
many more production classes that were not clients of utility classes were
introduced in the system. From there on, the usage grew constantly in conjunction

with the number of utility classes that were created; it is 21.35% in the last version
of Tomcat that was analysed.

 94

Figure 5.2.10.7: Evolution of static methods for Tomcat

 There were 60 static methods that access state (1.85%) and 134 which only
operate on parameters (4.13%) out of a total of 3246 methods. The number of
instances for the former decreased until halfway through the development period;
18 such instances appeared in a version from March 2013. From there on, the value
slowly increased; there are 46 methods that access state (0.22%) in the latest

version of Tomcat. For the static methods from the second category, the
corresponding value saw a small increase followed by a decrease until reaching a

minimum of 100 (2.75%) instances in November 2009. Since then, the number of
static methods that solely operate on parameters increased continuously; a
maximum of 434 was encountered in December 2020. In the last version of the
project there are 420 (1.98%) such methods.

Figure 5.2.10.8: Evolution of static initialization blocks for Tomcat

 With the exception of 2009, static initialization blocks were constantly being
added to Tomcat until October 2018. The number of instances was 49 for the first
version that was studied and peaked at 110. During this period roughly 100
production classes were created per year, some of which contained initialization

blocks. From 2018 onwards, the number of instances started to slowly decrease;
there are 99 in the latest version that was investigated. However, the number of
production classes is also smaller (2126 vs. 2160 in 2019).

 95

 5.2.11. Wicket

Figure 5.2.11.1: Evolution of static non-final attributes for Wicket

The number of static non-final attributes increased in the first 4 years of

development from 33 until reaching a maximum value of 50 in October 2009.

Afterwards, it dropped to 27 in November 2012 and remained fairly constant ever
since; from July 2017 onwards there are 22 static non-final attributes in Wicket’s
classes.

Figure 5.2.11.2: Evolution of constants for Wicket

The evolution of the number of constants looks very similar to that of the

total number of attributes. The amount of instances increased in the first years of
development until reaching a maximum of 1204 in December 2008. Then a series of

refactorings occurred which caused both the number of constants and the total
number of attributes to decrease significantly (from 1163 to 793 and from 2789 to
2032, respectively). Since then, both values have increased steadily over the years;
there are 1036 constants (almost 40%) from a total of 2617 attributes.

 96

Figure 5.2.11.3: Evolution of singletons for Wicket

There was 1 stateful singleton, Result, and 11 stateless ones in the first

version of Wicket in which the code was added. The stateful singleton was removed
in July 2014 and no instances of this type have been created ever since. In the
following 3 years, 2 new stateless instances were added and 1 was removed. In
March 2010 the number of stateless singletons dropped to 6 and then it spiked to a
maximum of 13 in November 2011. From there on, the amount of instances

remained relatively constant the following 5 years. Afterwards it started to decrease
with one exception, the addition of PageViewCSSResourceReference and
WicketCoreCSSResourceReference in January 2020. There are 8 stateless singletons
in the latest version studied.

Figure 5.2.11.4: Evolution of singleton usage for Wicket

 The usage of stateful singletons is very low as only 1 such instance
appeared throughout Wicket’s lifetime. It started at 0.27% and slowly grew to
0.44% right before the respective singleton was removed. For stateless singletons,
the usage was 5.48% for the first version and it increased to a maximum of 5.86%
in October 2007. From there on it began to decrease, more abruptly at first and

slowly since 2011. This is due to the fact that the number of stateless singletons
decreased, numerous other production classes were created, and they were not
singleton clients. For the latest version of Wicket stateless singleton usage is only
0.65%.

 97

Figure 5.2.11.5: Evolution of utility classes for Wicket

 It can be observed that the number of utility classes fluctuates throughout
the project’s lifespan. In the first years of development it doubled from 14 in 2005
to 28 in 2009. Then the amount of instances dropped to 14 again in 2010; the
system was completely refactored during that time period with more than 200

production classes getting removed. From there on it started to slowly increase,

thus reaching a peak value of 32 instances in March 2016. Oddly enough, the
number of utility classes decreased once again in the next year even though the
number of production classes remained roughly the same. Since then it stays almost
constant (around 25 instances) until the last version analysed.

Figure 5.2.11.6: Evolution of utility class usage for Wicket

 At the beginning of the development process, the usage of utility classes
follows the same pattern as the number of instances. However, the drop that
occurred in 2010 was significantly steeper; the usage went from a peak value of

16.72% to 5.7% in less than 1 year. Then it fluctuated around 6%-8% for the rest
of the time period. In the latest version that was studied the utility class usage is
6.23%.

 98

Figure 5.2.11.7: Evolution of static methods for Wicket

 The number of static methods that access state increased in the first 2 years
of development until reaching a maximum of 24 (0.33%) in 2008. From there on, it
decreased continuously throughout the lifespan of Wicket; there are only 6 (0.07%)
such instances in the latest version studied. The amount of static methods that
solely operate on parameters also increased at first; a maximum value of 269

(3.18%) was encountered in October 2009. Then this value dropped to 87 (1.44%)
the following year and started to increase again afterwards. There are 209 (2.28%)

static methods of this kind in the last version of Wicket.

Figure 5.2.11.8: Evolution of static initialization blocks for Wicket

 No static initialization blocks were found for Wicket until 2012 when 2 such
instances were introduced as part of the XMLTokener and TagUtils classes. In May
2013 another initialization block appeared in WicketTagIdentifier; a second instance

was added to the aforementioned class in November 2015. Approximately 1 year
later XMLTokener was removed from the system. Finally, in December 2020 an
additional class that contained a static initialization block (JavaSerializer) was
created.

 99

5.3. Impact on class testability

As explained in the previous chapter, we rely on testability scores to
compare the classes that contain static constructs to other classes which are similar
to them in terms of size and complexity. We do this for each category of static
constructs; the comparison is performed both from a quantitative and from a

qualitative perspective. As discussed in Chapter 3, we assess quantity based on 1)
line coverage and 2) the percentage of production methods addressed by unit tests.

The quality of the testing that was done on a particular class is evaluated through
its corresponding test class; the metrics considered are 1) the percentage of unit
tests that have smells and 2) the number of different types of test smells present in
the respective class. Based on these metrics we compute the quantitative and
qualitative scores, which are then aggregated to obtain the overall testability score.

For each system, we provide a table that contains the 3 scores for the classes with
different categories of static constructs / the similar classes.

 5.3.1. BCEL

BCEL is a project that appears to be average in terms of the quantity and

quality of its unit tests. However, the classes that contain static non-final attributes
have a lower overall score compared to other similar classes (2.25 vs. 2.5565).
They are covered by fewer unit tests (average quantitative score of 2.4667 vs.

2.871) and the tests are of lesser quality (average qualitative score of 2.0333 vs.
2.2419). Constants on the other hand are much more thoroughly tested (2.9483 vs.
2.5233), but the qualitative score is again lower (2.3621 vs. 2.4685); nevertheless,

the overall testability score of the classes that have this kind of static constructs is
higher (2.6552 vs. 2.4959) than for similar classes.

Table 5.3.1: Testability of classes with static constructs vs. similar classes for BCEL
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 2.4667 2.0333 2.25 2.871 2.2419 2.5565

Constants 2.9483 2.3621 2.6552 2.5233 2.4685 2.4959

Singletons Stateful 3.5 2 2.75 3.5143 2.1429 2.8281

Stateless 0 - - 2.9167 2.1538 2.5353

Static
methods

Utility classes 3.1818 2.3636 2.7727 3.2353 2.1618 2.6986

Access state 2.5 2.125 2.3125 2.2874 2.2986 2.293

Operate on
parameters

2.5294 2.4118 2.4706 2.3151 2.3288 2.322

Static initialization blocks 2.9 2.3 2.6 2.7407 2.1176 2.4292

 One stateful singleton (Type) and 2 stateless ones (LONG_Upper and
DOUBLE_Upper) were found in the latest version of BCEL studied. The testability of
the stateful one is comparable to that of similar classes (2.75 vs. 2.8281). Both its
quantitative and its qualitative score are on par with the average scores obtained for
the classes that were categorized as similar to it. Surprisingly, the stateless
singletons are not addressed by any unit tests (code coverage of 0%); therefore, it

was impossible to compute a qualitative score and correspondingly an overall
testability score. It will be interesting to see how the singletons from the following
systems rate in terms of testability.

 100

 The utility classes also have average quantitative and qualitive scores that
are comparable to the ones of similar classes (3.1818 vs. 3.2353 and 2.3636 vs.

2.1618, respectively); therefore, the overall testability scores are very close (2.7727
vs. 2.6986). For the rest of the production classes that contain static methods we
found that the testability of the ones with methods that access state is comparable
to that of similar classes, while for those with methods that only operate on
parameters it is considerably higher. The latter have higher quantitative (2.5294 vs.
2.3151) and qualitative (2.4118 vs. 2.3288) scores when compared to similar

classes. For the former only the score related to quantity is greater (2.5 vs. 2.2874)

while the qualitative one is smaller (2.125 vs. 2.2986).
 The 5 classes that contain a static initialization block are actually better in
terms of testability compared to other similar classes. Both the average quantitative
score (2.9 vs. 2.7407) and the average qualitative one (2.3 vs. 2.1176) are higher,
thus the overall testability score is also greater (2.6 vs. 2.4292).

 5.3.2. Commons Collections

Table 5.3.2: Testability of classes with static constructs vs. similar classes for

Commons Collections
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final - - - - - -

Constants 4.5673 1.5385 3.0529 4.7692 1.6254 3.1923

Singletons Stateful - - - - - -

Stateless 4.575 1.675 3.125 4.5897 1.547 3.0683

Static
methods

Utility classes 4.5 1.5 3 4.6019 1.5534 3.0777

Access state 4 2 3 4.6264 1.5287 3.0776

Operate on
parameters

4.7467 1.4133 3.08 4.5534 1.6311 3.0922

Static initialization blocks 4.5 2 3.25 4.5897 1.547 3.0684

The latest version of Commons Collections does not have any mutable global

state instances (stateful singletons and static non-final attributes). There is no
significant difference between the average testability score of the classes that
contain constants and the corresponding value for other similar classes (3.0529 vs.
3.1923); however, the latter seem to be tested a bit more (average quantitative

score of 4.7692 vs. 4.5673) and with better unit tests (average qualitative score of
1.6254 vs. 1.5385).

Similar observations can be made for stateless singletons; the average
overall testability of the 5 instances is 3.125, while for similar classes it is 3.0683.
The average quantitative scores are almost the same (4.575 vs. 4.5897), but for
quality there is a small difference in favour of the former (1.675 vs. 1.547).
 For utility classes the average quantitative and qualitative scores are also

comparable to the ones obtained for similar classes (4.5 vs. 4.6019 and 1.5 vs.
1.5534, respectively). The latter are a bit higher, thereby causing the overall
testability score to be greater. With regard to the other classes that have static
methods, their testability is close to that of similar classes. The classes that contain
static methods which access state are covered by significantly fewer tests (average
quantitative score of 4 vs. 4.6264), but the unit tests are of a higher quality
(qualitative score of 2 vs. 1.5287); therefore, their overall testability score is a bit

lower than the one obtained for classes which are similar to them in terms of size

 101

and complexity (3 vs. 3.0776). For the other category however, the score is almost
the same as for similar classes (3.08 vs. 3.0922); both the quantitative and the

qualitative scores are close (4.7467 vs. 4.5534 and 1.4133 vs. 1.6311,
respectively).

Finally, the only class that contains a static initialization block,
FunctorException, has a higher testability score than the average obtained for the
classes that are similar to it. While there is little difference between the quantitative
scores (4.5 vs. 4.5897), the one for quality is greater (2 vs. 1.547).

 5.3.3. Commons Lang

Table 5.3.3: Testability of classes with static constructs vs. similar classes for

Commons Lang
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 4.5 1 2.75 4.7414 1.1034 2.9224

Constants 4.8247 1.0928 2.9588 4.3158 1.1579 2.7368

Singletons Stateful - - - - - -

Stateless 5 1.5 3.25 4.7391 1.0957 2.9174

Static
methods

Utility classes 4.5714 1.1667 2.869 4.8378 1.0676 2.9527

Access state 5 0.5 2.75 4.64 1.22 2.93

Operate on
parameters

5 1 3 4.6637 1.1239 2.8938

Static initialization blocks 4.7778 1.4444 3.1111 4.7383 1.0748 2.9065

 An interesting observation can be made with regard to the testability of
Commons Lang’s classes. Most of them are adequately covered by unit tests (more
than 75% line and method coverage), but the respective tests suffer in terms of
quality (numerous test classes with a large amount of test smells). The only class
that has a static non-final attribute, ToStringBuilder, has lower average scores both

for quantity (4.5 vs. 4.7414) and quality (1 vs. 1.1034) compared to other classes
that are similar to it; therefore, its overall testability score is also smaller. On the
other hand, classes that only contain constants do not appear to be tested less /
with tests of a lower quality. In fact, the average score for quantity is actually
higher (4.8247 vs. 4.3158), while the one for quality is roughly the same as the
average obtained for similar classes (1.0928 vs. 1.1579). This causes the overall

testability score to be higher (2.9588 vs. 2.7368), albeit not by much.
 In the latest version of Commons Lang there are no stateful singletons and
only 1 stateless singleton. The respective instance, ObjectToStringComparator, has
a perfect score in terms of quantity; the classes which are similar to it are also
extensively covered by unit tests, the average quantitative score for them is 4.7391.
In terms of quality, the singleton instance has a better score (1.5 vs. 1.0957), which
makes its overall testability score considerably higher than the average one for

similar classes (3.25 vs. 2.9174).
 For utility classes their average testability score (2.869) is almost equal to
the corresponding value for similar classes (2.9527). While they seem to be
addressed by fewer tests (average quantitative score of 4.5714 vs. 4.8378), the
unit tests are of better quality (average qualitative score of 1.1667 vs. 1.0676).
From the rest of the production classes that contain static methods, those with
methods that access state have a lower testability than other similar classes, while

for the ones with static methods that only operate on parameters the testability

 102

score is higher (3 vs. 2.8938). For the classes from the first category, the average
quantitative score is greater (5 vs. 4.64) while the qualitative score is considerably

lower (0.5 vs. 1.22); this causes their overall testability score to be lower as well
(2.75 vs. 2.93), albeit not by much. Different observations can be made with regard
to the classes that contain static methods that solely operate on parameters. Their
average quantitative score is also higher (5 vs. 4.6637), but the qualitative score is
close to that of similar classes (1 vs. 1.1239) which makes the overall testability
score greater.

 Finally, the classes with static initialization blocks have, on average, a

higher testability score than other classes that are similar to them (3.1111 vs.
2.9065). The average scores are roughly the same for quantity (4.7778 vs. 4.7383),
but for quality there seem to be fewer smells in their corresponding unit tests
(1.4444 vs. 1.0748).

 5.3.4. Commons Math

Table 5.3.4: Testability of classes with static constructs vs. similar classes for

Commons Math
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 4.1667 0.3333 2.25 4.6129 0.4996 2.5563

Constants 4.493 0.4406 2.4668 4.6066 0.4918 2.5492

Singletons Stateful - - - - - -

Stateless 4 0.5 2.25 4.413 0.4496 2.4313

Static
methods

Utility classes 4.4444 0.5556 2.5 4.5167 0.4438 2.4802

Access state 4.4375 0.75 2.5938 4.4841 0.7841 2.6341

Operate on
parameters

4.2174 0.6304 2.4239 4.2294 0.4745 2.352

Static initialization blocks 3.875 0.625 2.25 4.5219 0.4548 2.4883

 For Math the average qualitative scores are very low both for the classes
with instances of static constructs and for the groups of similar classes. The biggest
difference in terms of testability was observed for the classes that contain static
non-final attributes, namely DfpField, DSCompiler, and GeneticAlgorithm. Their
average quantitative score is 4.1667 (compared to 4.6129 for similar classes), while
the one for quality is 0.3333 (vs. 0.4996); thus, there is a 0.3063 difference

between their overall testability score and the corresponding value for the classes
which are considered similar to them. This is the largest difference encountered
from all the categories of static constructs, thereby suggesting that this kind of
instances have the highest impact on class testability. For constants, the values
obtained are quite similar (4.493 vs. 4.6066 for quantity and 0.4406 vs. 0.4918 for
quality); there is little difference between the overall testability scores (2.4668 vs.
2.5492) for this type of instances and other similar classes.

 There is only 1 stateless singleton in the version studied, Decimal64Field.
While its quantitative score is smaller than the average one obtained for classes
which are similar to it (4 vs. 4.413), the quantitative score is a bit higher (0.5 vs.
0.4496). This makes their overall testability scores comparable (2.25 vs. 2.4313).
For utility classes the respective scores are almost identical (2.5 vs. 2.4802); the
average quantitative score is a bit lower (4.4444 vs. 4.5167), while the qualitative
one is greater (0.5556 vs. 0.4438).

 103

 For the rest of the production classes that contain static methods, their
overall testability score is comparable to the one obtained for other classes. The

ones with methods that access state have a slightly lower score (2.5938 vs.
2.6341), while for the classes with static methods that only operate on parameters
this value is a bit higher (2.4239 vs. 2.352) than for similar classes. Those from the
first category are tested less (4.4375 vs. 4.4841) and with tests of a lower quality
(0.75 vs. 0.7841). For the latter only the qualitative score is larger (0.6304 vs.
0.4745), the quantitative one is roughly the same (4.2174 vs. 4.2294).

 The overall testability of the 10 classes with static initialization blocks seems

to be considerably lower than for other similar classes (2.25 vs. 2.4883). This is due
to the fact that the average quantitative score is significantly lower (3.875 vs.
4.5219); on the other hand, the average qualitative score is higher (0.625 vs.
0.4548).

 5.3.5. Digester

Table 5.3.5: Testability of classes with static constructs vs. similar classes for

Digester
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final - - - - - -

Constants 3.4583 3.375 3.4167 3.582 3.1214 3.3517

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility classes 4 3 3.5 3.6607 3.2105 3.4356

Access state - - - - - -

Operate on
parameters

3.6667 3.1667 3.4167 3.4776 3.3039 3.3908

Static initialization blocks - - - - - -

 As seen in the first section of this chapter, there are very few instances of
static constructs in this system. However, the quantitative and qualitative scores are
generally high for Digester (over 3.5 and between 3-3.5, respectively). For the 24
classes with constants the overall testability score is almost the same as for similar
classes (3.4167 vs. 3.3517). They are addressed by fewer unit tests (average
quantitative score of 3.4583 vs. 3.582), but the tests are of better quality

(qualitative score of 3.375 vs. 3.1214).
 For the 2 utility classes the situation is the other way around. They have a
higher average quantitative score (4 vs. 3.6607) and a lower qualitative score (3 vs.
3.2105); nevertheless, the outcome is the same; their overall testability score is
greater than that of similar classes (3.5 vs. 3.4356). Additionally, there are 6
production classes that contain static methods that solely operate on parameters.
For them the situation is exactly the same as for utility classes; their average

quantitative score is higher (3.6667 vs. 3.4776) and the one for quality is lower
(3.1667 vs. 3.3039) than for similar classes. Finally, the overall testability scores
are more or less the same (3.4167 vs. 3.3908).

 5.3.6. Geode

 The testability scores for Geode are very low, even the quantitative ones.
Classes that contain static non-final attributes have a lower overall score (1.0373

 104

vs. 1.1628) compared to other similar classes, while for the ones with constants the
values are comparable (1.1339 vs. 1.0884). The former are covered by fewer unit

tests (quantitative score of 1.2521 vs. 1.3492) and the respective tests are of a
lower quality (qualitative score of 0.8224 vs. 0.9763). For the latter the quantity is
almost the same (1.3084 vs. 1.2929), but the quality is better (0.9593 vs. 0.8839).

Table 5.3.6: Testability of classes with static constructs vs. similar classes for Geode

Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 1.2521 0.8224 1.0373 1.3492 0.9763 1.1628

Constants 1.3084 0.9593 1.1339 1.2929 0.8839 1.0884

Singletons Stateful 1.2308 0.9231 1.077 1.2882 0.9176 1.1029

Stateless 1.7222 0.8889 1.3056 1.4831 0.9487 1.2159

Static
methods

Utility classes 1.6599 0.9594 1.3097 1.2586 0.9122 1.0854

Access state 1.0751 1.0491 1.0621 1.3332 0.807 1.0701

Operate on
parameters

1.6201 0.8939 1.257 1.2655 0.9947 1.1301

Static initialization blocks 1.8026 0.9211 1.3619 1.3759 1.0674 1.2217

 Similar observations can be made with regard to the 2 types of singletons.
The stateful ones have a lower quantitative score (1.2308 vs. 1.2882) and an
almost identical qualitative score (0.9231 vs. 0.9176) when compared to similar

classes; therefore, their overall testability is also a bit lower (1.077 vs. 1.1029). The
stateless singletons are addressed by considerably more tests (1.7222 vs. 1.4831

for quantity) which are more or less the same in terms of quality (0.8889 vs.
0.9487). The overall testability score for these instances is higher (1.3056 vs.
1.2159) than the corresponding value for similar classes.
 For utility classes both the quantitative and the qualitative scores are
greater (1.6599 vs. 1.2586 and 0.9594 vs. 0.9122, respectively). This makes their
overall testability score significantly higher (1.3097 vs. 1.0854) than the one
obtained for classes that are similar to them in terms of size and complexity. For the

rest of the classes that contain static methods, we found that those with methods
that access their state are just as testable as other similar classes, while the ones
with static methods that solely operate on parameters have an even higher
testability. For the ones from the first category the coverage is lower (1.0751 vs.
1.3332), but the quality of the tests is better (1.0491 vs. 0.807). It is the other way
around for the classes from the second category; they have a much higher

quantitative score (1.6201 vs. 1.2655) compared to similar classes, but the
qualitative score is a bit smaller (0.8939 vs. 0.9947).
 Finally, the classes with static initialization blocks have a better overall
testability score (1.3619 vs. 1.2217) than other production classes. Their
quantitative score (1.8026) is the highest one encountered for the classes with
static constructs, while their qualitative score is also good (0.9211).

 5.3.7. jHotDraw

 For jHotDraw it was impossible to investigate the impact of the different
types of static constructs on class testability. As explained in Chapter 4, this system
was included in the study due to the fact that it was used as reference in an article
that discusses variations of the Singleton design pattern. However, the amount of

testing performed on the latest version of the system is insufficient for a proper

 105

analysis on class testability; the test / production code ratio is 0.05 and there are
only 200 unit test (compared to 2713 production methods). Selecting this project

for the empirical study was especially important for the analysis on the evolution of
singletons. As an example, we checked if the number of instances found at certain
moments in time is in accordance with what is discussed in the paper. The system
will also be useful in our analyses on change- / defect-proneness that follow.

 5.3.8. Pig

With regard to static attributes, there is a big difference between the

testability of the classes that contain non-final ones and those with constants. The
overall testability score of the latter is almost identical (1.7206 vs. 1.7) to that of
similar classes; even the quantitative and qualitative scores are roughly the same
(2.5588 vs. 2.5333 and 0.8824 vs. 0.8667, respectively). In contrast, the classes
with static non-final attributes are covered by fewer unit tests (average quantitative

score of 2.0909 vs. 2.4739) and the respective tests are of a poorer quality
(qualitative score of 0.8182 vs 0.9211).

Table 5.3.8: Testability of classes with static constructs vs. similar classes for Pig
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 2.0909 0.8182 1.4546 2.4739 0.9211 1.6975

Constants 2.5588 0.8824 1.7206 2.5333 0.8667 1.7

Singletons Stateful 2.2857 0.8571 1.5714 2.5636 0.8916 1.7276

Stateless 2.5 1 1.75 2.4889 0.8491 1.669

Static
methods

Utility classes 2.4333 0.9167 1.675 2.3261 0.913 1.6196

Access state 2.2727 0.9091 1.5909 2.5526 1.0263 1.7895

Operate on
parameters

2.4375 0.9375 1.6875 2.2 0.9556 1.5778

Static init blocks 2.3571 0.7857 1.5714 2.2708 0.9375 1.6042

 The testability of singletons varies depending on the type of the instances.
The 14 stateful ones are tested less thoroughly (average quantitative score of
2.2857 vs. 2.5636) compared to similar classes, but the quality of the unit tests is
roughly the same (qualitative score of 0.8571 vs. 0.8916); all in all, the overall
testability score is lower for this kind of singletons (1.5714 vs. 1.7276). For the 4

stateless ones the values for both quantity and quality are higher (2.5 vs. 2.4889
and 1 vs. 0.8491, respectively). This makes the testability score greater as well
(1.75 vs. 1.669), but all 3 scores are very close.
 For utility classes both averages are higher (2.4333 vs. 2.3261 for quantity
and 0.9167 vs. 0.913 for quality), although not by much; thus the overall testability
score is also greater (1.675 vs. 1.6196). On the other hand, production classes that
have static methods which access state are tested less (2.2727 vs. 2.5526) and with

unit tests that are worst in terms of quality (0.9091 vs. 1.0263). This suggests that
they are less testable than classes that are similar to them in terms of size and
complexity. For the classes with static methods that only operate on parameters the
situation resembles the one observed for utility classes. The difference between the
average quantitative scores is slightly bigger (2.4375 vs. 2.2), but the qualitative
scores are more or less the same (0.9375 vs. 0.9556). In consequence, the overall
testability score is a bit higher (1.6875 vs. 1.5778).

