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1. INTRODUCTION 
 

 
 The chapter provides an introduction to the work that will be presented in 
the thesis. First, it discusses the problem that is being addressed through this study. 
Afterwards we introduce the research questions that were formulated and 

emphasize their importance. The relevance of our work is also explained along with 
the main contributions that were brought. We continue by describing the main 
objectives that were set. The last section of the chapter contains the outline for the 
rest of this thesis. 
 
 

1.1. Problem statement 
 
 Numerous studies have shown that testing is a vital part of the software 
development life cycle. In [1] Brooks proves that more than half of the effort 

required for developing complex software systems is spent on testing. The 

importance of testing is also emphasized in [2] where Sommerville explains the 
different types of development testing that can be performed and their benefits; the 
categories mentioned are unit testing, component testing, and system testing. For 
this study we will focus on unit testing in an object-oriented context as these tests 
are directly related to specific parts of the source code. The benefits of unit testing 
are discussed more in depth in [3], which describes how it should happen during 
each development stage in order to be efficient. 

 Closely related to the testing process is the testability aspect of software 
systems. In [4] testability is defined as “the degree to which a system or component 
facilitates the establishment of test criteria and performance of tests to determine 
whether those criteria have been met.” According to ISO 9126-1 [5] testability is 
“the capability of the software product to enable modified software to be validated”. 
Other publications (such as [6]) define testability in terms of the effort required for 

testing. This software quality aspect has proven difficult to quantify. Most of the 

articles that address software testability assess it during the design and analysis 
phase, they do not evaluate it based on already implemented code. Very few studies 
have investigated metrics that can be utilized to determine the testability of a 
production class. To the best of our knowledge, [7] is the first article that tries to 
study this matter; it shows that there is a correlation between production code 
metrics (such as Lines of Code, FANOUT, and Response for Class) and test case 

metrics (such as Lines of Code for Test Class and Number of Test Cases). Similar 
ideas are presented by Zhou et al. in [8], who demonstrate a connection between 
testability and structural metrics. However, none of the publications that we have 
encountered thus far tried to assess the testability of a production class based on its 
corresponding tests. We argue that the quantity and quality of the unit tests that 
cover a particular class are good indicators of how difficult it is to test the respective 
class. For example, if a production class is addressed by fewer tests compared to 

other similar classes, then this might suggest that it is more difficult to test. 
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 Two other software quality aspects that are also related to testing are 
change- and defect-proneness. Change-proneness is a characteristic of software 

artifacts that represents their susceptibility to modifications; the changes may have 
various causes, including: 1) new requirements, 2) fixing problems in the code, and 
3) ripple effects. There are several publications that address the negative 
consequences of having high change-proneness. For example, in [9] the authors 
prove that a lot of maintenance needs to be performed on change-prone classes as 
a system evolves. Change-proneness has also been associated with technical debt, 

as demonstrated in [10]. The lack of applying patterns and the presence of anti-

patterns have been shown to make a production class change-prone [11]. 
 Another common problem in complex software projects is that they are 
susceptible to errors [12]. These errors occur because of the high defect-proneness 
of the system’s production classes. There are studies (such as [13], [14], or [15]) 
that try to assess error-proneness based on software metrics. However, [16] has 
proven that metrics alone are insufficient to predict defect-prone classes as systems 
evolve. We argue that the presence of certain design flaws in the production code 

could make the respective classes more susceptible to faults. 
 Little research has been done thus far on specific problems in the code that 
have a negative effect on the 3 quality aspects discussed above. In terms of 
testability, [17] presents 4 categories of design flaws that make a system difficult to 
test. The ones that appear to have the highest impact are those related to class 
dependencies, namely global state (and singletons) and instantiations that occur in 

constructors or methods. Design flaws have also been shown to affect change- / 
defect-proneness. Reference [18] tries to compile a list of flaws that make a class 
susceptible to change. As mentioned by the authors, this list is by no means 
complete; further investigation is needed on design flaws that impact change-
proneness. Problems in the production code have also been used to predict whether 
or not a class will change in the future [19]. Therefore, it is even more important to 
determine other design flaws that make a class more likely to be modified. 

Error-proneness is another quality aspect that has received a significant 
amount of attention in recent years. However, just as for the previous 2 aspects 
(testability and change-proneness), the impact of design flaws on this quality aspect 
has not been thoroughly investigated. While there are some studies that look into 
this (such as [20] or [21]), most of them focus on software metrics rather than on 
specific problems in the code. In [22] the authors study 5 flaws and establish that 
there is a correlation (although not very significant) between 4 of them and defect-

proneness. Reference [23] presents a literature review of design flaws that may 

cause software bugs. The 18 studies included in this review only cover around 30 
design flaws; this further proves that there are many other flaws that still need to 
be investigated. 
 With the exception of [17], none of the other publications consider design 
flaws related to the usage of the static keyword. We named this kind of instances 

static constructs and will refer to them this way throughout the rest of the thesis. 
These constructs have already been proven to have a detrimental effect on several 
other quality aspects, including maintainability [25], understandability [26], and 
security [27]. For example, [28] presents the most common cases in which the 
static keyword is used in the code and gives a number of reasons why it has a 
negative effect on maintainability. As mentioned before, Hevery showed that 
mutable global state and static methods have an impact on class testability. 