 106

 Classes with static initialization blocks have a similar testability to other
production classes (overall score of 1.5714 vs. 1.6042). Both the quantitative and

qualitative scores are comparable to those of similar classes (2.3571 vs. 2.2708 and
0.7857 vs. 0.9375, respectively).

 5.3.9. Spring Core

Table 5.3.9: Testability of classes with static constructs vs. similar classes for Spring

Core
Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 3.3 3.05 3.175 3.9356 3.374 3.6548

Constants 3.8293 3.2439 3.5366 3.8696 3.4348 3.6522

Singletons Stateful - - - - - -

Stateless 4.2 4 4.1 3.8239 3.5535 3.6887

Static
methods

Utility classes 3.697 3.4242 3.5606 3.8761 3.2301 3.5531

Access state 3.5769 3.3077 3.4423 3.9593 3.3667 3.663

Operate on
parameters

4.3125 3.875 4.0938 3.7786 3.1985 3.4885

Static initialization blocks 4 3.2 3.6 3.8235 3.2794 3.5515

There are 10 classes that contain static non-final attributes and their

average testability is considerably lower than the corresponding value for similar

classes (3.175 vs. 3.6548); this is by far the biggest difference encountered when
compared to the other types of static constructs. Both the average quantitative and
qualitative scores are lower (3.3 vs. 3.9356 and 3.05 vs. 3.374, respectively) than
the ones obtained for similar classes. On the other hand, for classes with constants
these differences are much smaller (3.8293 vs. 3.8696 for quantity and 3.2439 vs.
3.4348 for quality). The average testability scores are comparable, 3.5366 for the
classes that contain constants and 3.6522 for other classes that were categorized as

similar to them.
 There are no stateful singletons in the version of Spring Core that was
investigated. Surprisingly, for the 5 stateless singletons found, their testability
appears to be greater than that of similar classes both in terms of quantity (4.2 vs.
3.8239) and quality (4 vs. 3.5535). This causes the overall testability score to be
significantly higher (4.1 vs. 3.6887), thereby suggesting that this kind of singletons

are not more difficult to test.
 For utility classes, their testability is comparable to that of similar classes
(3.5606 vs. 3.5531). Although they are covered by fewer unit tests (average
quantitative score of 3.697 vs. 3.8761), these tests are of better quality (average
qualitative score of 3.4242 vs. 3.2301). The testability of the remaining production
classes that contain static methods is different depending on the type of the
methods. Those with static methods that access their state scored lower for both

quantity and quality (3.5769 vs. 3.9593 and 3.3077 vs. 3.3667, respectively). For
the ones with static methods that solely operate on parameters the corresponding
values are substantially greater (4.3125 vs. 3.7786 and 3.875 vs 3.1985) than for
similar classes. This proves that the former are more difficult to test, while the latter
are highly testable.

Finally, for the 25 classes with static initialization blocks the situation is
opposite to the one encountered for utility classes. The quantitative score is higher

 107

(4 vs. 3.8235) and the qualitative one lower (3.2 vs. 3.2794), thus making the
overall testability scores very similar (3.6 vs. 3.5515).

5.3.10. Tomcat

Table 5.3.10: Testability of classes with static constructs vs. similar classes for
Tomcat

Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 2.791 0.9701 1.8806 2.5698 0.9395 1.7547

Constants 2.8866 1.0589 1.9728 2.4593 0.8147 1.637

Singletons Stateful 2.5625 0.875 1.7188 2.6503 0.8024 1.7264

Stateless 2.7 0.8 1.75 2.6106 0.8406 1.7256

Static
methods

Utility classes 2.7382 0.9195 1.8909 2.6486 0.8856 1.7671

Access state 2.5652 1.0435 1.8044 2.5194 0.975 1.7472

Operate on
parameters

2.6738 1.0071 1.8405 2.4793 1.1563 1.8178

Static initialization blocks 2.4105 0.8316 1.6211 2.731 0.9563 1.8437

 For Tomcat, the classes that contain static non-final attributes actually have
a higher overall score compared to other similar classes (1.8806 vs. 1.7547). They
are covered by more unit tests (average quantitative score of 2.791 vs. 2.5698) and

the tests are roughly the same in terms of quality (average qualitative score of

0.9701 vs. 0.9395). Constants are also more thoroughly tested (2.8866 vs. 2.4593)
and their qualitative score is greater (1.0589 vs. 0.8147); thus, the overall
testability score of the classes that have this kind of static constructs is significantly
higher (1.9728 vs. 1.637) than for similar classes.
 The testability of singletons is comparable to that of similar classes
(regardless of their type). The 8 stateful ones are tested a bit less thoroughly
(average quantitative score of 2.5625 vs. 2.6503), but the quality of the unit tests is

better (qualitative score of 0.875 vs. 0.8024); all in all, the overall testability scores
are very close (1.7188 vs. 1.7264). For the 5 stateless singletons the values for
both quantity and quality are comparable (2.7 vs. 2.6106 and 0.8 vs. 0.8406,
respectively). This makes their testability scores more or less the same (1.75 vs.
1.7256).
 For the 149 utility classes their average testability score (1.8909) is higher

than the corresponding value for similar classes (1.7671). They seem to be
addressed by more tests (average quantitative score of 2.7382 vs. 2.6486) and the
unit tests are of similar quality (average qualitative score of 0.9195 vs. 0.8856).
Similar observations can be made with regard to classes that contain static methods
that access state; all 3 scores are a bit higher (2.5652 vs. 2.5194, 1.0435 vs.
0.975, and 1.8044 vs. 1.7472, respectively). For classes with static methods that
solely operate on parameters the overall testability scores are close (1.8405 vs.

1.8178). They are covered by more tests (2.6738 vs. 2.4793) compared to similar
classes, but the quality of the tests is lower (1.0071 vs. 1.1563).
 Finally, the overall testability of the 95 classes with static initialization blocks
is lower than for other similar classes (1.6211 vs. 1.8437). This is due to the fact
that both the average quantitative score (2.4105 vs. 2.731) and the average
qualitative score (0.8316 vs. 0.9563) are lower.

 108

5.3.11. Wicket

Table 5.3.11: Testability of classes with static constructs vs. similar classes for
Wicket

Category Instances Similar classes

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Avg. Sc.
Quant.

Avg. Sc.
Qual.

Avg. Sc.
Testability

Static
attributes

Non-final 2.8667 2.0667 2.4667 2.9363 2.5247 2.7305

Constants 2.9394 2.4061 2.6728 2.7556 2.6222 2.6889

Singletons Stateful - - - - - -

Stateless 2.875 2.625 2.75 2.7323 2.5743 2.6533

Static
methods

Utility classes 3.1875 2.625 2.9063 2.8168 2.4059 2.6114

Access state 2.875 2.375 2.625 3.1089 2.3932 2.7511

Operate on
parameters

3.075 2.5 2.7875 2.7586 2.3809 2.5698

Static initialization blocks 3.1 2.6 2.85 3.2105 2.5694 2.89

 Wicket is a project in which the average quantitative and qualitative scores
are very similar, with a small difference in favour of the first. The classes that
contain static non-final attributes seem to be tested a bit less (average quantitative
score of 2.8667 vs. 2.9363) and with unit tests of a lower quality (average
qualitative score of 2.0667 vs. 2.5247) compared to other similar classes; therefore,
their overall testability score is significantly smaller (2.4667 vs. 2.7305). On the

other hand, the score for classes with constants is almost identical to that of similar

classes (2.6728 vs. 2.6889). Their average quantitative score is higher (2.9394 vs.
2.7556) while the qualitative score is lower (2.4061 vs. 2.6222).
 There are no stateful singletons in the latest version of Wicket. For the 8
stateless ones both the average quantitative and qualitative scores are higher
(2.875 vs. 2.7323 and 2.625 vs. 2.5743, respectively), but not by a large margin;
thus, the overall testability score is also greater (2.75 vs 2.6533) than for similar
classes.

 Utility classes actually have the highest testability score (2.9063) out of all
the static constructs investigated. They are addressed by more tests (3.1875 vs.
2.8168) compared to classes that are similar to them in terms of size and
complexity; the quality of the unit tests is also better (2.625 vs. 2.4059). For the
other classes that contain static methods, we found that those with methods that
access their state have a lower testability than other similar classes (2.625 vs.

2.7511), while for the ones with static methods that only operate on parameters the
testability is considerably higher (2.7875 vs. 2.5698). For the former, although the
quality of the tests is roughly the same (2.375 vs. 2.3932) as for similar classes,
their quantity is much lower (2.875 vs. 3.1089). For the second category, the
average scores for both quantity and quality are substantially higher (3.075 vs.
2.7686 and 2.5 vs. 2.3809, respectively).
 Finally, for the classes with static initialization blocks there does not appear

to be any difference in terms of testability when compared to similar classes. The
average quantitative score is slightly lower (3.1 vs. 3.2105), while the
corresponding value for quality is a bit higher (2.6 vs. 2.5694). This causes the
overall testability scores to be almost the same (2.85 vs. 2.89).

 109

5.4. Impact on change- / defect-proneness

 The proposed procedures for quantifying change- and defect-proneness
were explained in Chapter 3. They are used to determine whether or not the classes
with different types of static constructs were modified more frequently / more fine-
grained source code changes were performed on them. The only difference between

them is that for error-proneness we only take into account the commits that were
categorized as bug-fixes. The following table contains an overview of the bug-fix

commits identified for each project.

Table 5.4 Bug-fix commits identified
System Total #

Jira
bugs

Commits
containing
issue keys

Commits with issue
keys corresponding
to bugs

Commits
identified based
on keywords

Total #
bug-fix
commits

BCEL 252 195 110 141 251

Collections 362 485 175 373 548

Commons Lang 707 1466 571 394 965

Commons Math 728 2030 667 646 1313

Digester 122 82 38 381 419

Geode 4990 8877 4349 1075 5424

jHotDraw - - - 76 76

Pig 3109 3368 2094 150 2244

Spring Core - - - 1903 1903

Tomcat - - - 4696 4696

Wicket 4163 6573 3727 3161 6888

It can be observed that for 3 of the 11 systems we were not able to find a

corresponding Jira issue tracker; therefore, for these projects we detected bug-fix

commits solely based on keywords. Our evaluation of defect-proneness for these 3
systems might not be as accurate as for the others. In both assessments (change-
and defect-proneness), we compared the average number of changes performed on
the classes that have a certain type of static construct with the corresponding value
for the classes which are similar to them in terms of size and complexity.
Furthermore, we also computed the average number of modifications per commit in

order to determine if the instances of interest were altered in more commits than
the similar classes. Finally, we were keen to observe which types of fine-grained

source code changes occurred the most frequently and to establish whether or not
the rankings are different for various categories of static constructs / similar classes.
The acronyms correspond to the change types presented in Table 3.2.

 5.4.1. BCEL

Table 5.4.1.1: Change-proneness of classes with static constructs vs. similar classes

for BCEL
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 200.0667 7.7333 24.8584 SD
22.859 SU
19.3269 SI

40.6875 3.1875 27.1689 SU
11.5408 SI
10.9397 SD

 110

7.1643 SPC
3.4655 DU

7.0193 IAC
5.57 SPC

Constants 77.2459 5.9836 19.7646 SU
12.9013 SD
11.602 SI
8.1474 IAC
7.7499 RAT

35.5031 2.8696 30.2747 SU
13.5497 SI
13.471 SD
5.6858 SPC
4.6186 IAC

Singletons Stateful 85 2.931 23.5294 SU
17.6471 RF
12.9412 SI
8.2353 SD
4.7059 PTC

46.8298 3.3665 26.4632 SU
14.2875 SD
11.8403 SI
5.9142 IAC
5.8528 SPC

Stateless 8.5 1.3077 17.6471 SU
11.7647 AAM
11.7647 AOS
11.7647 ROS
11.7647 SD

37.1312 3.378 26.4576 SU
13.265 SD
12.8418 SI
6.9082 IAC
4.8417 SPC

Static
methods

Utility
classes

135.9 6.4 19.1317 SI
17.0714 SU
16.1884 SD
8.1678 DU
6.0338 SPC

44.5442 3.2841 27.2164 SU
13.0244 SD
12.3262 SI
6.2413 IAC
5.82 SPC

Access state 148.375 6.125 24.4082 SD
23.2566 SU
19.0019 SI
7.4216 SPC
3.4869 RF

41.3593 3.1866 28.1215 SU
12.5436 SI
10.9173 SD
7.0649 IAC
5.5024 SPC

Operate on
parameters

142.8824 5.6471 29.4772 SU
16.056 SI
13.7505 SD
13.2977 SPC
5.4755 CEC

42.4727 3.2596 25.9762 SU
12.3384 SI
12.1875 SD
6.7739 IAC
4.6703 SPC

Static initialization blocks 132.8 4.8 19.5783 SU
16.8675 SD
15.0602 SI
6.9277 RMO
6.4759 SPC

45.7937 3.3466 26.7129 SU
13.1254 SD
12.7556 SI
6.1236 IAC
5.8117 SPC

 The 15 production classes that have static non-final attributes are more
change-prone compared to similar classes. The average number of modifications is

roughly 5 times higher (200.0667 vs. 40.6875) while the number of changes per
commit is less than 2.5 times greater (7.7333 vs. 3.1875). The top 3 change types

are the same, but the following 2 and the percentages are very different.
 Although there is a difference between the classes with constants and other
similar classes in terms of average number of changes (77.2459 vs. 35.5031) and
number of modifications per commit (5.9836 vs. 2.8696), this difference is not
nearly as great as for the classes that contain static non-final attributes. Four of the
top 5 change types are the same, albeit the percentages are fairly different.
 The stateful singleton (Type) is more change-prone compared to the classes

that were categorized as similar to it. It suffered 85 fine-grained modifications
during 29 commits; for the similar classes the average number of modifications is
almost half (46.8298) and the number of changes per commit is a bit higher
(3.3665 vs. 2.931). The corresponding values for the 2 stateless singletons are
much lower; their average number of changes is 8.5 while the amount of
modifications per commit is 1.3077, thus indicating that they are less change-prone.

 111

Regarding the top 5 change types, only statement updates and deletes appear in all
4 rankings; the results might be inconclusive due to the very small number of

instances (1 and 2, respectively).
 The change-proneness of the utility classes is much higher than for other
similar classes. The average number of changes is triple (135.9 vs. 44.5442) and
there are twice as many modifications per commit (6.4 vs. 3.2841). The other
production classes that contain static methods also appear to be more change-prone
compared to similar classes. Both the ones with static methods that access state

and those with methods that only operate on parameters have had, on average, a

higher number of modifications performed on them (148.375 vs. 41.3593 and
142.8824 vs. 42.4727, respectively). The number of changes per commit is roughly
double than for similar classes in both cases (6.125 vs. 3.1866 and 5.6471 vs.
3.2596). Finally, 4 of the top 5 change types are the same, though their
percentages and order are quite different.
 The Utility class (448 changes) also contains a static initialization block
along with 4 other classes; the average number of changes for these instances is

considerably higher than for similar classes (132.8 vs. 45.7937) and there are
slightly more changes per commit (4.8 vs. 3.3466). However, they are not so
different with regard to the types of changes that were performed; the top 3
changes types are the same and even the percentages are quite close.

Table 5.4.1.2: Defect-proneness of classes with static constructs vs. similar classes

for BCEL
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 52.2667 12.8 53.5714 SD
13.648 SI
8.9286 SU
5.4847 SPC
3.9541 CEC

13.75 4.2012 20.4878 SD
16.7627 SU
15.2993 SI
14.0133 DD
5.9424 DU

Constants 26.5278 8.1111 24.6388 SD
22.7376 DD
13.6122 SI
7.3004 SU
6.5399 SPC

12.0559 4.1189 32.3666 SD
20.4176 SI
15.8353 SU
5.6265 DU
5.3364 RF

Singletons Stateful 17 3.4 47.0588 RF
17.6471 DAC
11.7647 SU
11.7647 AAM
11.7647 IAC

16.9775 4.9326 29.186 SD
14.957 SI
14.7584 SU
10.4897 DD
4.9301 DU

Stateless 1 1 100 SU 17.6 4.8 32.5875 SD
17.7281 DD
9.4664 SI
7.9174 DU
7.1715 SU

Static
methods

Utility classes 39.6 9 22.2222 SI
17.1717 SOC
12.6262 SD
12.1212 DU
10.606 SPC

16.3276 4.8046 30.1654 SD
15.3819 SU
14.3611 SI
11.158 DD
4.3999 DU

Access state 71.5 4 54.5455 SD
13.7004 SI

14.2013 4.5849 20.1949 SD
17.0062 SU

 112

8.1946 SU
4.2254 SPC
3.073 RF

15.279 SI
13.9061 DD
6.023 DU

Operate on
parameters

12.375 3.0625 20.7071 SU
19.697 SD
16.1616 SI
7.0707 RF
6.5657 SPC

17.4294 5.1043 28.6727 SD
14.7835 SI
14.3259 SU
11.1228 DD
4.8222 DU

Static initialization blocks 39 7.75 17.9487 SI
12.8205 SD
10.8974 SOC
9.6154 SPC
8.9744 SU

16.4743 4.8571 29.8994 SD
15.0538 SU
14.7069 SI
10.9955 DD
4.8907 DU

 All 15 production classes that contain static non-final attributes were
modified during bug-fix commits. Same as for change-proneness, these classes are
more error-prone compared to other similar classes; the average number of
modifications is almost 4 times higher (52.2667 vs. 13.75) while the number of

changes per commit is 3 times greater (12.8 vs. 4.2012). An interesting observation
is that more than half of the changes performed on the classes with static non-final
attributes are statement deletes; for the other classes this percentage is a bit over
20%.
 The classes with constants are not as error-prone as they are change-prone.
Although the average number of changes for such classes is more than double

compared to other similar classes (26.5278 vs. 12.0559), the amount of
modifications per commit is also double (8.1111 vs. 4.1189); this implies that the
number of bug-fix commits in which these classes were altered is roughly the same
as for similar classes. The top 5 change types are quite different, both regarding
their types and especially the percentages.

The stateful singleton was modified in 5 bug-fix commits. The average
number of changes is almost identical (17 vs 16.9775) to the one obtained for

similar classes; however, there were fewer modifications per commit (3.4 vs.
4.9326), thereby implying that the singleton was altered more frequently. This is
not the case for the 2 stateless singletons; each of them suffered only 1 fine-
grained source code change (in separate bug-fix commits). The top 5 change types
are also very different; for example, the 2 modifications performed on the stateless
variants were statement updates.

Five utility classes were modified during bug-fix commits and the average

number of changes is higher than for similar classes (39.6 vs. 16.3276). However,
the ratio is considerably smaller than the one obtained for change-proneness. The
number of changes per commit is also greater (9 vs. 4.8046). There are significant
differences between the top 5 change types for utility classes and other similar
classes, both in terms of order and percentage-wise. Unlike for change-proneness,
only the classes with static methods that access state have a higher error-proneness

than similar classes; those with static methods that only operate on parameters do
not. For the first category, the average number of changes is 5 times higher (71.5
vs. 14.2013) while the amount of modifications per commit is comparable (4 vs.
4.5849); this indicates that there are more bug-fix commits in which they were
altered. This is not the case for the classes with methods that solely operate on
parameters; they actually appear to be less error-prone when compared to similar
classes (12.375 vs. 17.4294 average number of modifications and 3.0625 vs.

5.1043 number of changes per commit). In terms of the top 5 change types, the 3

 113

statement-level changes are the most commonly occurring in both cases while the
following 2 differ when compared to those of similar classes.

 The situation for the classes with static initialization blocks is similar to that
of utility classes. They suffered more changes on average (39 vs. 16.4743) and the
number of modifications per commit is higher (7.75 vs. 4.8571). In terms of top
change types, they are different from the ones encountered for similar classes; for
example, less than 13% of the modifications are statement deletes for the classes
that contain static initialization blocks, while for the other classes the corresponding

value is roughly 30%.

 5.4.2. Commons Collections

Table 5.4.2.1: Change-proneness of classes with static constructs vs. similar classes

for Commons Collections
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final - - - - - -

Constants 87.7215 6.0823 19.1631 SU
13.456 DU
10.8658 SI
9.8413 SD
7.0851 PTC

74.1667 6.9667 19.457 SU
13.4232 DU
11.0412 SI
8.7341 SD
6.8165 PTC

Singletons Stateful - - - - - -

Stateless 9 2.6667 51.8519 SU
14.8148 DD
7.4074 ROS
3.7037 AF
3.7037 ATC

68.7517 5.9139 17.5522 SU
14.7263 DU
11.6602 SI
10.541 SD
5.7717 PTC

Static
methods

Utility
classes

181.3181 6.4091 22.2361 DU
17.1221 SU
12.5094 SI
8.6489 PTC
7.8967 SD

73.2124 6.4027 19.757 SU
11.326 DU
10.5403 SI
9.8634 SD
6.5999 PTC

Access state 77 5.1333 19.2941 DU
17.1765 SU
16 SI
7.2941 DD
6.5882 API

68.8007 5.9088 18.6251 SU
12.5969 DU
11.5541 SI
10.6489 SD
7.8795 PTC

Operate on
parameters

55.6723 4.8655 19.4717 SU
13.4038 DU
9.2679 SI
9.1623 SD
7.7736 SPC

76.1559 6.5323 17.1857 SU
14.8581 DU
12.757 SI
9.7 SD
6.2902 PTC

Static initialization blocks 55 13.75 25.4545 SI
18.1818 SD
14.5455 AF
7.2727 AF
7.2727 AOS

82.915 6.3765 19.2969 SU
13.4717 DU
10.8838 SI
9.458 SD
7.0166 PTC

 There are no classes that contain static non-final attributes. For the classes
with constants, both the average number of changes (87.7215 vs. 74.1667) and the
number of modifications per commit (6.0823 vs. 6.9667) are comparable to those of

 114

similar classes. Additionally, the order and percentages for the top 5 change types
are nearly identical.

 The stateless singletons suffered, on average, 9 fine-grained changes; this
value is much smaller than the corresponding one for similar classes (68.7517). The
number of modifications per commit is less than half (2.6667 vs. 5.9139);
therefore, the singletons were altered in much fewer commits. The changes
performed on them are also very different compared to the top 5 change types for
similar classes; however, statement updates are first in the rankings in both cases.

The utility classes were modified more compared to other similar classes

(average number of changes of 181.3181 vs. 73.2124). This is mainly due to 3
utility classes which suffered most of the modifications: CollectionUtils (900
changes), IteratorUtils (470), and MapUtils (545). However, the number of changes
per commit are almost identical, thus showing that the utility classes were changed
in more commits. Also, the top 5 change types are the same, although the
percentages are very different; over 22% of the changes are doc updates for utility
classes (compared to 11.326%), proving once again that they are a central part of

systems which are structured as libraries. For the rest of the classes that contain
static methods, it was found that those with methods that access state are a bit
more change-prone that similar classes while the ones with static methods that
solely operate on parameters are actually less. The first have a higher average
number of changes (77 vs. 68.8007) and roughly the same number of modifications
per commit (5.1333 vs. 5.9088). On the other hand, for the classes with static

methods that only operate on parameters the average is substantially lower
(55.6723 vs. 76.1559) than for similar classes and the number of changes per
commit is only slightly lower (4.8655 vs. 6.5323). With regard to the top 5 change
types, classes with static methods that access state are one of the few cases in
which a statement-level modification, statement deletes, does not appear in the list.
This is not the case for those with static methods that only operate on parameters;
for this category the ranking is very similar to the one obtained for similar classes

(both in terms of order and percentages).
 There is only 1 class that contains a static initialization block,
FunctorException, on which 55 changes were performed over 4 commits. Although
the number of changes is lower compared to the average for the classes that are
similar to it, the number of modifications per commit is higher (13.75 vs. 6.3765).
The types of changes and their percentages are very different, but the results might
be skewed because there is only 1 instance of interest.

Table 5.4.2.2: Defect-proneness of classes with static constructs vs. similar classes
for Commons Collections

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final - - - - - -

Constants 10.9034 3.8759 21.907 DU
13.9558 SD
12.6691 SU
11.9762 SI
7.0934 RF

13.8906 3.875 28.9089 DU
13.3858 SD
10.7987 SU
8.6614 SI
7.9865 DD

Singletons Stateful - - - - - -

Stateless - - - - - -

Static Utility classes 49.8235 5.2353 28.3353 DU 16.0052 3.7552 22.1608 DU

 115

methods 12.0425 SU
11.4522 PTC
9.5632 SI
8.0283 SD

15.4247 SD
12.3007 SU
11.6824 SI
6.8012 RF

Access state 21 5.25 29.3103 SI
29.3103 DU
10.3448 API
10.3448 SU
8.6207 CI

15.9386 3.7632 25.1789 DU
13.2361 SD
11.1723 SU
10.732 SI
6.852 RF

Operate on
parameters

11.6293 3.0603 28.9844 DU
13.7139 SD
12.4537 SU
11.8606 SI
9.3403 RF

20.0256 4.5299 23.0901 DU
12.6761 SD
10.542 SI
10.414 SU
5.2924 RF

Static initialization blocks - - - - - -

As mentioned before, there are no production classes with static non-final

attributes. For the ones that contain constants we observed that they are not more
defect-prone than other similar classes. The average number of modifications are
similar (10.9034 vs. 13.8906) and the number of changes per commit are almost

identical (3.8759 vs. 3.875). The top 4 change types are the same, but the
percentages do differ to some extent.
 None of the changes performed on the stateless singletons occurred during
bug-fix commits. Therefore, even though we were able to evaluate their change-

proneness, the defect-proneness of the singletons could not be assessed.
The average number of changes in bug-fix commits is higher for utility

classes compared to similar classes (49.8235 vs. 16.0052). However, the number of

changes per commit is comparable (5.2353 vs. 3.7552), thus suggesting that the
former have been modified in more commits in which errors were repaired. Even
though the top 5 change types are roughly the same, the percentages for them vary
significantly; only 8% are statement deletes for utility classes while for the others
this percentage is around 15.5%. For the other classes that contain static methods
the situation is similar to the one observed for change-proneness. Those with
methods that access state have, on average, a higher number of modifications (21

vs. 15.9386); their number of changes per commit is also a bit higher (5.25 vs.
3.7632). On the other hand, classes with static methods that only operate on
parameters have a lower defect-proneness compared to similar classes; their
average number of modifications is almost half (11.6293 vs. 20.0256) and the

number of changes per commit is smaller (3.0603 vs. 4.5299). The top 5 change
types are significantly different for the first category both order- and percentage-

wise. For the latter category, all 5 modification types are exactly the same and the
percentages are quite similar.
 None of the 4 commits in which FunctorException (the only class that
contains a static initialization block) was modified are bug-fixes.

 5.4.3. Commons Lang

Table 5.4.3.1: Change-proneness of classes with static constructs vs. similar classes

for Commons Lang
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

 116

Static
attributes

Non-final 280 8.4848 28.5714 DU
20 SI
14.2857 SU
12.1429 SD
4.6429 RF

203.6 5.9353 22.6395 SD
20.9234 SI
11.4007 SU
10.4646 DU
6.5786 RF

Constants 84.5472 6.7925 22.5151 SI
20.9535 SD
11.4515 SU
10.1452 DU
6.8497 RF

72.7692 4.5692 23.277 SI
20.2114 SD
13.5729 DU
11.2474 SU
4.7357 RF

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility
classes

516.7907 9.1628 24.1427 SI
21.9332 SD
11.1781 SU
10.2871 DU
6.6736 RF

98.9844 4.8672

Access
state

545 11.8839 24.1305 SI
21.9197 SD
9.5444 SU
7.6705 DU
4.0847 SPC

200.0118 5.8817 21.2101 SI
20.5649 SD
12.9313 SU
11.4035 DU
7.4034 RF

Operate on
parameters

53.1842 4 21.3261 DU
15.1905 SI
14.6461 SD
13.4587 SU
5.5418 RF

247.1504 6.5038 24.0751 SI
21.2345 SD
12.2987 SU
9.951 DU
6.6259 RF

Static initialization blocks 328.25 9.125 22.8104 SI
22.0107 SD
13.1379 SU
10.0533 DU
4.9124 RF

197.9509 5.7914 22.6027 SI
20.7587 SD
11.2843 SU
10.6552 DU
6.6975 RF

The only class that contains a static non-final attribute, ToStringBuilder,

suffered 280 fine-grained source code changes over 33 commits. The number of
modifications is higher than the average for similar classes (203.6) and there are

more changes per commit (8.4848 vs. 5.9353). However, the top 5 change types
are on par with those of other classes, though the percentages are very different.
 The change-proneness of the classes with constants is comparable to that of
similar classes. Although there are, on average, more fine-grained changes

(84.5472 vs. 72.7692), they were performed in fewer commits as the number of
modifications per commit is higher (6.7925 vs. 4.5692). The top 5 change types are
the same, even the order and the percentages are very similar.

The only singleton present in the latest version of Commons Lang,
ObjectToStringComparator, did not suffer any fine-grained source code changes
throughout the project’s lifespan. Therefore, it is impossible to assess the impact of
singletons on change- / defect-proneness for this system.

There have been, on average, 5 times more changes performed on utility
classes (516.7907 vs. 98.9844) than on classes that are similar to them. This is due
to a series of classes that were frequently modified, such as ArrayUtils (3224

changes), StringUtils (4866), or NumberUtils (2646). The number of changes per
commit is also higher (9.1628 vs. 4.8672). Commons Lang is a system in which the
discrepancy between the classes that contain other types of static methods is huge.
The ones with methods that access state are more change-prone than classes which

 117

are similar to them in terms of size and complexity. The average number of
modifications is almost triple (545 vs. 200.0118) while the number of changes per

commit is double (11.8839 vs. 5.8817). On the other end of the spectrum are the
classes with static methods that only operate on parameters. For this category the
average number of changes is roughly 5 times smaller (53.1842 vs. 247.1504) than
that of similar classes, but the number of modifications per commit is only a bit
lower (4 vs. 6.5038). However, with regard to the top 5 change types, both cases
are very similar. For the first category the top 4 changes are exactly the same while

for the latter all 5 change types resemble the ones for similar classes (albeit in a

different order).
As was the case for utility classes, both the average number of changes

(328.25 vs. 197.9509) and the number of changes per commit (9.125 vs. 5.7914)
are higher for the classes that contain static initialization blocks compared to other
similar classes. Finally, the top 5 change types are the same in terms of order and
even percentages.

Table 5.4.3.2: Defect-proneness of classes with static constructs vs. similar classes
for Commons Lang

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 141 14.1 32.6241 DU
19.1489 SD
14.1844 SI
11.3475 SU
4.2553 RF

85.5 7.8452 24.8677 SI
22.7096 SD
10.22 DU
8.7162 SU
5.0404 SPC

Constants 26.7755 9.8571 24.0985 SD
23.68 SI
10.0129 DU
8.7733 SU
5.1513 SPC

30.8611 5.2778 28.4428 SD
16.2016 SI
14.2214 DU
8.7309 SU
6.1206 APD

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility
classes

156.4483 9.8621 24.4655 SI
22.9888 SD
10.5356 DU
10.0507 SU
5.4882 CEC

49.75 6.9107 27.6382 SD
19.4185 SI
10.8399 DU
6.6762 SU
5.6712 SPC

Access state 100.5 12.5625 29.6389 SD
20.8626 SI
8.4754 DU
6.0181 SU
5.3661 SPC

41.3768 7.9275 23.1751 SI
22.9311 SD
11.4656 DU
9.7955 SU
5.2543 CEC

Operate on
parameters

55.8571 6.4286 21.4834 SD
16.8798 DU
16.3683 SI
8.1841 SU
7.9284 SPC

88.8718 8.0513 24.9423 SD
22.8938 SI
10.3001 DU
8.7998 SU
4.8615 SPC

Static initialization blocks 91.75 13.875 34.7411 SD
23.5695 SI
5.7221 SU
5.3133 DU
5.0409 SPC

85.5714 7.2987 23.6455 SD
22.4313 SI
11.246 DU
9.1069 SU
5.0235 SPC

 118

There are 10 bug-fix commits in which the only class with a static non-final
attribute, ToStringBuilder, was modified. In total, 141 fine-grained changes were

performed on it, a value that is higher than the average for similar classes (85.5).
The amount of changes per commit is also roughly double (14.1 vs. 7.8452), but
there are more modifications related to documentation (almost 33% are doc
updates) than for the other classes.

Just as for change-proneness, the defect-proneness of the classes that
contain constants is not higher than that of similar classes. The average number of

changes is comparable (26.7755 vs. 30.8611) and the number of modifications per

commit is higher (9.8571 vs. 5.2778), thus indicating that they were altered in
fewer bug-fix commits. The top 4 change types are the same and their percentages
are also very similar.

There have been, on average, more modifications performed on utility
classes compared to similar classes (156.4483 vs. 49.75), but the ratio is smaller
than for change-proneness. The difference between the number of changes per
commit is also lower (9.8621 vs. 6.9107). The top 5 change types differ, especially

in terms of percentages; for example, even though statement updates are fourth in
both rankings, the percentages are quite different (10.0507 vs. 6.6762). Similarly to
what was discovered for change-proneness, the classes with static methods that
access state are much more error-prone than other similar classes, while the ones
with static methods that solely operate on parameters are not. The former have, on
average, more than double the number of changes (100.5 vs. 41.3768) and slightly

more modifications were performed on them per commit (12.5625 vs. 7.9275). For
the latter there were fewer modifications overall (55.8571 vs. 88.8718) and the
amount of changes per commit is similar (6.4286 vs. 8.0513); this shows that they
were altered in fewer commits. The top 4 types of changes are exactly the same in
both cases and they resemble the ones for similar classes.

There is hardly any difference between the average number of modifications
for the classes that contain static initialization blocks and other classes (91.75 vs.

85.5714). However, the number of changes per commit is higher for the first
category (13.875 vs. 7.2987), therefore indicating that there are fewer bug-fix
commits in which the classes with initialization blocks were changed. The top 5
change types are the same, even the order is almost identical; there are however
some differences percentage-wise.

 5.4.4. Commons Math

Table 5.4.4.1: Change-proneness of classes with static constructs vs. similar classes
for Commons Math

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 129.3333 8 38.1443 SD
13.4021 SI
8.7629 CD
7.732 SU
5.9278 DU

94.7475 6.0777 18.4892 SI
18.4459 SD
15.7329 SU
11.4143 DU
6.4468 RF

Constants 40.0198 8.332 20.2512 SI
19.9520 SD
16.5194 SU
11.3112 DU

65.0884 5.7569 16.4163 SD
15.856 SI
14.5197 SU
11.6162 DU

 119

5.1489 RF 8.2209 RF

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility
classes

294.5 8.6154 20.7784 SD
20.0862 SI
12.8249 SU
11.114 RF
8.058 AF

86.0612 6.7211 18.216 SD
18.1804 SI
16.0893 SU
12.0307 DU
5.713 RF

Access state 174.6667 7.8057 21.6671 SD
18.9324 SI
18.2225 SU
10.781 DU
5.4694 SPC

87.6378 6.5996 20.0087 SD
19.3268 SI
14.6409 SU
12.6963 DU
5.1956 RF

Operate on
parameters

67.7 7.6333 18.2568 SI
18.0282 DU
16.776 SD
13.8839 SU
6.0326 RF

82.6587 6.5326 21.982 SD
19.6539 SI
15.3065 SU
10.0118 DU
4.9391 RF

Static initialization blocks 534.6667 11.3333 23.1614 SD
19.8266 SI
15.1244 SU
9.1478 DU
6.6297 RF

90.57 6.743 19.5801 SD
19.2271 SI
14.9962 SD
13.2811 DU
5.1405 RF

 The 3 classes that have static non-final attributes appear to be more

change-prone compared to other similar classes. More fine-grained changes were
performed on them on average (129.3333 vs. 94.7475) and the number of
modifications per commit is higher (8 vs. 6.0777). The top 5 change types are also
different; for example, over 38% of their changes are statement deletes while for
similar classes this percentage is around 18.5%.
 The classes that contain constants suffered less changes compared to other

classes. The average number of modifications is lower (40.0198 vs. 65.0884) while
the number of changes per commit is higher (8.332 vs. 5.7569), thus indicating that
they were altered in significantly fewer commits. The top 5 change types resemble
the ones observed for other production classes.
 No fine-grained source code changes were encountered for Decimal64Field,
the only singleton found in the last version of Commons Math. Because of this, we
are not able to determine its effect on change- / defect-proneness.

 Utility classes were changed more frequently compared to other classes that

are similar to them in terms of size and complexity (average number of changes of
294.5 vs. 86.0612). This is mainly because certain instances are central to the
system and have suffered numerous modifications throughout its lifetime; examples
include ComplexUtils (1103 changes), MathUtils (1223), and FastMath (2329).
However, the number of changes per commit is not so different (8.6154 vs.
6.7211), thereby suggesting that the utility classes were modified in many more

commits. Similar to what was observed for the previous project, the classes with
static methods that access state are more change-prone than other classes while
the ones with static methods that only operate on parameters are not. For the first
category the average number of changes is significantly higher (174.6667 vs.
87.6378) while the amount of modifications per commit is comparable (7.8057 vs.
6.5996). On the other hand, for classes with static methods that solely operate on

parameters the averages are completely different (67.7 vs. 82.6587) and the
number of changes per commit are similar (7.6333 vs. 6.5326). In both cases, the

 120

top 4 change types are the same as for similar classes; for the latter even the fifth
one, REMOVED_FUNCTIONALITY, is identical.

 The classes that contain at least 1 static initialization block are also changed
more compared to similar classes (an average of 534.6667 vs. 90.57 changes). The
results might be skewed because there are only 6 instances and FastMath (with
2329 changes) is one of them. Furthermore, the number of modifications per
commit is also higher (11.3333 vs. 6.743).

Table 5.4.4.2: Defect-proneness of classes with static constructs vs. similar classes

for Commons Math
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 55.6667 6 14.2857 DAC
10.3896 DU
10.3896 SD
9.0909 CD
7.7922 AF

46.3631 7.5706 18.144 SD
17.2862 SI
15.1666 SU
13.5194 DU
5.7869 RF

Constants 29.8772 8.5848 22.0139 SI
17.8826 SD
16.3297 SU
14.6303 DU
4.2289 SPC

33.9171 6.6188 16.5011 SD
13.1292 SU
11.5654 SI
11.4514 DU
8.9102 AF

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility
classes

101.5789 9.1053 27.3057 SD
17.3057 SI
12.1762 RF
10.1036 SU
5.544 SPC

42.9006 7.4699 18.1844 SI
15.8815 SD
15.7972 SU
14.6669 DU
5.343 AF

Access state 43.2 4.8 20.4216 SI
19.3676 SD
15.0198 SU
11.1989 DU
9.8814 AF

42.1617 6.8271 20.5617 SD
19.465 SI
16.9594 DU
12.4476 SU
4.8239 SPC

Operate on
parameters

48.4792 7.3333 36.055 DU
15.6854 SI
12.1186 SD
11.0443 SU
5.0279 RF

42.1026 6.6624 22.5944 SD
20.4324 SI
13.0532 SU
11.7946 DU
5.5319 SPC

Static initialization blocks 214.8 15 31.9367 SD
18.2495 SI
8.2886 CD
8.1937 SU
8.0074 SPC

43.742 7.4493 18.077 SI
16.2083 SD
15.6186 SU
14.2867 DU
5.9042 RF

 All 3 classes that contain static non-final attributes were modified during

bug-fix commits and the average number of changes is higher than for classes
which are similar to them in terms of size and complexity (55.6667 vs. 46.3631).
However, the number of changes per commit is lower (6 vs. 7.5706), thus indicating
that there are more commits in which they were fixed. The top 5 change types are
very different compared to what was observed thus far; it is one of the few cases in
which statement inserts and updates do not appear in this ranking.

 121

 There is no significant difference between the average number of changes
for classes with constants and other similar classes (29.8772 vs. 33.9171).

However, the number of modifications per commit is higher for the former (8.5848
vs. 6.6188), thereby suggesting that they were changed less frequently. Four of the
top 5 change types are the same, albeit the order and the percentages are slightly
different.

Nineteen utility classes were modified during bug-fix commits. Even though
the average number of changes for utility classes is higher than for similar classes

(101.5789 vs. 42.9006), the difference is smaller compared to what was observed

for change-proneness. Additionally, comparable values were obtained in terms of
the number of changes per commit (9.1053 vs. 7.4699). However, the top 5 change
types are different both regarding order and percentage-wise. The classes with
static methods that access state are a bit more defect-prone compared to similar
classes. The average number of modifications is higher (43.2 vs. 42.1617) while the
amount of changes per commit is lower (4.8 vs. 6.8271), thus suggesting that they
were modified in more bug-fix commits. For the classes with static methods that

only operate on parameters, even though the average is slightly higher (48.4792 vs.
42.1026), the number of changes per commit is also higher (7.3333 vs. 6.6624);
this indicates that the number of bug-fix commits in which they were changed is
roughly the same. Like for change-proneness, the top 4 change types are the same,
although the order and the percentages are quite different (especially for the latter
category).

 The observations that can be made regarding the error-proneness of the
classes that contain static initialization blocks are similar to the ones for utility
classes. Although the ratio between the average number of changes is very high
(214.8 vs. 43.742), it is lower than for change-proneness. The number of
modifications per commit is double for this kind of classes compared to similar
classes (15 vs. 7.4493). This is mainly due to 1 class, FashMath, which suffered 929
changes over 28 bug-fix commits. The percentages for the top 5 change types are

also very different; for example, almost 32% of the changes are statement deletes
for the classes with static initialization blocks while for the other classes this
percentage is just over 16%.

 5.4.5. Digester

Table 5.4.5.1: Change-proneness of classes with static constructs vs. similar classes
for Digester

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final - - - - - -

Constants 66.75 3.375 19.5521 SD
16.8389 SU
14.6856 DU
13.4798 SI
7.5797 RF

61.3654 3.7404 21.1376 SU
18.5522 SI
15.8258 SD
10.0125 DU
5.0611 CEC

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility
classes

6 2.625 41.6667 SU
16.6667 ROS
16.6667 RF

68.9841 3.6905 19.9609 SU
17.2227 SI
16.8431 SD

 122

16.6667 IAC
8.3333 DU

11.2632 DU
5.6143 RF

Access state - - - - - -

Operate on
parameters

103.1667 4.3333 22.1325 SI
20.0323 SD
15.5089 SU
8.7237 DU
8.5622 RF

66.2705 3.6393 20.334 SU
16.8213 SI
16.5739 SD
12.4533 DU
5.4051 RF

Static initialization blocks - - - - - -

There are no singletons or production classes with static non-final attributes

/ initialization blocks in the latest version of Digester. The change-proneness of the
classes that contain constants is comparable to that of other classes; both the
average number of changes (66.75 vs. 61.3654) and the number of modifications
per commit (3.375 vs. 3.7404) are very similar. Four of the top 5 change types are
the same, although the percentages are quite different.

The 2 utility classes, AnnotationUtils and LogUtils, suffered only a small
number of changes (9 and 3, respectively) compared to other similar classes. The
amount of modifications per commit is also lower (2.625 vs. 3.6905). In terms of
change types, they are very different; two of the most common types, statement
inserts and deletes, were not performed regularly on the aforementioned classes.
There are no classes with static methods that access their state. Those with static
methods that only operate on parameters are slightly more change-prone than

classes that are similar to them in terms of size and complexity. They have, on
average, a higher number of changes (103.1667 vs. 66.2705), but there are also
more changes per commit (4.3333 vs. 3.6393). The top 5 modification types are the
same as for similar classes, albeit the order and percentages do differ.

Table 5.4.5.2: Defect-proneness of classes with static constructs vs. similar classes

for Digester
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final - - - - - -

Constants 12.3125 3.125 25.5539 SD
21.5657 DU
15.0665 SI
11.226 SU
4.579 RF

18.0141 3.8451 27.5997 SI
21.1102 SD
18.1392 DU
10.4769 SU
3.8311 SPC

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility classes - - - - - -

Access state - - - - - -

Operate on
parameters

22.2 2.8 24.3243 DU
20.7207 SI
19.8198 SD
9.9099 SU
7.2072 RF

22.5 3.7683 23.4146 SI
22.8184 SD
19.0244 DU
10.7859 SU
4.0108 SPC

Static initialization blocks - - - - - -

There are no static non-final attributes in the production code. The classes

with constants are not more error-prone compared to other similar classes; they

 123

were changed less frequently in bug-fix commits (average number of modifications
of 12.3125 vs. 18.0141) and the number of changes per commit is close (3.125 vs.

3.8451). The top 4 change types are the same, but their order and percentages are
different.

The changes performed on the 2 utility classes, AnnotationUtils and LogUtils,
did not occur during bug-fix commits. No static methods that access state were
found. The classes with static methods that only operate on parameters are not
more error-prone than other similar classes. The average number of modifications is

almost identical (22.2 vs. 22.5) and there are a comparable number of changes per

commit (2.8 vs. 3.7683). The top 4 change types are also the same, the only
differences are in terms of order and percentages.

 5.4.6. Geode

Table 5.4.6.1: Change-proneness of classes with static constructs vs. similar classes

for Geode
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 847.1574 9.3333 20.383 SI
19.7873 SD
13.3518 SU
8.1689 SPC
5.0113 CEC

252.2445 7.2836 16.1517 SD
15.843 SI
13.5458 SU
5.098 DU
4.7261 CEC

Constants 112.4557 9.252 18.6819 SI
18.2977 SD
14.7422 SU
6.0478 SPC
5.7684 CEC

148.7544 5.5167 11.7809 IAC
11.4253 SI
11.1711 SD
10.1268 SU
9.0795 DAC

Singletons Stateful 431.2667 6.9333 30.3756 SU
14.5308 SI
11.1145 SD
9.0122 DU
5.3022 CEC

279.5486 7.3865 17.78 SD
17.4616 SI
12.3458 SU
5.1266 SPC
4.7614 CEC

Stateless 496.4808 3.6731 24.4606 SU
16.1599 SPC
12.1625 SI
11.9417 SD
10.6209 SOC

275.5052 7.4701 15.9505 SI
15.5954 SD
15.0576 SU
4.8966 DU
4.8827 CEC

Static
methods

Utility
classes

203.4145 4.6891 16.2867 SI
16.0626 SD
13.3014 ROS
12.9448 AOS
7.9116 SPC

287.5462 7.6296 16.788 SI
16.43 SD
14.0658 SU
4.9194 SPC
4.8774 DU

Access
state

964.7198 10.9066 21.1255 SI
20.728 SD
12.6103 SU
9.3616 CEC
6.3419 SPC

221.1674 7.0777 15.1035 SI
14.7718 SD
13.8617 SU
5.7841 DU
4.8912 RF

Operate on
parameters

413.2644 5.5076 20.0649 SU
17.5532 SI
17.2656 SD
6.3178 SPC
5.6353 PTC

258.1554 7.7 16.5422 SI
16.1757 SD
11.7498 SU
5.2278 DU
4.9318 RF

 124

Static initialization blocks 1113.6667 15.7576 17.5016 SI
17.4145 SD
12.1643 CEC
10.5616 SU
6.7236 SPC

255.7004 7.1338 17.6605 SI
16.2767 SD
12.9021 SU
5.1585 DU
4.8927 SPC

 Classes with static non-final attributes appear to be more change-prone
than other similar classes, while the ones that contain only constants are not. For
the first category, the average number of changes is almost 3.5 times higher

(847.1574 vs. 252.2445) and the amount of modifications per commit is
comparable (9.3333 vs. 7.2836). On the other hand, the average for classes with
constants is lower (112.4557 vs. 148.7544) and the number of changes per commit

is almost double (9.252 vs. 5.5167); this indicates that they were modified in fewer
commits. The top 5 change types are the same for both categories; only the
statement-level ones appear in the rankings for similar classes. An interesting
observation can be made with regard to the top modification for the classes that are
similar in terms of size and complexity to those with constants; it is of type
INCREASING_ACCESSIBILITY_CHANGE and represents 11.78% of the total number
of modifications that were performed.