However, the effects of other types of static constructs (e.g., constants or static 
initialization blocks) have not been studied. We have already proven 1) that mutable 
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global state (static non-final attributes and stateful singletons) negatively affects 
defect-proneness [29] and 2) that singletons and certain types of static methods 

make the classes that utilize them more difficult to test [30]. Up until now, we 
analysed these aspects in isolation; in this thesis, we plan to investigate every 
category of static constructs both in terms of presence / usage and regarding their 
impact on the 3 quality aspects. 

Based on the above, there is a clear need within the scientific community to 
study the different types of static constructs present in the production code. While 

some may prove harmless to the software quality aspects that we are addressing, 

there will surely be categories that have a negative impact on testability or change- 
/ defect-proneness. For example, we expect constants to have little or no influence; 
on the other hand, stateful singletons should be detrimental to all 3 quality aspects. 
In order to fully understand how these static constructs are used, we do not think 
that it is sufficient to examine only the latest version of a system. Valuable insight 
can be obtained by studying multiple versions throughout a project’s history. 
Therefore, we plan to extract and leverage historical data to further refine the 

analysis. After we gain a thorough understanding on this matter, we want to study 
the impact of each type of static construct on the quality aspects mentioned above. 
By doing this, we will be able to pinpoint the ones that cause problems and provide 
appropriate recommendations on which static constructs should be avoided. 
 
 

 

1.2. Research questions 
 

In this study, we try to understand 1) how static constructs are used in 

complex projects and 2) whether or not they have a negative effect on several 
software quality aspects. By static constructs we are referring to a broad category of 
entities that use the static keyword. They can be very simple, such as static 
attributes (non-final and constant) and methods, or more complex (e.g., singletons 
or utility classes); therefore, an initial categorization is required. Afterwards, we 
want to study their presence / usage both for the latest version of a system and for 
multiple versions throughout its lifespan. This is done in order to observe if the 

usage patterns have changed over the years. As an example, Singleton was initially 
considered a creational design pattern; however, experience has proven that it is 
rather an anti-pattern. Thus, we expect such instances to appear less frequently in 

the final version analysed compared to the previous versions. If static construct 
instances are actually used less, then we need to understand the reasoning behind 
such a decision. The main cause would be that static constructs are detrimental to 
software quality aspects. Some of the aspects, such as maintainability or 

understandability, have already been investigated. We will focus on the ones that 
have not been addressed thus far, namely: 1) testability, 2) change-proneness, and 
3) defect-proneness. For each of these aspects we want to define models that can 
be used to quantify them. Only after we are able to evaluate a quality aspect for a 
specific part of the production code, can we establish if the parts that contain static 
constructs are more problematic than the rest of the code. We plan to analyse the 

impact of each category of constructs on the 3 quality aspects of interest. This will 
allow us to specify which types of instances are the most detrimental to a particular 
aspect. We expect some of the static constructs (e.g., constants) to not have any 
negative effect on software quality. On the other hand, there might be others (e.g., 
singletons) which do not impact a quality aspect directly, but rather the production 
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classes that use them are affected. This is also something that we will be 
considering in our analyses. All of the above have led us to the following research 

questions: 

 RQ1. Are static constructs used in complex software systems? 

 RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

 RQ3. Do static constructs have a negative impact on software quality 

aspects? 

With the first question, we are trying to establish whether or not static 
constructs are present in the production code. The following 2 research questions 
would not make sense if static construct instances do not appear or are barely used. 
However, we want to distinguish between different types of static constructs. We do 
not believe that instances of distinct types are utilized in the same way, therefore 

we need to categorize them first. The categorization is done based on 1) the size of 
the construct (e.g., entire classes such as singletons or utility classes vs. a single 
static method within a class) and 2) whether they represent / access state or not 
(e.g., static non-final attributes vs. constants). After dividing them into categories, 
each type will be studied in isolation for the latest version of a system. Some quality 
aspects might not be directly affected by the presence of static constructs. For 
example, the singletons themselves are easy to test, but the production classes that 

utilize them are significantly harder due to the setup required to configure the 

appropriate singleton state. Thus, the client classes for each instance also need to 
be considered in the analysis. 