 Both types of singletons have a much higher change-proneness than similar
classes. The average number of changes is greater (431.2667 vs. 279.5486 and
496.4808 vs. 275.5052, respectively) and the amount of changes per commit is
lower (6.9333 vs. 7.3865 and 3.6731 vs. 7.4701) compared to the other classes;

this implies that they were changed in many more commits. With regard to the top
5 change types, only the 3 most common ones (statement inserts, deletes, and
updates) are present in all the rankings.

The change-proneness of the utility classes is comparable to that of other
classes. Although less modifications were performed on them on average (203.4145
vs. 287.5462), the number of changes per commit is also lower (4.6891 vs.
7.6296); thus the amount of commits in which they were changed is more or less
the same. In terms of top 5 change types, this is one of the few cases in which
additional / removed object state modifications appear in the list (ranked third and

fourth); because of this, only the first 2 change types resemble the ones for similar
classes.

The rest of the classes that contain static methods are also more change-
prone than other similar classes, especially the ones with static methods that access
state. These classes have, on average, almost 4.5 times more changes (964.7198

vs. 221.1674) while the amount of modifications per commit is comparable to that
of similar classes (10.9066 vs. 7.0777). The classes with static methods that

operate on parameters are also a bit more change-prone. When compared to other
classes, more changes were performed on them (413.2644 vs. 258.1554) and the
number of modifications per commit is lower (5.5076 vs. 7.7); this shows that they
were modified in more commits. In terms of top 5 change types, the first 3 are the
same both for the 2 categories of classes with static methods and for other classes
that are similar to these instances in terms of size and complexity.
 Finally, the classes with static initialization blocks suffered roughly 4 time

more modifications (1113.6667 vs. 255.7004) than similar classes and there are
twice as many changes per commit (15.7576 vs. 7.1338); this indicates that their
change-proneness is higher. Four of the top 5 change types are identical, even the
percentages are very similar.

 125

Table 5.4.6.2: Defect-proneness of classes with static constructs vs. similar classes
for Geode

Category Instances Similar classes

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 560.6947 9.8947 20.4408 SI
19.932 SD
12.462 SU
8.7692 SPC
5.266 CEC

153.3238 9.6025 15.7888 SD
15.6849 SI
15.1362 SU
5.2902 DU
5.0906 AF

Constants 130.416 13.2471 17.9384 SD
17.4154 SI
15.8108 SU
6.3485 SPC
5.8649 CEC

100.0837 4.6946 13.6287 SI
11.9873 SD
11.1341 SU
9.8444 DU
8.0119 AF

Singletons Stateful 247.0769 7.4615 29.67 SU
15.0685 SI
10.2117 SD
9.5268 DU
5.1059 CEC

174.6582 9.6389 17.5633 SD
17.5136 SI
13.5224 SU
6.5048 SPC
5.0831 AF

Stateless 276.551 3.6939 23.9244 SU
16.8401 SPC
12.191 SI
11.1505 SD
9.6229 SOC

172.3137 9.7911 15.7411 SI
15.6948 SD
15.2579 SU
6.2717 AF
5.1622 CEC

Static
methods

Utility
classes

171.1538 5.3615 16.2966 ROS
16.0315 SI
14.5888 SD
12.809 AOS
7.9506 SPC

175.4005 9.9539 16.6446 SD
16.5346 SI
15.5172 SU
5.3145 AF
5.2864 SPC

Access
state

495.6746 9.8462 22.2063 SD
16.9621 SI
13.5492 SU
9.2648 CEC
7.2986 SPC

141.505 9.5995 16.3281 SI
15.0945 SU
14.3962 SD
5.7665 DU
5.2545 AF

Operate on
parameters

231.519 5.1044 19.8619 SI
18.8518 SU
18.0071 SD
6.2876 SPC
5.801 PTC

163.0041 10.6003 16.0341 SD
15.4655 SI
13.3967 SU
5.8077 AF
5.5012 DU

Static initialization blocks 402.2453 14.8302 19.4148 SI
14.807 SD
10.6479 CEC
10.1427 SU
8.6918 SPC

158.9849 9.4629 16.7274 SD
16.1027 SI
15.2946 SU
5.2242 DU
5.0403 SPC

 The classes with static non-final attributes are more error-prone than other
similar classes, while for the ones that contain constants defect-proneness is lower.

For the former the average number of modifications is more than 3.5 times higher
(560.6947 vs. 153.3238) and the amount of changes per commit is the same
(9.8947 vs. 9.6025). For the second category, although there are slightly more
changes (130.416 vs. 100.0837), the number of modifications per commit is roughly
3 times higher (13.2471 vs. 4.6946); therefore, they were altered in fewer bug-fix

 126

commits. The top 5 modification types are the same in both cases, but only the first
3 (the statement-level ones) also appear in the rankings for similar classes.

 Similar to what was observed for change-proneness, the singletons are also
more error-prone. Both the stateful and the stateless ones have, on average, a
higher number of changes (247.0769 vs. 174.6582 and 276.551 vs. 172.3137,
respectively) than other similar classes and the amount of modifications per commit
is lower (7.4615 vs. 9.6389 and 3.6939 vs. 9.7911), thus proving that they were
changed in more bug-fix commits. Three of the top 5 change types are the same,

the statement-level ones, but even for them the percentages are higher for the

singletons.
The defect-proneness of utility classes is similar to that of other classes. The

average number of changes is almost the same (171.1538 vs. 175.4005), but the
number of modifications per commit is smaller (5.3615 vs. 9.9539). The top 5
change types in bug-fix commits differ as well due to the additional / removed
object state modifications that were performed on utility classes.

Just as for change-proneness, the other classes with static methods are

more defect-prone than similar classes. For the ones with methods that access their
state, the average number of modifications is more than 3.5 times higher (495.6746
vs. 141.505) while the number of changes per commit is roughly the same (9.8462
vs. 9.5995). For the other category, classes with static methods that only operate
on parameters, the error-proneness is not significantly higher than that of similar
classes; there were, on average, more changes performed on them (231.519 vs.

163.0041) and the number of modifications per commit is lower (5.1044 vs.
10.6003). Finally, while the top 3 modification types are identical (statement-level
changes), their order and percentages are different.
 Although classes that contain static initialization blocks are more defect-
prone compared to similar classes, the error-proneness is lower than their change-
proneness. They suffered, on average, 2.5 times more modifications (402.2453 vs.
158.9849), but more changes were performed on them per commit (14.8302 vs.

9.4629). In terms of top 5 change types, 4 of them are the same, albeit the order
and percentages are significantly different.

 5.4.7. jHotDraw

Table 5.4.7.1: Change-proneness of classes with static constructs vs. similar classes

for jHotDraw
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 91.75 11.3445 23.4332 SD
14.9864 SI
11.7166 SU
10.3542 RF
5.4496 AF

88.8229 6.92 21.288 SD
16.4143 SU
16.1698 SI
7.5775 RF
4.6999 SPC

Constants 104.8304 6.5536 19.7513 SD
16.387 SI
15.3224 SU
8.3042 RF
5.5106 SPC

62.2388 7.791 25.8034 SD
15.3477 SU
11.7266 SI
9.4964 RF
7.0983 DU

Singletons Stateful - - - - - -

Stateless - - - - - -

 127

Static
methods

Utility classes - - - - - -

Access state 78 8.6667 21.7949 AF
20.5128 SI
12.8205 RF
10.2564 SU
8.9744 SD

88.9494 7.0112 21.3983 SD
15.354 SU
15.1393 SI
8.596 RF
5.6528 SPC

Operate on
parameters

34.1667 5.4306 24.878 SD
18.5366 SI
12.1951 SU
11.2195 DU
10.7317 RF

90.7861 7.0867 22.2912 SD
14.3699 SU
14.1216 SI
8.5891 RF
6.6221 SPC

Static initialization blocks 539 10.7105 26.6234 SD
20.0371 SI
18.2746 SU
7.9777 SPC
3.8961 CEC

83.8023 6.9831 20.9533 SD
15.1149 SU
14.8116 SI
9.0137 RF
5.8181 DU

 Surprisingly, the classes that contain static non-final attributes are not more
change-prone than other similar classes. The average number of modifications is a

bit higher (91.75 vs. 88.8229), but so is the amount of changes per commit
(11.3445 vs. 6.92). Unlike for the previous systems, for jHotDraw the classes with
constants have a higher change-proneness than similar classes. Their average
number of changes is greater (104.8304 vs. 62.2388) and there are fewer
modifications per commit (6.5536 vs. 7.791).

 No stateful singletons were found in the latest version of the project.

Additionally, the only stateless singleton (FigureLayerComparator) did not suffer any
fine-grained changes throughout its existence. Neither did any of the 4 utility
classes. Only 1 class that contains static methods that access state was altered
(AbstractDrawing with 78 changes in 9 commits); this class is a bit less change-
prone compared to the classes that were categorized as similar to it. The 6 classes
with static methods that solely operate on parameters have a much lower change-
proneness. Their average number of modifications is almost 3 times smaller

(34.1667 vs. 90.7861) while the number of changes per commit is comparable
(5.4306 vs. 7.0867).
 Two classes with static initialization blocks were modified,
DefaultDrawingView (949 changes in 61 commits) and AttributeKeys (129 changes
in 22 commits). It can be observed that the number of modifications is very high,
thus showing that they are more change-prone than other classes.

Table 5.4.7.2: Defect-proneness of classes with static constructs vs. similar classes
for jHotDraw

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 29 22.5 32.7586 SI
29.3103 SD
17.2414 SU
3.4483 PD
3.4483 SPC

19.9195 9.4253 26.5626 SD
17.1766 SI
15.0415 SU
7.7513 RF
6.232 SPC

Constants 24.0545 8.6727 25.0945 SD
17.7627 SI
15.5707 SU
6.576 RF

13.7647 11.4118 27.3504 SD
21.1538 SI
17.5214 SU
6.8376 RF

 128

6.5004 SPC 5.7692 DU

Singletons Stateful - - - - - -

Stateless - - - - - -

Static
methods

Utility classes - - - - - -

Access state 26 13 53.8462 SI
11.5385 SD
11.5385 SU
7.6923 PD
7.6923 RF

20.0568 9.6818 25.8924 SD
18.1303 SI
16.1473 SU
6.6289 RF
6.2323 SPC

Operate on
parameters

6 6 66.6667 SI
16.6667 SD
16.6667 SU

20.2841 9.7614 25.7143 SD
18.4874 SI
16.0784 SU
6.6667 RF
6.1625 SPC

Static initialization blocks 106.5 12.8555 27.6995 SD
23.9437 SU
10.7981 SI
9.3897 SPC
3.7559 DU

18.1379 9.6552 25.4119 SD
19.7085 SI
15.019 SU
7.2243 RF
5.7034 SPC

 Only 2 classes that contain static non-final attributes were changed during
bug-fixing, AbstractDrawing (26 changes in 2 commits) and ColorIcon (32 changes
in 1 commit). Though the average number of changes is higher (29 vs. 19.9195), so
is the amount of modifications per commit (22.5 vs. 9.4253); this indicates that

they were altered in a comparable number of bug-fix commits. Same as for change-
proneness, classes with constants are also more error-prone. They have, on
average, a higher number of changes (24.0545 vs. 13.7647) and the amount of
changes per commit is lower (8.6727 vs. 11.4118).
 As mentioned before, the only class with static methods that access state
suffered 26 fine-grained changes over 2 bug-fix commits; the values are
comparable to the ones obtained for the classes that are considered similar to it.

RelativeLocator is the sole class with static methods that operate on parameters
that was changed when errors were fixed. Only 6 modifications were performed on it
in a single commit, much fewer than for similar classes.
 Unsurprisingly, the 2 classes that contain static initialization blocks are also
more prone to error. The average number of changes is almost 6 times higher
(106.5 vs. 18.1379) while the amount of modifications per commit is slightly greater

(12.8555 vs. 9.6552).

 5.4.8. Pig

Table 5.4.8.1: Change-proneness of classes with static constructs vs. similar classes

for Pig
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 79.8333 9.6667 30.5047 SD
21.5277 SI
9.5911 SU
6.9016 SPC
4.728 RF

40.975 6.3524 27.3827 SD
18.8605 SI
8.845 SU
7.8542 SPC
5.0469 RF

Constants 44.4253 7.6851 28.84 SD
19.0464 SI

23.017 6.1473 26.4 SD
21.00092 SI

 129

10.3782 SU
7.5034 SPC
5.3353 SOC

8.0862 SU
7.8892 SPC
6.7446 RF

Singletons Stateful 68.3 7.1 23.8653 SD
13.7628 SI
12.0059 SU
8.0527 SPC
8.0527 SOC

46.7092 6.8646 29.3028 SD
20.693 SI
8.7296 SU
6.5953 SPC
4.9735 RF

Stateless 4.3333 3.3333 30.7692 SD
23.0769 RF
15.3846 AF
15.3846 SI
7.6923 PID

47.2314 6.8843 28.2041 SD
20.5643 SI
9.7838 SU
6.6085 SPC
4.9467 RF

Static
methods

Utility classes 64.26 8.4 29.225 SD
22.9381 SI
9.2126 SU
6.4737 SPC
6.3803 RF

55.5565 6.7381 28.0833 SD
19.1701 SI
9.8437 SU
7.7349 SPC
4.7997 RF

Access state 81.8431 7.1961 34.6191 SD
17.5371 SI
9.2717 SU
6.9957 RF
5.2228 SPC

44.1215 6.8407 27.2088 SD
19.8772 SI
10.8586 SU
6.9754 SPC
4.6371 RF

Operate on
parameters

62.2911 6.9494 29.2278 SD
19.5995 SI
11.3153 SU
8.9151 SPC
4.2655 RF

40.883 6.8571 26.8912 SD
18.5512 SI
10.3083 SU
9.2033 SPC
5.4688 RF

Static initialization blocks 98 8.619 27.794 SD
22.3518 SI
11.2245 SU
9.8154 SPC
6.3168 RF

45.2969 6.8063 28.2304 SD
19.3618 SI
9.6757 SU
7.4474 SPC
5.1052 RF

 The average number of changes for classes with static non-final attributes is
almost double than for other similar classes (79.8333 vs. 40.975). The number of

changes per commit is also higher (9.6667 vs. 6.3524) and the top 5 change types
are identical (even the percentages are very close).
 Surprisingly, similar observations can be made for classes that contain
constants. The average number of modifications is once again double (44.4253 vs.

23.017), but the number of changes per commit is closer to the one obtained for
other classes (7.6851 vs. 6.1473). The top 4 change types are the same and their
percentages differ by a small margin.

Ten of the 14 stateful singletons were altered throughout the history of Pig.
They appear to be more change-prone compared to similar classes; the average
number of changes is higher (68.3 vs. 46.7092) while the amount of modifications
per commit is roughly the same (7.1 vs. 6.8646). Similar to before, the top 4
change types are identical, albeit the percentages are significantly different. Three
of the 4 stateless singleton have also suffered fine-grained changes. However, their

corresponding measurements are much lower than for similar classes (4.3333 vs.
47.2314 and 3.3333 vs 6.8843, respectively) or their stateful counterparts. The top
5 change types are also very different than what was observed for the other static
constructs; for example, it is the first time PARENT_INTERFACE_DELETE appears in
the rankings.

 130

The change-proneness of the utility classes is comparable to that of similar
classes. Though their average number of changes is higher (64.26 vs. 55.5565), the

amount of modifications per commit is also greater (8.4 vs. 6.7381); this indicates
that they were altered in roughly the same number of commits. The top 5 change
types are also identical, even the percentages are almost the same.
 The other classes that contain static methods are more change-prone
compared to similar classes. Both the ones which have methods that access their
state and those with static methods that only operate on parameters have suffered,

on average, a higher number of changes (81.8431 vs. 44.1215 and 62.2911 vs.

40.883, respectively) and the number of modifications per commit are almost
identical (7.1961 vs. 6.8407 and 6.9494 vs. 6.8571). Furthermore, the top 5
modification types are also the same (even in terms of order); there are only small
differences regarding the percentages.
 Classes with static initialization blocks seem more change-prone than other
classes that are similar to them. The average number of modifications is more than
double (98 vs. 45.2969) and the number of changes per commit is only a bit higher

(8.619 vs. 6.8063). Finally, the top 5 change types are again the same; this
situation was encountered several time for different categories of static constructs.

Table 5.4.8.2: Defect-proneness of classes with static constructs vs. similar classes

for Pig
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 37.1744 8.6163 36.0963 SD
14.0131 SI
10.7914 SU
8.508 SPC
4.8796 SOC

22.3587 5.6675 28.535 SD
18.4851 SI
10.0712 SU
9.7525 SPC
5.7049 CEC

Constants 25.1836 6.3281 29.3105 SD
17.9305 SI
10.6251 SU
9.3483 SPC
5.8732 SOC

14.3546 6.004 33.3056 SD
15.9034 SI
9.6586 SPC
9.3256 SU
7.6603 CEC

Singletons Stateful 34.3333 8.4444 23.6246 SD
11.9741 SPC
11.6505 SU
11.0032 SI
11.0032 SOC

24.7008 6.1265 31.6235 SD
16.5108 SI
11.2187 SU
8.3732 SPC
5.3085 CEC

Stateless 3.5 3.5 57.1429 SD
28.5714 SI
14.2857 APD

24.9564 6.1782 30.4372 SD
17.3451 SI
11.2595 SU
9.4422 SPC
4.2607 CEC

Static
methods

Utility classes 33.4651 6.7442 33.148 SD
18.1376 SI
11.1188 SU
8.4781 SPC
4.934 RF

24.0754 6.1142 30.1047 SD
17.25 SI
10.1423 SU
9.5605 SPC
5.2994 CEC

Access state 37.5 6.5 36.8696 SD
12.9275 SI
10.7826 SU
6.6667 SOC

23.6117 6.1345 29.435 SD
18.0524 SI
10.17 SU
9.9035 SPC

 131

6.4928 SPC 5.5214 CEC

Operate on
parameters

14.4444 5.2698 27.8214 SD
18.1786 SI
11.25 SPC
11 SU
5.4286 CEC

22.0946 6.295 31.2029 SD
17.1152 SI
10.0408 SU
8.9195 SPC
5.2803 SOC

Static initialization blocks 41.3684 6.2632 32.4427 SD
14.7583 SPC
14.2494 SU
14.1221 SI
5.598 CEC

24.2295 6.1639 30.3197 SD
16.566 SI
9.9882 SU
9.0832 SPC
6.2351 CEC

 Just as for change-proneness, the average number of modifications in bug-
fix commits is higher for classes that contain static non-final attributes than for

similar classes (37.1744 vs. 22.3587). The number of changes per commit is also
higher (8.6163 vs. 5.6675). Finally, the top 4 change types are the same and the
percentages are not very different either.
 Classes with constants also seem a bit more defect-prone compared to the
other classes. Both the average number of changes (25.1836 vs. 14.3546) and the
number of modifications per commit (6.3281 vs. 6.004) are higher. Four of the top
5 change types are the same, all of them being statement-level changes, but the

order and percentages are different.
 With regard to singletons, 9 stateful and 2 stateless ones (SparkShims and

DownloadResolver) were changed during bug-fixing activities. While the first appear
to be a bit more error-prone compared to similar classes, those from the second
category are not. The average number of modifications and the number of changes
per commit are higher for the former (34.3333 vs. 24.7008 and 8.4444 vs. 6.1265,
respectively). For the stateless variants the corresponding measurements are very

low (3.5 for both values). It is also worth noting that only 3 types of changes have
been encountered in the bug-fix commits for stateless singletons (out of a total of 7
changes).
 The defect-proneness of utility classes is a bit higher than for similar
classes. The average number of changes is greater (33.4651 vs. 24.0754), while the
amount of modifications per commit is close (6.7442 vs. 6.1142). The top 4 change

types are identical, even the percentages are more or less the same.
 The classes that contain static methods that access state are also more
defect-prone than other similar classes. The average number of modifications is
higher (37.5 vs. 23.6117) while the number of changes per commit is very close

(6.5 vs. 6.1345). On the other hand, even though they were proven to be change-
prone, classes with static methods that only operate on parameters are not more
error-prone when compared to similar classes. They suffered, on average, a smaller

number of changes (14.4444 vs. 22.0946) and the number of modifications per
commit is also a bit lower (5.2698 vs. 6.295). Similar to before, the top 4 change
types are the same and the percentages are close.
 The classes with static initialization blocks have a defect-proneness which is
similar to that of utility classes. When compared to other production classes, they
were modified more (average number of changes of 41.3684 vs. 24.2295) and the
same amount of changes were performed on them per bug-fix commit (6.2632 vs.

6.1639). The top 5 modification types are the same, but the order and the
percentages are significantly different.

 132

 5.4.9. Spring Core

Table 5.4.9.1: Change-proneness of classes with static constructs vs. similar classes

for Spring Core
Category Instances Similar classes

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 713.5 8 23.8963 SI
23.0904 SD
14.7162 SU
11.0021 MR
7.288 ROS

844.4419 8.1938 24.339 SD
24.3234 SI
16.2217 SU
4.9283 DU
4.0488 CD

Constants 154.9277 12.9518 29.6425 SD
29.6295 SI
14.3143 SU
4.3931 CD
4.3245 CI

419.3352 5.9832 16.9635 SU
16.9129 SI
16.9023 SD
10.7339 DU
6.5693 CEC

Singletons Stateful - - - - - -

Stateless 5070 809.9231 37.86 SI
37.7515 SD
5.9862 API
5.9467 APD
3.9645 CI

12.5 8.1577 23.7108 SI
23.7004 SD
16.9455 SU
6.0812 DU
3.9999 CD

Static
methods

Utility
classes

511.9348 7.7174 38.2946 SD
38.2691 SI
9.9537 SU
3.0362 APD
3.015 API

912.8287 8.2917 23.7591 SD
23.7565 SI
15.8436 SU
5.2569 DU
4.4403 CD

Access
state

5355.75 29.6984 26.5195 SD
25.7715 SI
11.1926 SU
4.0533 RF
3.9685 AF

676.5976 6.7967 25.1528 SI
24.9154 SD
16.527 SU
5.3514 DU
4.4814 CEC

Operate on
parameters

315.3158 6.7368 28.6763 SU
25.0876 SI
24.6703 SD
4.4734 SPC
4.2564 SOC

883.6584 8.3045 26.3277 SD
26.311 SI
14.8396 SU
5.9602 DU
5.0083 CD

Static initialization blocks 28.7647 6.3529 24.1309 SI
16.7689 SD
9.816 CEC
9.6115 RF
8.998 SU

898.902 8.3184 25.3289 SD
25.3075 SI
15.229 SU
4.8658 DU
4.0031 CD

 From the 4 classes that have static non-final attributes 1 stands out,
ResourceDecoder, which suffered 2663 fine-grained source code changes during 411
commits. These classes have, on average, a smaller number of modifications (713.5

vs. 844.4419) while the number of changes per commit is almost identical to that of
similar classes (8 vs. 8.1938); this suggests that their change-proneness is lower.
The situation is even clearer for production classes that have constants. For them
the average is almost 3 times lower (154.9277 vs. 419.3352) and the number of
modifications per commit is twice as high (12.9518 vs. 5.9832); thus, they were
altered in much fewer commits. Only the first 3 of the top 5 change types are

similar, the last 2 are completely different.

 133

 There are no stateful singletons in the latest version of Spring Core that was
studied. Only 2 of the 5 stateless ones have undergone fine-grained changes and

the results obtained for them are at opposite ends of the spectrum.
AnnotationAwareOrderComparator has suffered a record of 10139 modifications
over 411 commits, while ComparableComparator was changed only once. Because
of this, it is impossible to make a proper assessment with regard to the change-
proneness of stateless singletons for this system.
 The 46 utility classes have a lower change-proneness than classes which are

similar to them in terms of size and complexity. The average number of changes is

smaller (511.9348 vs. 912.8287) and the amount of modifications per commit is
roughly the same (7.7174 vs. 8.2917). The top 3 change types are identical, but the
following 2 (alternative part delete / insert) are not. Regarding the rest of the
classes that contain static methods, only 4 with methods that access state and 31
with static methods that solely operate on parameters have suffered fine-grained
changes throughout Spring Core’s lifetime. The most noticeable one in terms of
number of modifications is Frame (18219 changes over 435 commits). It is from the

first category, which causes the average number of changes for these instances
(5355.75) to be much higher than for similar classes (676.5976) or for classes with
static methods that only operate on parameters (315.3158). This observation also
holds true for the number of modifications per commit (29.6984 vs. 6.7967 and
6.7368, respectively). With regard to the top 5 change types, only the statement-
level ones appear in all 3 rankings.

The 17 classes that contain static initialization blocks have a much lower
change-proneness than other similar classes. The average number of modifications
is very low (28.7647 vs. 898.902) and the amount of changes per commit is
comparable to that of similar classes (6.3529 vs. 8.3184). From the top 5 change
types 3 appear in both lists, but the order and percentages are significantly
different.

Table 5.4.9.2: Defect-proneness of classes with static constructs vs. similar classes
for Spring Core

Category Instances Similar classes

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 286.5 14.5 47.1663 SD
15.1129 SI
13.4189 SU
7.0637 CD
2.8953 APD

80.9423 5.75 25.7781 SD
16.6073 SU
10.5726 SI
8.9808 DU
6.795 CD

Constants 72.75 12 36.0825 SI
15.4639 SD
10.6529 SU
9.2784 AOS
7.9038 MR

166.561 9.061 41.2505 SD
15.4604 SU
12.2669 SI
7.1167 CD
3.756 DU

Singletons Stateful - - - - - -

Stateless 755 25.1667 56.6887 SD
18.8079 SI
10.3311 APD
6.8874 CD
3.4437 AF

155.2235 9.0118 39.7984 SD
15.2039 SU
13.4531 SI
6.988 DU
3.8881 CD

Static
methods

Utility
classes

122 9.7333 50.5464 SD
26.776 SI

170.6901 9.0845 38.2277 SD
14.2388 SU

 134

8.6339 SU
5.082 APD
2.7869 SPC

11.7749 SI
8.004 CD
4.101 DU

Access
state

699.5 23.3734 42.2059 SD
11.1177 SI
10.6471 SU
6.9706 AF
5.4412 CD

138.8026 8.7763 40.2313 SD
16.4327 SU
14.7407 SI
6.4794 CD
3.7918 DU

Operate on
parameters

69.5 9.25 35.9712 SU
27.3381 SI
9.7122 SD
9.3525 CD
4.6763 RF

166.7195 9.1951 42.343 SD
13.9419 SU
13.4665 SI
5.9344 CD
3.7671 DU

Static initialization blocks 17.5714 8.4286 43.9024 SI
22.7642 SD
4.065 SOC
4.065 DU
3.252 SPC

175.0127 9.2658 40.8723 SD
14.48 SU
13.4746 SI
7.0302 CD
3.7104 DU

 Four classes with static non-final attributes were changed during bug-fix
commits. The average number of changes is more than 3 times higher than for
similar classes (286.5 vs. 80.9423). The number of modifications per commit is also

greater (14.5 vs. 5.75). On the other hand, the classes that contain constants have
low defect-proneness. Compared to other similar classes, their average number of

modifications is less than half (72.75 vs. 166.561), but the number of changes per
commit is higher (12 vs 9.061); this indicates that they were altered in much fewer
bug-fix commits.
 As mentioned earlier, there are no stateful singletons in the last version of
Spring Core. Only 1 stateless singleton was modified during bug-fix commits

(AnnotationAwareOrderComparator); it suffered 755 fine-grained changes over 30
commits, much more compared to other similar classes. The 15 utility classes that
were fixed throughout the project’s lifetime are less error-prone compared to the
classes that were categorized as similar to them (in terms of size and complexity).
The average number of changes is lower (122 vs. 170.6901) and the amount of
modifications per commit is comparable (9.7333 vs. 9.0845).
 Two classes which have static methods that access state were changed

while fixing defects, AnnotationWriter and Frame. Both their average number of
modifications and the amount of changes per commit are very high (699.5 vs.
138.8026 and 23.3734 vs. 8.7763, respectively). For the classes that contain static

methods that solely operate on parameters it is the other way around. They have,
on average, a smaller number of changes (69.5 vs. 166.7195) and were modified in
a comparable number of commits (9.25 vs. 9.1951).

 Similar to before, the classes with static initialization blocks have a much
lower error-proneness. The average number of modifications is roughly 10 times
smaller (17.5714 vs. 175.0127) and the number of changes per commit is close
(8.4286 vs. 9.2658).

5.4.10. Tomcat

The 13 production classes that have static non-final attributes are more

change-prone compared to similar classes. The average number of modifications is
higher (210 vs. 167.6067) while the number of changes per commit is comparable

 135

(7.6154 vs. 6.4972). Three of the top 5 change types are the same, but the other 2
and the percentages are different.

Table 5.4.10.1: Change-proneness of classes with static constructs vs. similar

classes for Tomcat
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 210 7.6154 20 SI
16.7033 SD
12.8205 SU
9.8901 AF
7.2527 RF

167.6067 6.4972 19.3308 SD
18.2934 SI
13.3031 AOS
8.4937 SU
8.297 ROS

Constants 51.1615 5.8281 20.9256 SD
19.2326 SI
14.0617 AOS
8.1898 ROS
6.7741 SU

289.322 7.3051 19.6478 SI
18.0597 SU
16.7261 SD
6.4339 AF
5.8638 RF

Singletons Stateful 176 4.1321 17.8977 SU
16.4773 SD
15.625 SI
14.4886 SPC
7.9545 AF

165.3433 6.5286 21.2716 SD
18.3207 SI
12.19 AOS
8.5364 SU
7.2675 ROS

Stateless 230 6.6667 27.5362 RF
15.942 ROS
8.6957 DU
7.2464 SD
7.2464 AF

166.5683 6.5765 19.2644 SD
18.3163 SI
13.1498 AOS
9.5952 SU
6.2387 ROS

Static
methods

Utility
classes

59.2813 5.9688 24.776 SI
17.475 SD
10.2794 SU
9.9895 DU
6.3785 AF

187.6689 6.6557 20.4336 SD
18.9364 SI
12.8042 AOS
8.4785 SU
7.5718 ROS

Access state 219.1667 7.7777 18.9354 SI
16.1217 SD
13.8403 SU
10.3422 AF
7.6046 RF

165.8833 6.5056 20.3406 SD
19.3074 SI
12.2978 AOS
8.4748 SU
7.301 ROS

Operate on
parameters

166.6667 13.619 21.7143 SD
18.6 SI
13.2143 SU
6.9286 RF
5.0714 SPC

165.2385 5.6269 20.06 SD
19.39 SI
13.4751 AOS
7.9914 SU
7.7138 ROS

Static initialization blocks 148.2727 6.5 21.8271 AOS
16.8915 SD
13.6419 ROS
11.6493 SI
6.3458 SU

156.487 6.5389 21.4393 SD
19.7314 SI
11.5958 AOS
8.7172 SU
5.8875 ROS

For the classes with constants, both the average number of changes

(51.1615 vs. 289.322) and the number of modifications per commit (5.8281 vs.
7.3051) are lower than those of similar classes. The top 5 change types for the
classes that contain constants / similar classes are the opposite of what was
observed for the classes with static non-final attributes.

 136

Four stateful singletons have suffered fine-grained changes throughout
Tomcat’s lifespan. The average number of changes is comparable to the one

obtained for similar classes (176 vs. 165.3433), but the number of modifications per
commit is considerably lower (4.1321 vs. 6.5286); this indicates that they are more
change-prone. The 3 stateless singletons also have a higher change-proneness; the
average number of changes is greater (230 vs. 166.5683) and the amount of
changes per commit is close (6.6667 vs. 6.5765). In both cases, the top 5 change
types differ significantly when compared to the ones for similar classes.

The utility classes were changed less frequently compared to other classes

that are similar to them in terms of size and complexity (average number of
changes of 59.2813 vs. 187.6689). However, the number of changes per commit is
not so different (5.9688 vs.6.6557), thereby suggesting that the utility classes were
modified in fewer commits. The classes that contain static methods that access state
are more change-prone than other classes, while the ones with static methods that
only operate on parameters are not. For the first category the average number of
changes is higher (219.1667 vs. 165.8833) while the amount of modifications per

commit is comparable (7.7777 vs. 6.5056). On the other hand, for classes with
static methods that only operate on parameters the averages are very close
(166.6667 vs. 165.2385) and the number of changes per commit is much higher
(13.619 vs. 5.6269). The rankings for top 5 change types resemble one another,
but are very different compared to those for similar classes.

The classes with static initialization blocks suffered roughly the same

amount of modifications as similar classes (148.2727 vs. 156.487) and the number
of changes per commit is basically the same (6.5 vs. 6.5389); this indicates that
their change-proneness is almost identical. The top 5 change types are also the
same, but the order is different.

Table 5.4.10.2: Defect-proneness of classes with static constructs vs. similar classes

for Tomcat
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 27.25 8.6667 20.1835 SD
18.3486 SU
16.8196 SI
7.6453 SPC
4.893 ROS

20.6026 6.3013 22.3076 SD
20.271 SI
8.854 ROS
8.1205 SU
5.5316 SPC

Constants 73.9403 6.2985 23.3347 SD
19.9939 SI
9.679 ROS
7.933 SU
5.7832 SPC

98.757 6.5701 21.0762 SI
16.8909 SD
12.4564 DU
10.7125 SU
8.0717 RF

Singletons Stateful 58.5 6.2084 26.4957 SU
17.094 SI
12.8205 SD
11.9658 DU
9.4017 SPC

49.364 6.3724 22.3428 SD
20.2068 SI
9.7642 ROS
8.2217 SU
5.5518 SPC

Stateless 23 2.875 39.1304 RF
17.3913 ROS
8.6957 PI
8.6957 SD
8.6957 SI

49.55 6.4375 23.2755 SD
19.1985 SI
8.7286 ROS
8.4174 SU
5.6004 SPC

 137

Static
methods

Utility
classes

26.6531 7.7347 25.9571 SI
19.6018 DU
12.5574 SD
12.4043 SU
4.441 SPC

55.2552 6.0833 23.4424 SD
20.4646 SI
9.5768 ROS
6.9084 SU
5.731 SPC

Access state 34.75 8.125 23.741 SU
17.2662 SI
14.3885 SD
7.1942 SPC
6.1151 AOS

19.9442 6.3605 22.4371 SD
21.2458 SI
8.8339 ROS
8.0347 SU
5.5513 SPC

Operate on
parameters

40.6207 8.2414 25.0424 SD
15.5348 SI
13.4126 SU
7.2156 CEC
6.3667 RF

50.6462 6.1698 21.9428 SD
20.6855 SI
9.4067 ROS
7.8514 SU
5.523 SPC

Static initialization blocks 32.7059 8.4118 17.8058 ROS
16.0072 SD
9.7122 SU
8.9928 SI
7.3741 RF

50.7098 6.2679 22.5548 SD
20.7237 SI
8.337 SU
8.3018 ROS
5.6871 SPC

 The 12 classes that have static non-final attributes appear to be more error-
prone compared to other similar classes. More fine-grained changes were performed
on them on average (27.25 vs. 20.6026) and the number of modifications per

commit is a bit higher (8.6667 vs. 6.3013). The top 5 change types are the same,
though the order and percentages are different.

The classes with constants are not as error-prone as the previous ones. The
average number of changes for such classes is smaller compared to similar classes
(73.9403 vs. 98.757) and the amount of modifications per commit is more or less
the same (6.2985 vs. 6.5701); this implies that the number of bug-fix commits in
which these classes were altered is lower than for similar classes. The top 5 change
types are fairly different, both regarding their types and especially the percentages.

All 4 stateful singletons and only 1 stateless singleton (JreCompat) were

changed during bug-fix commits. For the former the average number of
modifications is higher (58.5 vs. 49.364) and the number of changes per commit is
close (6.2084 vs. 6.3724). On the other hand, the stateless instance suffered fewer
changes (23 vs. 49.55), but the amount of changes per bug-fix commit is also
smaller (2.875 vs. 6.4375); it was modified in the same number of commits (8) as
other similar classes. In both cases, the top 5 change types differ considerably

(especially for the stateless singleton).
The utility classes suffered a smaller number of changes (26.6531 vs.

55.2552) compared to other similar classes. However, the amount of modifications
per commit is higher (7.7347 vs. 6.0833). In terms of change types, they are not so
different; the only type that does not appear in the list for similar classes is
DOC_UPDATE. The 8 classes that contain static methods that access state are more
defect-prone than similar classes. The average number of modifications is higher

(34.75 vs. 19.9442) while the number of changes per commit is quite close (8.125
vs. 6.3605). In contrast, the classes with static methods that only operate on
parameters are not more error-prone. They suffered, on average, a smaller number
of changes (40.6207 vs. 50.6462) and the number of modifications per commit is
actually higher (8.2414 vs. 6.1698).
 Finally, the classes with static initialization blocks are in a similar situation;
the average number of modifications is lower (32.7059 vs. 50.7098) while the

 138

amount of changes per commit is greater (8.4118 vs. 6.2679). The top 4 change
types are the same, albeit their order and percentages differ.

 5.4.11. Wicket

Table 5.4.11.1: Change-proneness of classes with static constructs vs. similar
classes for Wicket

Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 128.1818 4.0909 23.4994 SI
18.0077 SD
15.0702 SU
7.9183 PTC
5.8748 DU

98.921 4.3267 16.7064 SI
16.4268 SD
14.8057 SU
5.8749 RF
5.517 DU

Constants 35.5553 4.649 19.4783 SD
19.1396 SI
14.9545 SU
5.4778 RF
5.0168 DU

47.1797 3.793 16.352 SD
15.9215 SI
14.2077 SU
7.8324 DU
7.435 RF

Singletons Stateful - - - - - -

Stateless 27.6667 4.3333 28.3133 SI
24.0964 SD
16.2651 SU
6.6265 SPC
3.6145 DU

89.9639 4.3238 17.6846 SD
17.4624 SI
15.807 SU
6.8635 RF
5.5271 DU

Static
methods

Utility
classes

92.7727 4.6818 22.44 SI
17.4914 SD
16.5605 SU
6.8594 RF
6.4674 DU

98.625 4.3117 18.7423 SD
18.3667 SI
14.7522 SU
5.8192 RF
5.4859 DU

Access state 107.6 3.9852 18.8687 SD
15.6184 SU
14.3943 SI
7.5559 RF
5.0654 DU

97.0077 4.3364 19.6918 SD
19.6399 SI
13.7806 SU
5.7929 RF
5.5394 DU

Operate on
parameters

105.2571 5.2286 20.3995 SD
19.787 SU
15.3884 SI
5.4427 RF
5.3591 DU

86.4511 4.2156 18.1949 SI
18.1278 SD
15.7477 SU
5.9774 RF
4.5937 DU

Static initialization blocks 80.6667 4.6667 25.2066 SD
21.9008 SU
7.438 SI
5.3719 SPC
4.9587 RF

96.545 4.1213 18.4741 SD
18.5278 SI
14.5826 SU
5.66 RF
5.5248 DU

The 11 classes that contain static non-final attributes are more change-
prone than classes which are similar to them in terms of size and complexity. There
are more changes on average (128.1818 vs. 98.921) and the number of
modifications per commit is roughly the same (4.0909 vs. 4.3267), thus indicating
that they were altered in more commits. Four of the top 5 change types are
identical, though the percentages are a bit different.

 139

On the other hand, the classes with constants are not changed more
frequently compared to similar classes. The average number of modifications is

lower (35.5553 vs. 47.1797) while the amount of changes per commit is higher
(4.649 vs. 3.793), therefore the number of commits in which they suffered
modifications is also lower.
 There are no stateful singletons in the final version of Wicket. Six of the 8
stateless singletons have suffered fine-grained source code changes throughout the
project’s lifespan. However, the average number of changes is lower than for similar

classes (27.6667 vs. 89.9639), while the number of modifications per commit is

almost the same (4.3333 vs. 4.3238); this indicates that they are less change-
prone. The top 5 change types also resemble the ones for similar classes; only the
fourth in the rankings (STATEMENT_PARENT_CHANGE) is different.

Both the average number of changes (92.7727 vs. 98.625) and the number
of changes per commit (4.6818 vs. 4.3117) for utility classes are very similar to
those of other production classes. Additionally, the top 5 change types are also the
same, with statement-level modifications occurring most frequently. For the other

classes that contain static methods, the average number of changes is higher
(107.6 vs. 97.0077 for the ones with methods that access state and 105.2571 vs.
86.4511 for those with static methods that solely operate on parameters). However,
for the ones from the first category the number of changes per commit is lower
(3.9852 vs. 4.3364) than for similar classes, while for the classes from the second
category it is higher (5.2286 vs. 4.2156). This indicates that the former were

modified in more commits compared to other similar classes; this is not the case for
the latter, for which the number of commits is almost identical (roughly 20
commits). The top 5 change types are the same, just the order and percentages are
slightly different.

The 3 classes with static initialization blocks, TagUtils (27 changes),
WicketTagIdentifier (74), and JavaSerializer (141), have suffered less changes
compared to similar classes (80.6667 vs. 96.545 on average). However, the number

of changes per commit is comparable (4.6667 vs. 4.1213). Finally, the top 5 change
types are also similar, but the percentages are quite different (e.g., 7.44% vs.
18.53% for statement inserts).

Table 5.4.11.2: Defect-proneness of classes with static constructs vs. similar classes

for Wicket
Category Instances Similar classes

Avg. #
changes

Changes
per
commit

% Occurrence
top 5 change
types

Avg. #
changes

Changes
per commit

% Occurrence
top 5 change
types

Static
attributes

Non-final 55.4 3.9 28.7402 SD
24.8031 SI
12.9921 SU
4.7244 RF
4.3307 SPC

38.7883 4.3777 22.643 SD
19.745 SI
13.8784 SU
5.9654 SPC
5.1562 RF

Constants 21.2228 4.7636 23.252 SD
20.1857 SI
14.3607 SU
5.7613 SPC
4.8647 RF

20.1762 3.6166 22.3164 SD
17.7966 SI
12.379 SU
6.8053 SPC
6.2917 RF

Singletons Stateful - - - - - -

Stateless 17.8 6.2 35.9551 SD
31.4607 SI
11.236 SPC

38.6751 4.3538 21.6594 SD
20.7564 SI
13.927 SU

 140

3.3708 CEC
3.3708 CD

5.9227 SPC
5.162 RF

Static
methods

Utility classes 35.4091 4.7273 24.9037 SI
22.8498 SD
13.9923 SU
7.3171 SPC
7.1887 DU

38.5911 4.3587 23.7001 SD
18.6561 SI
13.8619 SU
5.8906 SPC
5.144 RF

Access state 76.5 4.7813 26.8489 SD
19.1318 SI
10.6109 SU
6.1093 RF
5.7879 SPC

38.6907 4.387 21.5913 SD
19.8248 SI
14.9712 SU
4.9494 RF
4.1213 SPC

Operate on
parameters

32.7368 3.8947 23.4263 SD
20.512 SI
14.2586 SU
5.3654 SPC
5.0908 RF

33.968 4.318 23.4152 SD
18.7127 SI
13.8248 SU
6.0822 SPC
5.2285 RF

Static initialization blocks 17 3 33.3333 SU
21.5686 SD
11.7647 SI
7.8431 ROS
5.8824 SPC

38.6043 4.3777 21.7171 SD
19.8239 SI
14.8278 SU
5.9448 SPC
5.1528 RF

Ten of the 11 classes with static non-final attributes were modified during

bug-fix commits. Similar to change-proneness, they are more error-prone than

other classes; the average number of changes is higher (55.4 vs. 38.7883) and
there are approximately the same amount of changes per commit (3.9 vs. 4.3777).
The top 5 change types are identical, but the order and percentages have small

variations.
The classes that contain constants are not more error-prone when compared

to similar classes. The average number of modifications is almost the same
(21.2228 vs. 20.1762), but there is roughly 1 change more per commit (4.7636 vs.
3.6166); this implies that there are fewer bug-fix commits in which such classes
were modified. Just as before, the top 5 change types are the same, even the
percentages are very similar.

Five of the 8 stateless singletons were altered during bug-fix commits. The
average number of changes is lower (17.8 vs. 38.6751) than for similar classes, but
the amount of modifications per commit is higher (6.2 vs 4.3538); therefore, it is
clear that they were modified in much fewer bug-fix commits. Another interesting

observation is that statement updates were not done regularly on the stateless
singletons during bug-fixing; the respective change type is not part of the ranking.

Bug-fixes have been performed on 22 of the 25 utility classes; nevertheless,

the defect-proneness for this kind of static constructs is exactly the same as for
other similar classes. Both the average number of modifications (35.4091 vs.
38.5911) and the amount of changes per commit (4.7273 vs. 4.3587) are very
close. The top 4 change types are also extremely similar (even percentage-wise).

Just as for change-proneness, the classes with static methods that access
state are more error-prone than other similar classes while the ones that contain

methods that only operate on parameters are not. For the first category the average
number of changes is double (76.5 vs. 38.6907) and the amount of modifications
per commit is almost the same (4.7813 vs. 4.387). The classes from the second
category have suffered, on average, the same number of changes (32.7368 vs.
33.968) and the number of modifications per commit is comparable (3.8947 vs.

 141

4.318). With regard to the top 5 change types, even the order is identical and the
percentages are very close.

All the production classes with static initialization blocks were modified
during bug-fix commits. However, the average number of changes performed is less
than half (17 vs. 38.6043) while the amount of modifications per commit is only a
bit less (3 vs. 4.3777); therefore, they were changed in fewer commits. Four of the
top 5 change types are the same, but more statement updates have been done than
for any other static construct.

 142

6. DISCUSSION

6.1. Revisiting the research questions

In the first section of this chapter we provide an interpretation of the results
with regard to each research question. We look at the obtained results as a whole,
thereby being able to draw meaningful conclusions. Below are our remarks per
research question:

RQ1. Are static constructs used in complex software systems?

 For the first research question, we begin by establishing if instances from
each category are present in the production code of the studied systems. In Table
6.1.1 we specify whether or not this is indeed the case per project; with 2
checkmarks we are representing that a considerable amount of instances of the

respective type were found.

Table 6.1.1: Static construct presence

System Static attributes Singletons Static methods Static init.
blocks Non-final Constants Stateful Stateless Utility

classes
Access
state

Operate on
parameters

BCEL

Commons
Collections

Commons Lang

Commons Math

Digester

Geode

jHotDraw

Pig

Spring Core

Tomcat

Wicket

 All the projects contain static constructs, but not all categories of static
constructs are present within a system. It can be observed that only 4 of the 11
systems (BCEL, Geode, Pig, and Tomcat) have instances from all 8 categories. While

the last 3 are the largest projects studied, BCEL is considerably smaller;
nevertheless, the project contains only 1 stateful singleton, the type that causes 5
of the other systems (except Commons Collections and Digester) not to appear on
the previous list.

 Static non-final attributes are encountered in 9 of the projects studied.
Commons Collections and Digester are the only systems in which such instances are
not present; they are 2 of the smallest projects in terms of size. There is also 1

 143

system, Pig, which contains a considerable amount of static non-final attributes;
thus, 2 checkmarks have been put for the corresponding entry in the table. The

other type of static attributes, constants, are present all throughout the source code
of the 11 projects that were analysed.

 Ten of the projects contain at least 1 singleton. However, stateful instances
are present only in the 4 systems enumerated above. On the other hand, stateless
variants are found in all the projects except Digester (the smallest system studied).

 Utility classes also appear in all the systems; the number of instances is
substantial for 5 of them: Commons Collections, Commons Math, Geode, Spring
Core, and Tomcat. Other types of static methods (that are not part of singletons or
utility classes) have been encountered in all 11 systems. With the exception of

Digester, static methods that access their class’s state are present in the rest of the
projects. Static methods that only operate on parameters have been found
throughout the code. However, the amount of instances of both types is very low
compared to the number of non-static methods.

 Finally, static initialization blocks appear in 10 of the systems, but the

number of instances is again on the low side.

Table 6.1.2: Percentage of instances per category

System Static attributes Singletons Static methods Static init.
blocks Non-final Constants Stateful Stateless Utility

classes
Access
state

Operate on
parameters

BCEL 2.3121 80.2312 0.1156 0.2312 1.2717 6.474 8.7861 0.578

Commons
Collections

0 52.4194 0 1.0081 6.25 0.2016 39.9194 0.2016

Commons Lang 0.125 65.625 0 0.125 6.375 0.375 25.5 1.875

Commons Math 1.3746 72.394 0 0.1145 2.8637 1.1455 20.7331 1.3746

Digester 0 80 0 0 4.4444 0 15.5556 0

Geode 2.8633 74.6491 0.158 0.595 2.8539 1.7105 16.7705 0.9947

jHotDraw 5.6054 82.7354 0 0.2242 0.8969 1.3453 8.7444 0.4484

Pig 12.1891 54.7761 0.6965 0.199 3.7313 4.2786 22.4378 1.6915

Spring Core 1.0363 63.3161 0 0.5181 6.5285 1.3472 24.456 2.7979

Tomcat 3.3779 78.2959 0.2017 0.126 3.756 1.1596 10.5873 2.4956

Wicket 1.6807 79.1444 0 0.6112 1.9099 0.4584 15.9664 0.2292

 The table above shows the percentage of instances of a certain type from
the total number of static constructs present within a system. Constants are by far
the most common category; more than half of the static construct instances are
constants for any of the projects. The lowest percentages are a little bit above 50%
(52.42% for Commons Collections and 54.78% for Pig), while the highest ones are
around 80% (e.g., 79.14% for Wicket).

 The second most common type of static constructs are static methods that
only operate on parameters. This observation holds true for all the projects;
nevertheless, the percentages differ considerably from one project to another; for
BCEL and jHotDraw it is around 8.75%, while for Commons Collections the
percentage is almost 5 times higher (39.92%).

The percentages for utility classes are generally higher than for the
remaining types of static constructs. Similar to the previous category, there are

 144

cases in which the corresponding values are lower, such as jHotDraw (0.9%) or
BCEL (1.27%).

An interesting observation can be made with regard to the static non-final
attributes. There are 2 projects, jHotDraw and Pig, in which the percentages for this
type of static constructs are considerably higher (5.61% and 12.19%, respectively)
than for the previous category. Nonetheless, there are more cases where they are
much lower, including Commons Collections, Commons Lang, Digester, or Spring

Core (under 1%).

Static methods that access state are next in this ranking; however, this is
the case for only some of the systems, such as BCEL, Geode, jHotDraw, or Pig.
There are also situations in which the percentage is 0 (Digester) or very small

(0.2% for Commons Collections).

There are more instances of static initialization blocks than singletons
(regardless of their kind). The only projects that do not adhere to this rule are
Commons Collections and Wicket. There is also Digester, which does not have
instances of any of these types.

Finally, stateless singletons appear in 10 of the 11 systems while the
stateful ones are present in only 4 of them. From these 4 projects, the percentages
for the stateful variant are higher in 2 of them (Pig and Tomcat) and lower in the
other 2 (BCEL and Geode). In terms of actual types, Eager Instantiation seems to be

the predominant type followed closely by the general form (Lazy Instantiation).

Other variations, such as Subclassed Singleton or Limiton, were rarely found in the
studied systems; however, it is worth mentioning that in Geode (the project with
the highest amount of instances) there are 2 hierarchies in which most of the
classes are Subclassed Singletons.

RQ2. How have static constructs evolved throughout the lifespan of a
project?

 For the second research question, we analyse each category of static
constructs separately in terms of evolution. We compare the percentage of instances

of a particular type for the initial version of a project and the latest one studied.
Additionally, the maximum value for this percentage along with the date on which it
was reached are also recorded. These measurements allow us to determine whether

or not the number of instances increased as a system grew in size or if they are
utilized less nowadays.

Table 6.1.3: Evolution of static attributes and singletons

System Static non-final attributes Constants Stateful singletons Stateless singletons

First Max. Last First Max. Last First Max. Last First Max. Last

BCEL 2.66 3.43
5/2003

1.17 54.68 70.33
9/2015

40.75 0.56 0.56
11/2001

0.23 0.56 0.84
9/2002

0.46

Commons
Collections

2.86 5.69
2/2002

0 2.86 34.24
8/2012

29.85 0 0 0 0 1.66
5/2013

0.95

Commons
Lang

3.39 6.15
5/2003

0.001 64.41 67.08
12/2009

60.57 0 0 0 0 0.39
2/2020

0.31

Commons
Math

0 9.17
9/2007

0.56 17.33 34.46
1/2016

29.74 0 0 0 0 0.45
2/2007

0.12

 145

Digester 1.49 9.91
5/2004

0 1.49 10.91
11/2011

10.91 0 0 0 0 0.66
8/2010

0

Geode 2.41 2.41
4/2015

1.39 53.18 53.18
4/2015

36.21 0.53 0.53
5/2015

0.44 2.09 2.12
6/2015

1.41

jHotDraw 3.55 17.86
5/2009

2.21 20.49 42.91
5/2020

42.91 0.56 0.56
9/2000

0 0 0.34
5/2020

0.34

Pig 8.06 13.24
12/2008

6 16.12 25.36
11/2014

24.58 1.13 1.32
2/2008

0.8 0 0.36
3/2008

0.23

Spring Core 2.22 6.77
8/2010

0.52 41.78 41.78
10/2007

31.97 0 0.25
7/2013

0 1.05 1.15
12/2013

0.77

Tomcat 7.5 7.5
2/2006

1.39 28.14 33.76
11/2010

32.18 0.48 0.48
3/2006

0.38 0.1 0.24
12/2020

0.24

Wicket 1.37 1.79
10/2009

0.84 44.77 45.06
12/2008

39.59 0.09 0.09
3/2007

0 0.99 1.18
1/2012

0.65

 For static non-final attributes we calculated the percentage of instances

from the total number of attributes and the situation is straightforward. This
percentage is higher in the first version of a project compared to the latest one. The
only system that does not adhere to this rule is Commons Math, because there were
no static non-final attributes in its initial version; however, the percentage for the
last version is also very low (0.56%). Furthermore, the maximum values for this
percentage were reached towards the beginning of the development process; the
latest maximum was encountered in 2015 (but it corresponds to the first version of

Geode available). This indicates that the developers have become aware of the
problems caused by static non-final attributes and started to utilize them less.

 On the other hand, for constants no clear pattern could be observed. For 6
of the systems the percentage of constants from all the attributes is higher in the

latest version, while for the other 5 it is greater in the initial one. There are many
cases in which the percentages are very close, for example Commons Lang, Pig,
Tomcat, or Wicket. In general, it was observed that the number of instances
increased proportionally to the total number of attributes. In terms of the maximum
values, they were encountered around halfway through the development period in
most cases. The only exception would be jHotDraw; for this system the peak
percentage was found for the last version studied.

 The percentage of singletons from the total number of production classes is
very low throughout the lifespan of any system; thus, the idea that singletons are
overused is not supported by the obtained results. For the stateful variant, there are

4 projects in which there were no such instances throughout their entire existence

and 3 with no singletons of this type in their latest version. Even for the other 4
systems, the percentage of stateful singletons is extremely low (less than 1%).
Additionally, the maximum values for this percentage were encountered at the
beginning of the development process in all cases. Stateless singletons were utilized
a bit more frequently. Although they appeared in the initial version of only 4
projects, Digester is the sole system that does not have such instances in its final
version. The percentages are again low, but they are a little higher than for stateful

singletons. There are also situations in which the maximum was found towards the
end of the development cycle, such as Commons Lang, jHotDraw, and Tomcat. This
suggests that the developers are not as reluctant to create stateless singletons
compared to their stateful counterparts.

 146

Table 6.1.4: Evolution of utility classes, static methods, and initialization blocks

System Utility classes Methods access state Methods only parameters Static init. blocks

First Max. Last First Max. Last First Max. Last First Max. Last

BCEL 1.67 2.55
4/2021

2.55 0.43 0.63
6/2006

0.35 2.23 3.31
6/2019

3.17 4 5
8/2015

5

Commons
Collections

11.11 11.11
5/2001

5.9 0 0.28
2/2002

0.02 0.35 5.16
9/2007

4.45 1 2
5/2013

1

Commons
Lang

42.86 42.86
8/2002

16.04 0 1.69
2/2004

0.08 0.29 5.7
4/2020

5.67 2 16
5/2008

15

Commons
Math

5.71 10.53
6/2003

3.04 0 0.91
11/2008

0.17 0.27 3.86
7/2016

3.12 0 19
3/2016

12

Digester 0 6.7
1/2004

1.06 0 0.35
11/2003

0 0.57 0.84
8/2010

0.76 0 1
1/2004

0

Geode 5.79 5.79
5/2015

5.32 0.67 0.67
4/2015

0.33 3.79 3.79
4/2015

3.24 171 171
4/2015

107

jHotDraw 1.69 5.01
9/2003

1.03 0.79 1.94
1/2010

0.22 1.44 3.94
1/2003

1.43 0 23
11/2010

8

Pig 2.82 6.29
4/2008

4.1 0.79 0.96
1/2018

0.95 2.82 5.11
1/2017

4.98 0 39
10/2015

34

Spring Core 0 19.16
10/2008

9.75 0 0.44
5/2018

0.27 0.43 4.98
9/2018

4.89 7 28
12/2015

27

Tomcat 7.13 7.41
4/2006

7.01 1.85 1.85
3/2006

0.22 4.13 4.13
3/2006

1.98 49 110
10/2018

99

Wicket 1.53 2.64
3/2016

2.02 0.23 0.33
3/2008

0.07 2.69 3.18
10/2009

2.28 0 4
11/2015

4

 For utility classes, if there were such instances in the first version of a
system, then their percentage is higher than the corresponding value for the last
version studied. This is true for 6 of the 9 projects in this situation; for all 3
remaining ones, BCEL, Pig, and Wicket, the percentages for the initial and final
versions are very close. Similar to before, the maximums appeared at the start of
the development period. There are nonetheless exceptions, such as BCEL or Wicket.

The fact that utility classes are used less in recent years is surprising especially for
the projects that are structured as libraries (which rely heavily on such static
constructs).

 For static methods that access state, the situation is similar to the one

described above. If the percentage is greater than 0 in the initial version, then it is
also higher than the value obtained for the latest version. Pig is the only exception,

but for this project the values are relatively constant throughout its entire existence.
For the projects which had no instances of this type initially, the percentage
increased considerably in the first few months of development and eventually
became higher than the one for the latest version. In general, the maximums were
encountered at the very beginning of the development process, proving once again

that there are some types of static constructs that are being used less and less.

 The case for static methods that only operate on parameter is very different.
For 7 of the projects the percentage of instances is higher in the latest version
analysed, while for 3 of the remaining ones the values are close (e.g., for
jHotDraw). This is especially true for some of the projects, such as Commons

Collections or Commons Math, where the difference is substantial. Furthermore, the
maximum values were reached towards the end of the development cycle for more
than half of the systems.

 147

For static initialization blocks we reason in terms of number of instances. We
could have provided the percentage of production classes that contain such

instances instead, but decided not to due to the fact that a class may have 2 or
more static initialization blocks. It can be observed that for 8 of the 11 systems the
number of instances is higher in the latest version compared to the initial one. For
Commons Collections and Digester the amount of static initialization blocks is low
throughout their entire lifespan. However, for Geode it dropped considerably even
though the number of production classes only decreased from 4992 to 4528.

Another observation would be that the maximum number of instances was generally

encountered halfway through the development process. There is only 1 system,
Tomcat, for which it was found towards the end (in late 2018).

RQ3. Do static constructs have a negative impact on software quality
aspects?
 We evaluate the impact of each category of static constructs on the 3
quality aspects considered. The types are studied independently in order to establish
which of them are the most harmful with respect to a certain aspect.

Table 6.1.5: Impact of static constructs on class testability
System Static attributes Singletons Static methods Static init.

blocks Non-final Constants Stateful Stateless Utility
classes

Access
state

Operate on
parameters

BCEL << > < - > ≈ >> >>

Commons
Collections

- << - > ≈ ≈ ≈ >

Commons Lang << > - >> < < > >

Commons Math << < - < ≈ < > <<

Digester - > - - ≈ - ≈ -

Geode << > ≈ > >> ≈ > >

jHotDraw - - - - - - - -

Pig << ≈ < > ≈ << > ≈

Spring Core << < - >> ≈ < >> ≈

Tomcat > >> ≈ ≈ > > ≈ <

Wicket << ≈ - > >> < >> ≈

 In the above table, we provide an overview of the testability of the classes
that contain different types of static constructs when compared to similar classes.

Two symbols (<< or >>) are used to indicate that both the quantitative and the
qualitative scores are higher in favour of one or the other. Only 1 symbol (< or >)

shows that although the 2 scores differ (one is greater while the other is lower), the
overall testability score is still considerably higher either for the classes of interest
or for the similar classes.
 For the ones with static non-final attributes it is clear that they are less
testable than classes which are similar to them in terms of size and complexity.
From the 8 systems in which such instances appear, for 7 of them the difference is
heavily in favour of the similar classes. There is only 1 exception, Tomcat, but even

for this project the classes that contain static non-final attributes are only tested
more (the unit tests are not of better quality). It is worth mentioning that for some
systems the results might be skewed due to the small number of classes that
contain this kind of attributes (e.g., Commons Lang with 1 such instance).

 148

 The situation is not so straightforward for the classes with constants. For the
10 systems analysed in terms of testability we found that: in 5 of them (especially

in Tomcat) the classes of interest have a higher overall testability score, for 2 (Pig
and Wicket) the scores are roughly the same, while for the other 3 the similar
classes are more testable. There are numerous production classes that contain
constants, therefore most of the remaining classes were included in the group of
similar classes; this might cause the results to be more general than for the other
categories of static constructs.

 Only 4 systems have stateful singletons in their latest version. For 2 of them

the overall testability of the singletons is lower than that of similar classes, while for
the other 2 the values are more or less the same. On the other hand, the stateless
variants appear to be much more testable than their stateful counterparts. There
are 8 projects in which instances of this type exist and for 6 of them their
corresponding score is greater than for similar classes. In 2 of the cases, Commons
Lang and Spring Core, both the quantitative and the qualitative scores are higher;
however, the number of instances in these systems is quite low (1 and 5 stateless

singletons, respectively). For Tomcat the testability scores are very similar, while for
Commons Math (only 1 instance) they are in favour of the similar classes.
 The observations for utility classes resemble the previous ones (for the
stateless singletons), albeit the number of instances is much higher. There are 4
systems in which the utility classes are more testable than other similar classes, 5
where the overall testability scores are comparable, and only 1 (Commons Lang)

that does not adhere to the rule. For 2 of the projects from the first category, Geode
and Wicket, the difference is substantial in favour of the utility classes.
 For the rest of the production classes that contain static methods, the cases
for those with methods that access their state and for the ones with static methods
that only operate on parameters seem to be the opposite of one another. There are
5 out of 9 projects for which the classes with static methods that access state are
less testable. From the remaining 4 only Tomcat is an actual exception, in the other

3 (BCEL, Commons Collections, and Geode) the overall testability scores are very
similar. For static methods that solely operate on parameters, the classes that
contain them have a higher testability in 7 of the 10 cases; in 3 of them (BCEL,
Spring Core, and Wicket) both scores are greater. For the remaining 3 systems, the
overall testability scores for the classes of interest and the similar classes are
comparable; there is no situation in which the testability is higher for the latter
category.

 Finally, the classes with static initialization blocks also appear to be a bit

more testable. Instances of this type are present in 9 of the projects and the cases
are as follows: for 4 of them (especially for BCEL) the classes of interest have a
higher testability, in 3 others the overall testability scores are roughly the same,
while 2 of the systems represent exceptions. For Commons Math there are 12
instances of static initialization blocks and the classes that contain them have a

much lower testability score compared to similar classes; this is mainly due to the
large difference in terms of coverage, thereby causing their quantitative score to be
significantly smaller.

Table 6.1.6: Impact of static constructs on change-proneness
System Static attributes Singletons Static methods Static init.

blocks Non-final Constants Stateful Stateless Utility
classes

Access
state

Operate on
parameters

BCEL >> ≈ >> << >> >> >> >>

 149

Commons
Collections

- ≈ - << >> ≈ < <

Commons Lang ≈ ≈ - - >> > << >

Commons Math ≈ < - - >> >> < >>

Digester - ≈ - - << - > -

Geode >> << >> >> ≈ >> >> >>

jHotDraw ≈ > - - - < << >>

Pig > > > << ≈ >> > >>

Spring Core ≈ << - >> << >> << <<

Tomcat >> < > > < >> << ≈

Wicket > < - << ≈ ≈ ≈ ≈

 Table 6.1.6 presents the change-proneness of the classes with different

types of static constructs in comparison to that of similar classes. The symbols are
the same as for the previous table; however, in this case 2 symbols are used to
represent that both the average number of changes and the number of commits in
which the instances from a certain category were modified are higher / lower.
 The classes that contain static methods that access state have the highest
change-proneness when compared to other similar classes. There are 10 systems in
which such instances appear and for 7 of them this is clearly the case. Even for 2 of

the others, Commons Collections and Wicket, the change-proneness of these classes
is comparable to that of similar classes; they are by no means less susceptible to
modifications. The only exception is jHotDraw, but for this system only 1 such

instance was encountered. In general, the difference between the average number
of changes is substantial while the amount of modifications per commit is not.
 For all 4 projects that have stateful singletons we found that the respective

instances are more change-prone than the classes that were categorized as similar
to them (in terms of size and complexity). Especially for 2 of the systems, BCEL and
Geode, the average number of modifications is much higher while the number of
changes per commit is lower; this implies that the stateful singletons were changed
in many more commits. The latter (Geode) is the project with the most instances of
this type out of all the systems investigated.
 Another category that resembles the previous ones would be classes with

static non-final attributes; their change-proneness is also greater than that of
similar classes. Nine of the 11 projects have such classes and the situation is as
follows: for 5 of them the respective classes are more susceptible to changes, while
in the other 4 the change-proneness is comparable.

 Classes that contain static initialization blocks are also more change-prone.
Six of the 10 projects with such instances adhere to this rule, while for 2 of the
others (Tomcat and Wicket) the values are very close. The exceptions are Commons

Collections (only 1 instance) and Spring Core, a system which does have a
significant number of classes with static initialization blocks (25); 17 of them have
been modified throughout its history.
 An interesting case is that of utility classes; it would seem that they are
more prone to modifications in projects that are structured as libraries, while for the
other systems it is the other way around. For the 3 Commons libraries and BCEL the

utility classes have a higher change-proneness, which might indicate that a special
emphasis is put on these classes in this kind of projects.
 Stateless singletons are in a similar situation; there are 7 projects in which
these singletons have suffered modifications throughout their lifespan. In 3 of them
the average number of changes is considerably higher compared to similar classes,
while for the other 4 this is not the case; there is no system for which the values are

 150

close. It is also worth mentioning that projects with a small number of instances
appear in both categories (e.g., Spring Core for the first category and Commons

Collections for the latter).
 Finally, the classes that contain constants / static methods that only operate
on parameters are not more change-prone than other similar classes. Instances of
both types are present in all 11 projects. For the former category there are: 5
systems (especially Geode and Spring Core) in which the classes with constants are
less change-prone than similar classes, 4 where the proneness is relatively the

same, and 2 in which it is lower. For classes with static methods that solely operate

on parameters the situation is more polarized: there is only 1 project in which the
values are close, for 6 of the others the classes of interest have a lower change-
proneness, while for the remaining 4 systems they are more susceptible to
modifications.

Table 6.1.7: Impact of static constructs on defect-proneness
System Static attributes Singletons Static methods Static init.

blocks Non-final Constants Stateful Stateless Utility
classes

Access
state

Operate on
parameters

BCEL > > ≈ << > >> ≈ >

Commons
Collections

- ≈ - - >> ≈ < -

Commons Lang > < - - >> > < ≈

Commons Math ≈ ≈ - - >> > ≈ >>

Digester - ≈ - - - - ≈ -

Geode >> ≈ > >> ≈ >> > >>

jHotDraw ≈ > - - - ≈ << >>

Pig > > > << > > < >

Spring Core >> << - >> < >> << <<

Tomcat > < > ≈ < >> < <

Wicket > ≈ - << ≈ >> ≈ <<

 Out of all the classes with static constructs, the ones that contain static
methods that access state are by far the most defect-prone. Instances of this type
are present in 10 of the 11 systems and in 8 of the cases their error-proneness is
higher than that of similar classes; for 5 of the projects the difference is substantial.
There are only 2 systems in which the values are comparable, Commons Collections
and jHotDraw, but even for them the average number of changes is greater in

favour of the classes with this kind of static methods.

 Classes that contain static non-final attributes are almost as defect-prone as
the previous ones. This observation holds true for 7 (especially Geode and Spring
Core) out of the 9 projects in which such instances appear. The only exceptions are
Commons Math and jHotDraw; for them the average number of modifications for
the classes of interest / similar classes are very close.
 Stateful singletons are also more error-prone compared to other similar

classes, but the difference is smaller than for change-proneness. Three of the 4
systems adhere to this rule, while for BCEL the corresponding values are almost
identical. Just as for change-proneness, the results for the stateless variants are
inconclusive; for 2 of the projects the instances have a higher defect-proneness
when compared to similar classes, for 3 of the remaining ones it is the other way
around, while for Tomcat the average number of changes and the amount of

modifications per commit are more or less the same.

 151

 For utility classes the situation is as follows: in 5 of the projects their defect-
proneness is higher than that of similar classes, for 2 (Geode and Wicket) it is

comparable, and in the last 2 systems (Spring Core and Tomcat) the instances of
interest are less prone to error. This is quite different compared to what was
observed for change-proneness; there the utility classes were more prone to
modifications only in the systems that are structured as libraries.
 Classes with static initialization blocks are in a similar situation. The
instances were changed during bug-fix commits in 9 of the 11 projects and for 5 of

the systems the respective classes are more defect-prone. For 3 of the largest

projects, Spring Core, Tomcat, and Wicket, this is not the case, while for Commons
Lang the ratio between the average number of modifications and the amount of
changes per commit is close to the one obtained for similar classes.
 Like for change-proneness, the classes that contain constants and static
methods that solely operate on parameters also appear to be less error-prone. This
is very clear for the latter category where there is only 1 exception, Geode. In 6 of
the projects (especially in Spring Core) the classes with this type of static methods

have a lower defect-proneness than their similar counterparts, while for the other 4
systems the computed values are comparable. Finally, for the classes with constants
there are: 5 systems for which the values are close, 3 (Commons Lang, Spring
Core, and Tomcat) where their error-proneness is lower, and 3 (BCEL, jHotDraw,
and Pig) in which they are actually more susceptible to defects than other similar
classes.

6.2. Threats to validity

 In this section, we present the factors that could be considered threats to
the validity of the empirical study and the obtained results. Additionally, we discuss
the ways in which we tried to mitigate them. The factors are grouped into 3
categories: construction, internal, and external threats. This categorization is done
based on the guidelines established by Perry et al. in [98]. The threats from the first
category are related to the independent and dependent variables; more specifically,

whether or not they model the formulated hypotheses accurately. The internal
threats arise when the changes in the dependent variables cannot be attributed to
changes in the independent ones. Finally, the threats from the third category

address the results of the empirical study, namely if they are generalizable to other
settings. For each category we have identified a series of threats:

1. Construction threats
These threats may appear due to problems in the code that was developed

for collecting the data required in our analyses. To avoid such issues, the
proposed approach was carefully tested using several small-scale systems
created specifically for this purpose. For static construct presence / usage,
we added instances from each category in different combinations and
checked that they are detected correctly. As an example, for singletons we
manually recreated all the variations discussed in [91] while also studying

jHotDraw at specific commits from the time of the article. Furthermore, we
verified the number of clients for each instance to determine if they are
calculated correctly (along with their localization). In terms of evolution, we
randomly chose commits from every system and checked that the number
of instances / clients of each type are identified properly. For testability we

 152

ensured that the quantitative and qualitative metrics are computed
correctly; the coverage and test smell data was inspected to confirm that 1)

the percentages for production methods addressed by tests / unit tests that
contain smells and 2) the number of different types of smells that appear in
a test class are in order. We also corroborated that the corresponding scores
are determined properly based on the proposed threshold values. Finally, for
change- / defect-proneness we verified that the fine-grained source code
changes were extracted correctly by manually comparing consecutive

commits to establish what was modified. Additionally, we checked 1) that

the lists of issue keys corresponding to bugs are correct and complete and
2) that the bug-fix commits are identified accurately.

2. Internal threats
The main threats from this category are confounding factors, namely other
variables that could mask an actual association or falsely prove an apparent
association between the independent and dependent variables. It is difficult
to identify all the factors that have an impact on these variables, but we will

try to discuss as many as possible. For the first hypothesis, there might be
other system characteristics that affect the presence / usage of different
types of static constructs. Studying multiple combinations of characteristics
can help alleviate this threat. With regard to the second hypothesis, there
may be other factors that influence the evolution of static constructs.
Though they are important, the size and complexity of the studied systems

should not be the sole causes why instances / their clients were created or
deleted. Finally, for the last hypothesis, the presence of certain types of
static constructs might not be the only reason why a class suffers from lack
of testability or has high change- / defect-proneness. This is especially true
for the smaller constructs, such as constants or static methods that are not
part of singletons / utility classes; their impact on the 3 software quality
aspect should be lower than for the other categories.

3. External threats
 Only open-source projects: one of the biggest threats from this category is

that the observations presented above might not be generalizable to other
software systems. Up until this point, we did not have access to projects
from industry; therefore, all 11 systems that were included in the analysis
are open-source. Different types of static constructs might appear more
frequently in commercial projects and they could also be utilized in other

ways. Furthermore, their evolutionary patterns may not resemble the ones

that have been observed thus far. The way in which class testability is
assessed (in relation to other similar classes) could be inappropriate if all
the production classes are fully tested with unit tests of the highest quality.
Finally, change- and fault-proneness might prove easier to quantify due to
better development practices (e.g., more fine-grained commits or better

commit messages). All in all, there is a clear need to study industrial
projects; we are actively working to address this threat and expect to obtain
access to at least 2 commercial systems in the near future.

 Only object-oriented Java systems: another cause for concern may be that
all the projects included in the empirical study were developed in Java by
following an object-oriented approach. In terms of programming language,
we are confident that the solution can be easily adapted to enable us to

analyse systems created in other object-oriented languages (such as C# or
C++). The code might need to be reimplemented in the respective

 153

language, but the proposed approach should still apply. However, studying
systems which were developed by following other programming paradigms

could prove more difficult. For example, class testability is investigated in an
object-oriented context, by evaluating the quantity and quality of the
associated unit tests. This may not be possible for projects created in
imperative or functional programming languages because some of the
concepts on which our approach is based might not exist. We need to
experiment with other programming languages / paradigms before we can

generalize the obtained results.

 High granularity of the study: the level at which everything is studied could
also be considered a threat to validity; most of the analyses are performed
at class level. Although there are situations in which an analysis is more
fine-grained (e.g., the extracted source code changes), in most cases we
only look at classes as a whole. For example, we categorize a production
class as a singleton client if at least 1 of its methods utilizes the singleton.
Studying exactly which methods use it would have allowed for a better

categorization, thereby obtaining more detailed results. Granularity may
also impact the process through which we study the evolution of static
constructs. In our approach, we performed sampling on a system’s commits
with a frequency of 1 commit per month. The results could have been a bit
different if all the commits were considered. As explained in Chapter 3, the
probability that a static construct was added and immediately removed

within that 1 month period is quite low. Nonetheless, we can extend the
approach so that 1) the projects are studied at method level or 2) all the
commits are analysed.

 System selection process: the projects that were chosen for the empirical
study could also represent an external threat. Even though they were
selected based on a set of well-established criteria, there may be other
systems with completely different characteristics that should have been

included in the analysis. We tried to choose projects 1) of various sizes and
complexities, 2) with unique development practices, and 3) varying testing
efforts. However, systems created by following certain development
methodologies might be worth considering. While the specific methodology
may not influence all the software quality aspects, there could be some that
are impacted. For example, we expect Test-Driven Development to affect
our assessment on class testability. The code coverage for projects

developed by following TDD should be significantly higher because the

corresponding unit tests must be written before the production classes are
implemented. On the other hand, this does not guarantee that the quality of
the tests will be higher. In the same vein, the change- / defect-proneness of
the production classes should be lower because the requirements are clearer
and less bugs are introduced. The above are just suppositions, we need to

analyse this kind of projects before any meaningful conclusions can be
drawn.
To conclude this subsection, we want to reiterate that we selected systems
with different characteristics, a considerable number of versions were
analysed, and both the test suites and the change histories were considered
appropriate. Although there are several ways in which the empirical study
can be improved, we firmly believe that it represents a solid foundation for

the research that will follow. We plan to address all the aforementioned

 154

external threats in the near future, as will be explained in the future work
section.

In summary, this chapter discusses:

1. The implications of the results with regard to each research question:

 For RQ1 we found that: a) static constructs are present in all the
systems studied; b) constants are by far the most common type

followed by static methods and utility classes; static non-final
attributes, initialization blocks, and singletons appear less often,
especially in the smaller projects; c) the number of clients of static
constructs (and their localization) are not much different than those
of other entities of the same type.

 For RQ2 we saw that there are indeed several categories of static
constructs for which fewer instances are added nowadays compared

to earlier stages of development.

 For RQ3 we established that: a) static non-final attributes, stateful
singletons, and static methods that access state have the highest
impact on class testability; b) all the categories of static constructs
except constants and static methods that only operate on parameters

affect change-proneness, albeit for utility classes and stateless
singletons the results are contradictory for different types of systems;

c) for defect-proneness, their impact is not as significant as for
change-proneness.

2. The threats to the validity of the empirical study:

 construction threats: problems in the code that was developed in
order to a) detect static constructs, b) study the evolution of different
types of instances and their clients, and c) quantify class testability,

change- and defect-proneness.

 internal threats: lack of / erroneous correlation between the
independent and dependent variables (for each hypothesis).

 external threats: lack of generalizability of the results because a) all
the projects are open-source and implemented in Java, b) the

granularity of the study is too high, c) the system selection process
was inappropriate.

 155

7. CONCLUSIONS

 Developing software systems is a complex process that is comprised of
several activities, including: design, implementation, testing, and deployment.
Performing these activities can be difficult if a project does not possess some key

quality features. For example, testing could be hindered because the system’s
production classes lack testability. The implementation time might also increase due
to the high change- / defect-proneness of the classes. These aspects need to be
taken into account especially in the context of evolution. As projects evolve, they
still have to meet a series of quality requirements, such as: performance criteria
(e.g., speed or accuracy), being easily maintainable and testable, or not being
susceptible to change / defects. However, little research has been done thus far on

what makes a system 1) difficult to test and 2) change- / 3) error-prone. Static
constructs have already been shown to have a negative effect on understandability,
maintainability, and efficiency, but there are other aspects that still need to be
studied. We have been addressing this knowledge gap by conducting an empirical

study that investigates the impact of static constructs on the quality aspects
mentioned above.

First, we categorized the static constructs and defined detection strategies

through which instances of each type can be identified. Afterwards we studied these
instances both for the latest version of a system and throughout its entire lifespan;
this was done to establish how static constructs have evolved over time. Finally, we
defined models that can be used to quantify the 3 quality aspects investigated. For a
part of the production code that contains static constructs we can determine if it is
less testable or more change- / defect-prone compared to other similar classes.

In this final chapter of the thesis, we start by providing an overview of the
main scientific contributions made through our work. Then we summarize the
results that were obtained and discuss the conclusions that can be drawn from
them. Next, we reflect on what we have accomplished and explain what could have
been done better. We end the chapter with future work directions that we are

currently pondering.

7.1. Contributions

 In this thesis, we investigate static constructs, how they evolved, and their

effect on various software quality aspects. This is done in order to: 1) determine
how they are currently being utilized, 2) compare it to the way in which they were
used throughout the lifespan of a system, 3) establish if they have a negative
impact on testability or change- / defect-proneness. By doing this we bring the
following contributions:

1. A methodology for studying the evolution and the impact on 1) testability
and 2) change- / 3) defect-proneness of any design flaw. Even though the

thesis focuses on static constructs, the proposed approach can be used to

 156

investigate other design flaws. The corresponding detection strategies need
to be defined; then the evolution and the effect on software quality may be

studied in a similar manner. For example, the God Class design flaw can be
detected as proposed in [33], by computing the corresponding metrics WMC
(Weighted Method per Class), Tight Class Cohesion (TCC), and Access to
Foreign Data (AFD) and comparing them to the threshold values. The results
are combined into a detection strategy that can be utilized to identify
instances of the God Class flaw. The presence of such instances can be

analysed both for the latest version of a project and for its entire history.

Finally, their impact on the 3 software quality aspects can be established by
making use of the proposed quantification models. As an example, we can
determine if God Classes were changed more frequently during bug-fixing
commits compared to the rest of the classes.

2. A model for quantifying the testability of a production class. Unlike other
publications that address software testability, we evaluate this quality
aspect based on the test code rather than the production code. We consider

that a part of the system is tested less / with unit tests of a lower quality
compared to other parts of the code because it is more difficult to test (has
low testability). Therefore, testability was assessed both from a quantitative
and from a qualitative perspective. In terms of quantity, we relied on code
coverage data; for quality we determined if particular smells are present in
the associated unit tests. These 2 aspects were combined in order to

compute a testability score for a specific part of the production code.
3. A process for determining 1) what was changed during a commit and 2)

whether or not that particular commit is a bug-fix. First and foremost, to
evaluate change-proneness we needed to be able to establish the exact
modifications that were made during a commit. For this we extract fine-
grained source code changes which specify: the entity that was modified
(class, attribute, or method), the type of the change (e.g., conditional

statement modification in method), and other details related to it (such as
severity). We use these data to determine if a class that has static
constructs is more change-prone than other production classes. The entire
change history of the studied class is analysed and compared to that of
similar classes (in terms of size and complexity). Defect-proneness is
evaluated in the same manner, but only the commits that were categorized
as bug-fixes are taken into account. In order to determine if a commit is a

bug-fix we rely on 2 types of information: 1) the one available in the commit

message and 2) additional data collected from the corresponding Jira issue
tracker. Based on this data, we are able to accurately categorize commits as
bug-fixes.

4. A tool that incorporates all these aspects. The aspects that have been
discussed above were integrated into DFAnalyser. This tool is an extension

of Patrools [95], which could already compute some of the required metrics.
We designed it to have a modular structure; several modules can be
combined together in order to perform the wanted analysis. One of the
modules contains the detections strategies for the design flaws that are
being investigated (e.g., singletons and utility classes). Another module is
concerned with quantifying the software quality aspect for which we want to
assess the impact of the respective design flaws. Finally, if we also need to

study the evolution of these flaws, we have to add the appropriate module.
The modules are highly configurable and can be easily extended; for

 157

example, a different quality aspect could be investigated by creating a
module with a suitable model for evaluating it.

5. An empirical study through which we answer the proposed research
questions. We began our research by formulating a series of questions that
cover the major aspects that we wanted to understand with regards to static
constructs. For each of the research questions we also prepared several
hypotheses that needed to be tested. To answer them we conducted an
empirical study that includes 11 open-source software projects. In this

study, we investigate all the aspects discussed above, namely: static

construct usage, evolution, impact on testability and change- / defect-
proneness. Each type of static construct was analysed in isolation;
afterwards, some general conclusions have been drawn for static constructs
as a whole.

6. A better understanding of static constructs, their evolution, and the effect
they have on various software quality aspects. First, we wanted to establish
if static constructs (e.g., mutable global state) are present in the production

classes of complex software projects and whether or not other classes utilize
them. Then we were keen to observe how they are used nowadays, once a
system has reached maturity, compared to earlier stages of development.
Finally, we assessed the effect of static construct usage on quality aspects
such as testability or change- / defect-proneness; we determined which
types of static constructs have the biggest negative impact on the

aforementioned quality aspects and discussed possible reasons why this is
the case.

7.2. Conclusions

The proposed approach was successfully implemented and an empirical
study which includes 11 open-source systems was conducted. Some interesting
findings were obtained through this study. We are now capable of answering the
research questions that were formulated:

For RQ1, “Are static constructs used in complex software systems?”, we
analysed the presence and usage of each type of static construct for the latest
version of a project. The main finding is that instances of static constructs actually

do appear in the code and are frequently utilized by other production classes.
Classes with constants and static methods are present all throughout the source
code, while static non-final attributes, singletons, and static initialization blocks are
used, but to a smaller extent. We make a distinction between stateful and stateless

singletons; those from the latter category seem to appear more often. We also
divided the static methods which are not part of singletons into 3 categories: 1)
those from utility classes; 2) that utilize the attributes of their class; 3) which only
operate on parameters. Based on the specific characteristics of a system, the static
methods from one category are used more compared to the others. For example, in
a project which is structured as a library (e.g., Commons Math), the most common

type of static methods are the ones that are part of utility classes.
In terms of usage, the number of production classes that utilize such

instances varies depending on the static construct’s type. As an example, there are
more classes that use static methods (regardless of their category) than there are
singleton clients. Unlike the other types, static non-final attributes and constants are

 158

generally utilized within the class in which they are declared rather than from other
production classes.

For RQ2, “How have static constructs evolved throughout the lifespan of a
project?”, we studied the evolution of each type of static construct in isolation for
monthly versions of a system. In general, it was observed that most of the static
constructs are utilized less once a project reaches maturity. The percentage of
instances present from each category is usually higher in the initial versions of a
system compared to the latest ones. Also, the maximum number of instances of a

particular type was encountered more frequently towards the beginning of the

development process. For example, there were more singletons in a version that is
halfway through the development period than in the final version studied although
the number of production classes is constantly growing. The only exceptions are
constants and static methods that solely operate on parameters (to some extent);
for these 2 categories the amount of instances increases continuously as a project
grows in size.

The situation is even more evident for static construct clients. There are

numerous cases in which the number of clients for a particular instance remained
constant (or even decreased) while the total number of production classes was
growing exponentially. Situations in which the classes with / that utilize static
constructs were marked as Deprecated have also been encountered. Starting from
that version, the number of client classes began to decrease until reaching 0 (or
until the respective class was removed). All of the above suggest that the

developers have become aware of the problems associated with the usage of
specific types of static constructs and started to utilize them less.

For RQ3, “Do static constructs have a negative impact on software quality
aspects?”, we investigated the effects of each category of static constructs on the 3
quality aspects addressed by this study. For testability we found that some of the
instances have a more detrimental effect compared to others. Stateful singletons
and static non-final attributes appear to have the biggest impact on the testability of

the production classes that utilize them. This causes the respective classes to have a
lower testability score; they are tested less compared to other similar classes and
the unit tests covering them are of a lower quality (have more test smells, such as
General Fixture or Assertion Roulette). Similar observations can be made for some
types of static methods. While the usage of static methods that access state causes
a production class to be tested less, for the ones that are part of utility classes or
that only operate on parameters this is not the case. Constants do not have a

negative impact on testability, neither in the classes in which they are declared nor

in the corresponding client classes (because of their low usage). Finally, the classes
with static initialization blocks also seem a bit more testable, albeit for them it was
difficult to evaluate this quality aspect due to the small number of instances present.

The change- and defect-proneness aspects were studied together because
the procedures for assessing them are quite similar. The major difference is that for

the latter only the commits which were categorized as bug-fixes are considered.
Mutable global state instances, namely stateful singletons and static non-final
attributes, are also very detrimental to change-proneness (same as for testability).
The classes that have such instances were modified more frequently during commits
and the number of fine-grained changes that occurred is higher than for the rest of
the production classes. Besides the ones that solely operate on parameters, the
other static methods appear to have a negative impact on change-proneness;

however, the effect is not as noticeable as for the mutable global state instances.
Classes with static initialization blocks are in a similar situation. Finally, constants do

 159

not make the classes of which they are part of more change-prone; the average
number of commits in which they were changed is comparable to that of similar

classes.
The most important observation in terms of defect-proneness is that the

classes that contain certain types of static constructs are less error-prone than they
are change-prone. For example, the ratio between the average number of bug-fix
commits in which stateful singletons / similar classes were modified is lower than
the corresponding measurement when all the commits are taken into account. This

observation also holds true for classes that have static non-final attributes and static

methods that access state. For the other types of static methods, constants, and
static initialization blocks the values are very similar to the ones obtained for
change-proneness. All of the above suggest that using certain types of static
constructs does have a negative effect on the software quality aspects investigated;
nonetheless, there are static constructs (such as constants or static methods that
solely operate on parameters) that do not affect these aspects.

7.3. Reflection

No major issues were encountered while implementing the proposed
approach. The detection strategies for the different types of static constructs were

successfully defined by leveraging the metrics already computed by Patrools and
adding the ones that were missing (e.g., class has only private constructors). For
testability we were able to obtain 1) coverage information by using JaCoCo through
Maven / Gradle plugins and 2) data related to test smells with TSDetect. The scripts

necessary for running these tools were easily integrated into DFAnalyser. The
correlation between specific parts of the production code and the corresponding unit
tests was also established using Patrools. In order to assess change-proneness, we
managed to extract fine-grained source code changes for the production classes
using ChangeDistiller. For defect-proneness, we categorized commits as bug-fixes
based on the information gathered both from the commit message and from the
associated Jira issue tracker. In general, the proposed procedures were

straightforward and easy to implement. Nonetheless, we consider that the ones
related to the testability score and the bug-fix categorization can be improved, as
will be explained in the future work section that follows.

Just like during implementation, the empirical study was conducted without
any problems. The systems were selected based on a set of well-established
criteria; we tried to choose projects that are different in terms of size and
complexity, development practices, and testing effort. We did not encounter any

issues while retrieving them from the corresponding Git repositories or when
accessing the associated issue trackers. However, both while developing the
approach and when conducting the study, we needed to make some decisions on
how to proceed. Every time this had to be done, we provided the reasoning behind
the decisions that were taken. Just as any empirical study, there are ways in which
ours can be extended; we will analyse them in the next section.

 160

7.4. Future work

Even though we tried to reach closure, there are several ways in which the
proposed approach and the conducted study could be improved. We will discuss
them, in no particular order, in the current section. Although the list is not
exhaustive, these are the directions on which we will be focusing in the foreseeable

future.
1. Extending the empirical study: as discussed in Section 6.2, there are

several limitations to our study. We plan to address them by enhancing the
empirical study in the following ways:

 Additional Java systems: first of all, we want to add more Java projects to
our analyses. Although we studied a considerable number of systems which
were selected based on a set of well-established criteria, there may still be

some particular projects worth including. An important limitation of the
study is that all the analysed systems are open-source. We hope that in the
future we will have access to commercial projects. They might differ from
the open-source ones in terms of: 1) amount and types of the static
constructs present; 2) testing effort and quality of the unit tests; 3)
development practices. Studying such systems would ensure that our results
are generalizable to any software project.

 Other development technologies and programming paradigms: another
limitation is that all the analysed projects are implemented in Java. We are

already pondering the possibility of reimplementing the tool in order to
support other object-oriented programming languages (namely, C# and
C++). The proposed approach should still apply, but the coding might need
to be done in a C-family language. It will be interesting to see if the

observed patterns are still valid for this type of systems.
In addition to the development technology, we also want to study projects
created by following other programming paradigms. As an example, static
constructs can be used very differently in embedded systems. This is why
we are keen to extend the study to both imperative and declarative
paradigms, including: procedural, functional, and logic programming. We
will focus on the way in which static constructs are utilized, but will also

examine their impact on the 3 quality aspects of interest.
 Different development methodologies: the methodologies play an important

role in how a system is created. Different development practices have been

observed for the chosen projects; however, none of the systems were
created through Test-Driven Development. For TDD the test cases have to
be written before the production code is implemented, thus the method
through which we quantify testability might need to be adjusted accordingly.

The latest agile development methodologies, such as extreme programming
or lean development, will also be investigated. Doing this will add to the
credibility of the obtained results, thereby improving the quality of the
empirical study.

2. Studying other design flaws:
 Object instantiations in constructors / methods: instantiating objects instead

of using Dependency Injection is a very common design problem. The issues
that arise when doing this in constructors are discussed by Hevery in [17];
the most notable ones are: the violation of the Single Responsibility
Principle, the difficulty of directly testing such constructors, and the fact that
they cannot be subclasses or overridden for testing purposes. Most of the

 161

problems also appear when instantiating objects in production methods. We
can extend the tool so that it can detect new statements within constructors

/ methods. For this flaw, we will mainly focus on the testability aspect as it
is less likely to have an impact on change- / defect-proneness.

 Law of Demeter violations: they occur when objects are received as
parameters but never used directly; instead, their methods are called just to
gain access to other objects. This design flaw should be detrimental to
testability because multiple objects need to be configured in order to set up

the state properly. A class that contains such violations might also be

change-prone since there are a lot of other classes (that could be modified)
on which it depends. The tool can easily detect Law of Demeter violations by
querying the method call chain.

 Other well-known design flaws (such as God Class or Feature Envy): while
their effect on other software quality aspects has been thoroughly
investigated, the impact they have on the 3 aspects that we are focusing on
was not. Strategies for detecting these flaws have already been proposed

[99] along with the corresponding thresholds [101]. We only need to
integrate them into our tool and then we will be able to study the flaws in a
similar manner to static constructs.

3. Improving the way in which we compute the testability score:
although we evaluate both the quantity and the quality of the corresponding
unit tests when assessing the testability of a specific part of the production

code, we still consider that the process through which we obtain the
testability score could be refined. Especially for the quantitative perspective,
more metrics could be included in addition to line coverage and the
percentage of production methods addressed by tests. The evaluation on
unit test quality could also be improved by adding more test smells to the
analysis.

4. Refining the process through which we identify bug-fix commits: we

also want to perfect the method for categorizing commits as bug-fixes. Even
though we leverage information extracted both from the commit message
and from the corresponding issue tracker, there are still a lot of data
available that can be utilized to improve this process. For example, the tool
proposed in [102] could aid us in gathering additional information for
refining our assessment. Furthermore, the commit history might also
provide valuable data in this regard.

5. Analysing everything at a lower level of granularity: at the moment,

most of the analyses are performed at class level. For example, a class is
categorized as a singleton client if it utilizes at least one of its methods. We
would like to make the analysis more fine-grained, therefore we need to be
able to pinpoint which singleton methods are used by each of the methods
from the respective class. This also applies to other static constructs, such

as utility classes or mutable static attributes. Analysing everything at a
lower level of granularity would also be beneficial for the models through
which we evaluate the software quality aspects. Studying these aspects at
method level would allow for a more precise assessment. For testability we
could determine which production methods are covered by a particular unit
test; this would be interesting considering that some of the tests have
significantly more smells than others. The method by which we categorize a

commit as a bug-fix might also benefit from this refinement; for example,
we would be able to search for smaller entities (e.g., attribute or parameter

 162

names) in the commit message and trace them back to their corresponding
classes. The benefits of a more fine-grained analysis were highlighted by the

source code changes that were extracted; being able to determine exactly
what was changed during a commit was very important when assessing
change-proneness.

6. Proposing repair techniques for both production and test code: the
last research direction that we are considering is improving the code by
refactoring the parts in which the problematic static constructs are present

or by rewriting the unit tests so that the smells do not appear anymore. As

an example, mutable global state instances could be eliminated by replacing
the static non-final attributes with immutable ones while preserving the
functionality. In the same vein, we could remove the General Fixture test
smell by distributing the set-up logic to the appropriate unit tests; for
example, only the tests that address a singleton client will configure the
required singleton state, it will not be done in the set-up method of the test
class. By performing these refactorings the quality of both the production

and the test code will greatly improve.

 163

In summary, this chapter discusses:

1. The contributions brought through our work:
 the methodology for studying the evolution and the impact on

software quality of any design flaw;
 the model for quantifying class testability;
 the process for identifying bug-fix commits and determining the fine-

grained source code changes that occur between certain commits;

 a tool for investigating the aspects of interest;
 an empirical study that answers the research questions for different

types of static constructs;
 a better understanding of static constructs, their evolution and the

effect they have on 3 software quality aspects.

2. The main findings with regard to each research question:

 that static constructs are heavily present in the code and are
frequently utilized by other production classes;

 that they are used less once a project reaches maturity compared to
the earlier stages of its development;

 that certain types of static constructs, such as mutable global state
instances (static non-final attributes and stateful singletons) or static
methods that access their class’s state, have a negative impact on

the 3 quality aspects investigated.

3. What was accomplished thus far and what could have been done better.

4. Future work directions that we are currently considering:
 improving the empirical study by adding more systems to it, including

commercial ones and projects written in other languages / by
following different programming paradigms;

 investigating other design flaws, such as object instantiations in

constructors / methods or Law of Demeter violations;
 refining the models through which we quantify the 3 quality aspects

(e.g., adding more metrics to the testability score);
 studying everything at a lower level of granularity;
 suggesting repair techniques for the problematic parts of both

production and test code.

 164

References

[1] Brooks Jr, Frederick P. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, 2/E. Pearson Education India, 1995.

[2] Sommerville, Ian. "Software Engineering. International computer science
series." ed: Addison Wesley (2004).

[3] Olan, Michael. "Unit testing: test early, test often." Journal of Computing
Sciences in Colleges 19.2 (2003): 319-328.

[4] International Organization for Standardization. (2011). Systems and software
engineering — Systems and software Quality Requirements and Evaluation

(SQuaRE) — System and software quality models (ISO Standard No. 25010:2011).
https://www.iso.org/standard/35733.html.
[5] IEEE Standards Coordinating Committee. "IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos." CA: IEEE
Computer Society 169 (1990).
[6] R. Bache and M. Mullerburg, “Measures of testability as a basis for quality
assurance,” Softw. Eng. J., vol. 5, no. 2, pp. 86–92, 1990.

[7] Bruntink, Magiel, and Arie Van Deursen. "Predicting class testability using
object-oriented metrics." Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on. IEEE, 2004.

[8] Zhou, YuMing, et al. "An in-depth investigation into the relationships between

structural metrics and unit testability in object-oriented systems." Science china
information sciences 55.12 (2012): 2800-2815.

[9] Bieman, James M., Anneliese Amschler Andrews, and Helen J. Yang.
"Understanding change-proneness in OO software through visualization." 11th IEEE
International Workshop on Program Comprehension, 2003.. IEEE, 2003.

[10] Arvanitou, Elvira-Maria, et al. "A method for assessing class change
proneness." Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering. 2017.

[11] Mo, Ran, et al. "Architecture anti-patterns: Automatically detectable violations
of design principles." IEEE Transactions on Software Engineering (2019).

[12] Shen, Vincent Yun, et al. "Identifying error-prone software—an empirical
study." IEEE Transactions on Software Engineering 4 (1985): 317-324.

[13] Gyimóthy, Tibor, Rudolf Ferenc, and Istvan Siket. "Empirical validation of
object-oriented metrics on open source software for fault prediction." IEEE
Transactions on Software engineering 31.10 (2005): 897-910.

[14] Subramanyam, Ramanath, and Mayuram S. Krishnan. "Empirical analysis of ck
metrics for object-oriented design complexity: Implications for software
defects." IEEE Transactions on software engineering 29.4 (2003): 297-310.

[15] Zhou, Yuming, and Hareton Leung. "Empirical analysis of object-oriented
design metrics for predicting high and low severity faults." IEEE Transactions on
software engineering 32.10 (2006): 771-789.

 165

[16] Shatnawi, Raed, and Wei Li. "The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution process." Journal
of systems and software 81.11 (2008): 1868-1882.

[17] Wolter, Jonathan, Russ Ruffer, and Miško Hevery. "Guide: Writing testable
code." (2009): 1-38.

[18] Khomh, Foutse, Massimiliano Di Penta, and Yann-Gael Gueheneuc. "An
exploratory study of the impact of code smells on software change-
proneness." 2009 16th Working Conference on Reverse Engineering. IEEE, 2009.

[19] Kaur, Kamaldeep, and Shilpi Jain. "Evaluation of machine learning approaches

for change-proneness prediction using code smells." Proceedings of the 5th
International Conference on Frontiers in Intelligent Computing: Theory and
Applications. Springer, Singapore, 2017.

[20] Zhang, Xiaofang, Yida Zhou, and Can Zhu. "An empirical study of the impact of
bad designs on defect proneness." 2017 International Conference on Software
Analysis, Testing and Evolution (SATE). IEEE, 2017.

[21] Alkhaeir, Tarek, and Bartosz Walter. "The effect of code smells on the
relationship between design patterns and defects." IEEE Access 9 (2020): 3360-
3373.

[22] D'Ambros, Marco, Alberto Bacchelli, and Michele Lanza. "On the impact of
design flaws on software defects." 2010 10th International Conference on Quality
Software. IEEE, 2010.

[23] Eken, Beyza, et al. "An empirical study on the effect of community smells on
bug prediction." Software Quality Journal 29.1 (2021): 159-194.

[24] Khalid, Sadaf, Saima Zehra, and Fahim Arif. ”Analysis of object oriented
complexity and testability using object oriented design metrics.” Proceedings of the
2010 National Software Engineering Conference. 2010.
[25] Chen, Jie-Cherng, and Sun-Jen Huang. ”An empirical analysis of the impact of

software development problem factors on software maintainability.” Journal of
Systems and Software 82.6 (2009): 981-992.

[26] Soni, Devpriya. "Evaluation of Understandability of Object-Oriented
Design." International Conference on Heterogeneous Networking for Quality,
Reliability, Security and Robustness. Springer, Berlin, Heidelberg, 2013.

[27] Arce, Iván, et al. "Avoiding the top 10 software security design flaws." IEEE
Computer Society Center for Secure Design (CSD), Tech. Rep (2014).

[28] Rybak, Martin. "Why Static Code is Bad." Objective C#, July 2013,
https://objcsharp.wordpress.com/2013/07/08/why-static-code-is-bad/.

[29] Marsavina, Cosmin. "Studying the Evolution of Static Methods and their Effect
on Class Testability." 2020 IEEE 20th International Symposium on Computational
Intelligence and Informatics (CINTI). IEEE, 2020.

[30] Marsavina, Cosmin. "Understanding the Impact of Mutable Global State on the
Defect Proneness of Object-Oriented Systems." 2020 IEEE 14th International
Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE,
2020.

[31] Brown, William H., et al. AntiPatterns: refactoring software, architectures, and
projects in crisis. John Wiley & Sons, Inc., 1998.

[32] Marinescu, Radu. "Detecting design flaws via metrics in object-oriented
systems." Technology of Object-Oriented Languages and Systems, 2001. TOOLS 39.
39th International Conference and Exhibition on. IEEE, 2001.

 166

[33] Marinescu, Radu. "Detection strategies: Metrics-based rules for detecting
design flaws." Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on. IEEE, 2004.

[34] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., & De Lucia,
A. (2015). Mining version histories for detecting code smells.

[35] Kessentini, Marouane, et al. "Design defects detection and correction by
example." Program Comprehension (ICPC), 2011 IEEE 19th International
Conference on. IEEE, 2011.

[36] Moha, Naouel, et al. "DECOR: A method for the specification and detection of

code and design smells." Software Engineering, IEEE Transactions on 36.1 (2010):
20-36.

[37] Wegrzynowicz, Patrycja, and Krzysztof Stencel. "Towards a comprehensive test
suite for detectors of design patterns." Automated Software Engineering, 2009.
ASE'09. 24th IEEE/ACM International Conference on. IEEE, 2009.

[38] Van Rompaey, Bart, et al. "On the detection of test smells: A metrics-based
approach for general fixture and eager test." IEEE Transactions on Software
Engineering 33.12 (2007): 800-817.

[39] Bavota, Gabriele, et al. "An empirical analysis of the distribution of unit test
smells and their impact on software maintenance." Software Maintenance (ICSM),
2012 28th IEEE International Conference on. IEEE, 2012.

[40] Bavota, Gabriele, et al. "Are test smells really harmful? An empirical study."
(2014).

[41] Jianping, Fu, Liu Bin, and Lu Minyan. "Present and future of software testability
analysis." Computer Application and System Modeling (ICCASM), 2010 International
Conference on. Vol. 15. IEEE, 2010.

[42] Tahir, Amjed. A Study on Software Testability and the Quality of Testing In
Object-Oriented Systems. Diss. University of Otago, 2016.

[43] D. Rapu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history information to
improve design flaws detection.” Eighth European Conference on Software
Maintenance and Reengineering, 2004. CSMR 2004. Proceedings. IEEE, 2004.

[44] Marsavina, Cosmin, Daniele Romano, and Andy Zaidman. "Studying fine-
grained co-evolution patterns of production and test code." 2014 IEEE 14th
International Working Conference on Source Code Analysis and Manipulation. IEEE,
2014.

[45] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using

software repository mining.” 2012 16th European conference on software
maintenance and reengineering. IEEE, 2012.

[46] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the longevity of

code smells: preliminary results of an explanatory survey.” Proceedings of the 4th
Workshop on Refactoring Tools. 2011.

[47] S. Vaucher, F. Khomh, N. Moha, and Y. G. Guéhéneuc, “Tracking design
smells: Lessons from a study of god classes.” 2009 16th Working Conference on
Reverse Engineering. IEEE, 2009.

[48] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact
of code smells: A case study of two open source systems.” 2009 3rd international
symposium on empirical software engineering and measurement. IEEE, 2009.

 167

[49] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D.
Poshyvanyk, “When and why your code starts to smell bad (and whether the smells
go away).” IEEE Transactions on Software Engineering 43.11 (2017): 1063-1088.

[50] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad smells in

object-oriented code.” 2010 Seventh International Conference on the Quality of
Information and Communications Technology. IEEE, 2010.

[51] M. Martinez and M. Monperrus, “Coming: A tool for mining change pattern

instances from git commits.” 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2019.

[52] Mouchawrab, Samar, Lionel C. Briand, and Yvan Labiche. "A measurement
framework for object-oriented software testability." Information and software
technology 47.15 (2005): 979-997.

[53] Bruntink, Magiel, and Arie van Deursen. "An empirical study into class
testability." Journal of systems and software 79.9 (2006): 1219-1232.

[54] Zhou, YuMing, et al. "An in-depth investigation into the relationships between
structural metrics and unit testability in object-oriented systems." Science china
information sciences 55.12 (2012): 2800-2815.

[55] Nikfard, Pourya, et al. "An Empirical Analysis of a Testability Model."
Informatics and Creative Multimedia (ICICM), 2013 International Conference on.
IEEE, 2013.

[56] Han, Ah-Rim, et al. "Behavioral dependency measurement for change-

proneness prediction in UML 2.0 design models." 2008 32nd Annual IEEE
International Computer Software and Applications Conference. IEEE, 2008.

[57] Han, Ah-Rim, et al. "Measuring behavioral dependency for improving change-
proneness prediction in UML-based design models." Journal of Systems and
Software 83.2 (2010): 222-234.

[58] Kumar, Lov, Santanu Kumar Rath, and Ashish Sureka. "Empirical analysis on
effectiveness of source code metrics for predicting change-proneness." Proceedings
of the 10th Innovations in Software Engineering Conference. 2017.

[59] Agrawal, Anushree, and Rakesh Kumar Singh. "Empirical validation of OO
metrics and machine learning algorithms for software change proneness

prediction." Towards Extensible and Adaptable Methods in Computing. Springer,
Singapore, 2018. 69-84.

[60] Posnett, Daryl, Christian Bird, and Prem Dévanbu. "An empirical study on the
influence of pattern roles on change-proneness." Empirical Software
Engineering 16.3 (2011): 396-423.

[61] Koru, A. Gunes, Dongsong Zhang, and Hongfang Liu. "Modeling the effect of
size on defect proneness for open-source software." Third International Workshop
on Predictor Models in Software Engineering (PROMISE'07: ICSE Workshops 2007).
IEEE, 2007.

[62] Olague, Hector M., et al. "Empirical validation of three software metrics suites
to predict fault-proneness of object-oriented classes developed using highly iterative
or agile software development processes." IEEE Transactions on software
Engineering 33.6 (2007): 402-419.

[63] Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. ”A comparative analysis
of the efficiency of change metrics and static code attributes for defect prediction.”
Proceedings of the 30th international conference on Software engineering. 2008.

 168

[64] Gray, David, et al. "Software defect prediction using static code metrics
underestimates defect-proneness." The 2010 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2010.

[65] Soni, Devpriya. "Evaluation of Understandability of Object-Oriented

Design." International Conference on Heterogeneous Networking for Quality,
Reliability, Security and Robustness. Springer, Berlin, Heidelberg, 2013.

[66] Southam, Blaine R. "Guide-Writing Testable Code." (2009).

[67] Hevery, Misko. "Testability explorer: using byte-code analysis to engineer

lasting social changes in an organization's software development process."

Companion to the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. ACM, 2008.

[68] Sabane, Aminata, et al. "A study on the relation between antipatterns and the
cost of class unit testing." Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on. IEEE, 2013.

[69] Baudry, Benoit, et al. "Measuring and improving design patterns testability."
Software Metrics Symposium, 2003. Proceedings. Ninth International. IEEE, 2003.

[70] Tahir, A., S.G. MacDonell, and J. Buchan, Understanding class-level testability
through dynamic analysis, in International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE). 2014: Lisbon, Portugal. p. 38-47.

[71] Jungmayr, Stefan. "Testability measurement and software dependencies."
Proceedings of the 12th International Workshop on Software Measurement. Vol. 25.
No. 9. 2002.

[72] M. D'Ambros, A. Bacchelli, and M. Lanza, “On the impact of design flaws on
software defects.” 2010 10th International Conference on Quality Software. IEEE,
2010.

[73] R. Marinescu, “Assessing technical debt by identifying design flaws in software
systems.” IBM Journal of Research and Development 56.5 (2012): 9-1.

[74] F. Khomh, M. Di Penta, Y. G. Guéhéneuc, and G. Antoniol, “An exploratory
study of the impact of antipatterns on class change-and fault-proneness.” Empirical
Software Engineering 17.3 (2012): 243-275.

[75] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia, “On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation.” Empirical Software Engineering 23.3 (2018): 1188-1221.

[76] A. Yamashita and L. Moonen, “To what extent can maintenance problems be
predicted by code smell detection?–An empirical study.” Information and Software
Technology 55.12 (2013): 2223-2242.

[77] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba, “Quantifying
the effect of code smells on maintenance effort.” IEEE Transactions on Software
Engineering 39.8 (2012): 1144-1156.

[78] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a significant

but small effect on faults.” ACM Transactions on Software Engineering and
Methodology (TOSEM) 23.4 (2014): 1-39.

[79] Badri, Mourad, and Fadel Toure. "Empirical analysis of object-oriented design
metrics for predicting unit testing effort of classes." Journal of Software Engineering
and Applications 5.7 (2012): 513.

[80] Hevery, Misko. "Static Methods are Death to Testability." The Testability
Explorer Blog, December 2008, http://misko.hevery.com/2008/12/15/static-
methods-are-death-to-testability/.

 169

[81] Cristina, M., M. Radu, and F. Mihancea. "iPlasma: an integrated platform for
quality assessment of object-oriented design." Proceedings of the 21st IEEE
International Conference on Software Maintenance. 2005.

[82] Zentgraf, David C. "How Not To Kill Your Testability Using Statics." Kunststube,
October 2014, http://kunststube.net/static/.

[83] Sonmez, John. "Static Methods Will Shock You." Simple Programmer, January
2010, https://simpleprogrammer.com/2010/01/29/static-methods-will-shock-you/.

[84] Feathers, Michael. "Testable Java."

[85] Amsterdam, Jonathan. "Java’s new considered harmful." Dr. Dobb’s, April
2002, http://www.drdobbs.com/javas-new-considered-harmful/184405016.

[86] Hevery, Misko. "How to Think About the new Operator with Respect to Unit
Testing." The Testability Explorer Blog, July 2008,
http://misko.hevery.com/2008/07/08/how-to-think-about-the-new-operator/.

[87] Feathers, Michael. Working effectively with legacy code. Prentice Hall
Professional, 2004.

[88] Gil, Joseph Yossi, and Itay Maman. "Micro patterns in Java code." ACM
SIGPLAN Notices 40.10 (2005): 97-116.

[89] Geary, David. "Simply Singleton, Navigate the deceptively simple Singleton
pattern." JavaWorld How-To-Java, April (2003).

[90] Hevery, Misko. "Singletons are pathological liars." The Testability Explorer Blog,
August 2008, http://misko.hevery.com/2008/08/17/singletons-are-pathological-
liars/.

[91] K. Stencel and P. Węgrzynowicz, “Implementation variants of the singleton
design pattern.” OTM Confederated International Conferences “On the Move to
Meaningful Internet Systems.” Springer, Berlin, Heidelberg, 2008.

[92] M. R. Hoffmann, B. Janiczak, and E. Mandrikov, “Eclemma-jacoco java code
coverage library.” (2011).

[93] Spadini, Davide, et al. "On the relation of test smells to software code
quality." 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018.

[94] A. Peruma, et al. “tsDetect: an open source test smells detection tool.”

Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2020.

[95] P. F. Mihancea, “Patrools: Visualizing the Polymorphic Usage of Class

Hierarchies.” 2010 IEEE 18th International Conference on Program Comprehension.
IEEE, 2010.

[96] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer and
changedistiller.” IEEE software 26.1 (2009): 26-33.

[97] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities of test-
suite evolution,” in Symposium on the Foundations of Software Engineering (FSE).
ACM, 2012, p. 33.
[98] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of
software engineering : A roadmap. The future of Software engineering, pages 345–
355, 2000.

[99] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J.
Mowbray, Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis,
1st ed. John Wiley and Sons, March 1998.

http://kunststube.net/static/
https://simpleprogrammer.com/2010/01/29/static-methods-will-shock-you/
http://www.drdobbs.com/javas-new-considered-harmful/184405016
http://misko.hevery.com/2008/07/08/how-to-think-about-the-new-operator/

 170

[100] Sousa, Bruno & Bigonha, Mariza & Ferreira, Kecia. (2017). Evaluating Co-
Occurrence of GOF Design Patterns with God Class and Long Method Bad Smells.
10.5753/sbsi.2017.6068.

[101] Gradišnik, Mitja, et al. "Adapting God Class thresholds for software defect

prediction: A case study." 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2019.

[102] Bachmann, Adrian, et al. "The missing links: bugs and bug-fix

commits." Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. 2010.

 171

Publications

[A1]. Marsavina, Cosmin, Daniele Romano, and Andy Zaidman. "Studying fine-
grained co-evolution patterns of production and test code." 2014 IEEE 14th
International Working Conference on Source Code Analysis and Manipulation. IEEE,

2014.

Cited by:
 Beller, Moritz, et al. "When, how, and why developers (do not) test in their

IDEs." Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. 2015.

 Labuschagne, Adriaan, Laura Inozemtseva, and Reid Holmes. "Measuring

the cost of regression testing in practice: A study of Java projects using

continuous integration." Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. 2017.

 Beller, Moritz, et al. "Developer testing in the ide: Patterns, beliefs, and

behavior." IEEE Transactions on Software Engineering 45.3 (2017): 261-

284.

 Macho, Christian, Shane McIntosh, and Martin Pinzger. "Automatically

repairing dependency-related build breakage." 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER).

IEEE, 2018.

 Grano, Giovanni, Fabio Palomba, and Harald C. Gall. "Lightweight

assessment of test-case effectiveness using source-code-quality

indicators." IEEE Transactions on Software Engineering (2019).

 Rodríguez-Pérez, Gema, et al. "How bugs are born: a model to identify how

bugs are introduced in software components." Empirical Software

Engineering 25.2 (2020): 1294-1340.

 Imtiaz, Javaria, et al. "A systematic literature review of test breakage

prevention and repair techniques." Information and Software

Technology 113 (2019): 1-19.

 Soetens, Quinten David, Romain Robbes, and Serge Demeyer. "Changes as

first-class citizens: A research perspective on modern software

tooling." ACM Computing Surveys (CSUR) 50.2 (2017): 1-38.

 Levin, Stanislav, and Amiram Yehudai. "The co-evolution of test

maintenance and code maintenance through the lens of fine-grained

semantic changes." 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2017.

 Rapos, Eric J., and James R. Cordy. "Examining the co-evolution relationship

between Simulink models and their test cases." Proceedings of the 8th

International Workshop on Modeling in Software Engineering. 2016.

 Vidács, László, and Martin Pinzger. "Co-evolution analysis of production and

test code by learning association rules of changes." 2018 IEEE Workshop on

Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE).

IEEE, 2018.

 172

 Chahal, Kuljit Kaur, and Munish Saini. "Open source software evolution: a

systematic literature review (Part 1)." International Journal of Open Source

Software and Processes (IJOSSP) 7.1 (2016): 1-27.

 Alsolami, Nada, Qasem Obeidat, and Mamdouh Alenezi. "Empirical analysis

of object-oriented software test suite evolution." International Journal of

Advanced Computer Science and Applications 10.11 (2019).

 Rapolu, Swetha, and Tooraj Nikoubin. "Fast and energy efficient FinFET full

adders with Cell Design Methodology (CDM)." 2015 6th International

Conference on Computing, Communication and Networking Technologies

(ICCCNT). IEEE, 2015.

 Zampetti, Fiorella, et al. "Demystifying the adoption of behavior-driven

development in open source projects." Information and Software

Technology 123 (2020): 106311.

 Inozemtseva, Laura Michelle McLean. "Data science for software

maintenance." (2017).

 Soetens, Quinten David. Change-Based Software Engineering: Using Reified

Changes for Test Selection and Refactoring Reconstruction. Diss. Universiteit

Antwerpen (Belgium), 2015.

 Spadini, Davide. "Practices and tools for better software

testing." Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 2018.

 Labuschagn, Adriaan, Laural Inozemtseva, and Reid Holmes. "Measuring the

cost of regression testing in practice." Proceedings of the 11th Joint meeting

of the European Software Engineering Conference and the ACM SIGSOFT

symposium on the foundations of Software Engineering. Retrieved from. Vol.

10. No. 3106237.3106288. 2017.

 Macho, Christian, et al. "The nature of build changes." Empirical Software

Engineering 26.3 (2021): 1-53.

 Labuschagne, Adriaan. Continuous integration build failures in practice. MS

thesis. University of Waterloo, 2016.

 Wang, Peipei, et al. "Demystifying regular expression bugs." Empirical

Software Engineering 27.1 (2022): 1-35.

 Le Dilavrec, Quentin, et al. "Untangling Spaghetti of Evolutions in Software

Histories to Identify Code and Test Co-evolutions." 2021 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 2021.

 Kim, Misoo, Youngkyoung Kim, and Eunseok Lee. "Denchmark: A Bug

Benchmark of Deep Learning-related Software." 2021 IEEE/ACM 18th

International Conference on Mining Software Repositories (MSR). IEEE,

2021.

 Zaidman, Andy, M. Daniel, and Jesus M. Gonzalez-Barahona. "How bugs are

born: a model to identify how bugs are introduced in software components."

(2020).

 Kim, Misoo, and Eunseok Lee. "Are datasets for information retrieval-based

bug localization techniques trustworthy?." Empirical Software

Engineering 26.3 (2021): 1-66.

 173

 Wang, Sinan, et al. "Understanding and Facilitating the Co-Evolution of

Production and Test Code." 2021 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE, 2021.

 Levin, Stanislav, and Amiram Yehudai. "Processing Large Datasets of Fined

Grained Source Code Changes." 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE, 2019.

 Saini, Munish, and Kuljit Kaur Chahal. "A Systematic Review of Attributes

and Techniques for Open Source Software Evolution Analysis." Research

Anthology on Usage and Development of Open Source Software (2021): 1-

23.

 Rwemalika, Renaud. On the Maintenance of System User Interactive Tests.

Diss. University of Luxembourg, Luxembourg, Luxembourg, 2021.

 Klammer, Claus, Georg Buchgeher, and Albin Kern. "A retrospective of

production and test code co-evolution in an industrial project." 2018 IEEE

Workshop on Validation, Analysis and Evolution of Software Tests (VST).

IEEE, 2018.

 Rodríguez-Pérez, G., et al. "How bugs are born."

 Wang, Peipei, et al. "Demystifying Regular Expression Bugs: A

comprehensive study on regular expression bug causes, fixes, and

testing." arXiv preprint arXiv:2104.09693 (2021).

 Rapos, Eric J. Supporting simulink model management. Diss. Queen's

University (Canada), 2017.

 Wang, Peipei. Analyses of Regular Expression Usage in Software

Development. Diss. North Carolina State University, 2021.

 Harbi, Fahad. Exploring the complexity of risk interaction with success

factors and success criteria in software projects. The University of Liverpool

(United Kingdom), 2017.

 Kazerouni, Ayaan Mehdi. Measuring the Software Development Process to

Enable Formative Feedback. Diss. Virginia Tech, 2020.

 Kim, Jungil, and Eunjoo Lee. "A Change Recommendation Approach Using

Change Patterns of a Corresponding Test File." Symmetry 10.11 (2018):

534.

 Miranda, Charles, et al. "Uma Análise da Co-Evolução de Teste em Projetos

de Software no GitHub." Anais do IX Workshop de Visualização, Evolução e

Manutenção de Software. SBC, 2021.

[A2]. Marsavina, Cosmin. "Understanding the Impact of Mutable Global State on
the Defect Proneness of Object-Oriented Systems." 2020 IEEE 14th International
Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE,
2020.

[A3]. Marsavina, Cosmin. "Studying the Evolution of Static Methods and their

Effect on Class Testability." 2020 IEEE 20th International Symposium on
Computational Intelligence and Informatics (CINTI). IEEE, 2020.

[A4]. Șerban, D. A., Marșavina, C., Coșa, A. V., Belgiu, G., & Negru, R. (2021). A
Study of Yielding and Plasticity of Rapid Prototyped ABS. Mathematics, 9(13), 1495.