The second research question addresses the evolution of static constructs. 
We want to determine how instances of each type have evolved throughout a 
project’s history. More specifically, we are interested in observing if more instances 
of static constructs are present / utilized currently compared to the early stages of 

development. We consider that if static constructs appear less frequently nowadays 
then this is a clear indication of the fact that they are detrimental to different 
software quality aspects. Just as for the previous research question, we will also be 
examining the client classes for each instance. If the number of clients starts to 
decrease while the system is continuing to grow, then this would further confirm 
that static constructs are harmful. 

Finally, the last research question is directly related to the 3 software quality 
aspects that we are addressing in this thesis. It can be split into 3 sub-questions; 

one of them would be: “Do static constructs have a negative impact on class 
testability?”. Therefore, we will investigate the effect of each type of static construct 
on the 3 quality aspects: 1) testability, 2) change-proneness, and 3) defect-
proneness. In order to be able to do this, we must first quantify these aspects for 
specific parts of the production code. Models and procedures that can aid us in this 

regard will be proposed. For the classes of interest, the assessments will be 
performed in relation to other classes which are similar to them (in terms of size 
and complexity). As an example, we will be capable of establishing if singletons are 
more prone to error compared to other classes. By demonstrating that the usage of 
static constructs is detrimental to one or more of the quality aspects investigated, 
we will raise awareness regarding the types that are the most problematic. 
 

 
 



                                                13 

1.3. Relevance 
 

From a research perspective, it is important to gain insight into the way in 
which static constructs are used and how they evolved. This allows for a better 
understanding of software development practices. Additionally, the proposed 
approach could be employed to study these aspects for other design flaws, such as 

object instantiations in constructors / methods or Law of Demeter violations. It 
would be interesting to see if these flaws evolved differently compared to the static 

construct instances. After obtaining a good understanding of static construct usage, 
we also want to investigate their effect on 3 software quality aspects. 

The aspects considered in this study, testability and change- / defect-
proneness, are closely related to the testing process and may affect it. The main 
goal is to determine which types of static constructs have a large negative impact 

on the quality aspects studied. By understanding this, we will be able to provide a 
series of recommendations on which static constructs can continue to be used 
during development (e.g., constants) and which should be avoided (possibly at all 
cost). However, the knowledge obtained will not be limited to these aspects. For 
example, when assessing testability, we want to determine particular smells that 
exist in the tests covering the classes with static constructs. By doing this, we can 
find correlations between certain test smells and the static constructs that cause 

them to appear. For example, we expect the General Fixture smell to occur more 
frequently in test classes that cover singletons and their clients. For change- and 

defect-proneness, we also want to understand the exact modifications that were 
performed on the classes with static constructs. It might be the case that only some 
specific types of changes occurred and it would be very useful to find out which. The 
effects of static constructs on other software quality aspects may be studied in a 

similar way; the appropriate models have to be defined and then the impact of each 
type of construct can be analysed independently. 
 By investigating all the aspects mentioned above, we will bring a number of 
contributions: 

 A general methodology that can be followed to detect specific design flaws 
in the production code, study how they evolved, and assess their impact on 
a series of software quality aspects. This methodology consists of several 

steps: 1) defining the detection strategies for all the instances of the flaw 
(possibly categorizing them first); 2) going through the version history of a 
system to understand their evolution; 3) defining the models for quantifying 

each quality aspect; 4) comparing the parts of the code in which the design 
flaw instances are present with other similar classes with regard to each of 
the analysed aspects. Significant data will be obtained after each step, but 
only by implementing all of them can we examine the entire process. We 

will highlight the applicability of the proposed approach using different types 
of static constructs as the flaws of interest. Three quality aspects are going 
to be studied: 1) class testability, 2) change-proneness, and 3) defect-
proneness. Each category of instances shall be investigated independently in 
terms of presence, evolution, and impact. Afterwards, we will make some 
general observations regarding static constructs as a whole. 

 A model for assessing the testability of production classes based on their 
corresponding unit tests. The test suite is analysed both from a quantitative 
and from a qualitative perspective. We rely on coverage data to evaluate 
quantity, namely line coverage and the percentage of methods from that 
part of the production code that are addressed by unit tests. For quality we 
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detect smells in the corresponding tests and establish whether or not they 
are more frequent in the classes that cover static constructs. The 2 

assessments are combined into a score that represents the testability of a 
certain class. By comparing this score to that of similar classes, we can 
specify if a class with static constructs is less / more difficult to test. 

 A method to 1) determine the modifications that were performed during a 
commit and 2) categorize commits as bug-fixes. The first part is needed to 
establish whether or not the classes with static constructs 1) were modified 

more frequently and 2) more changes were performed on them per commit; 

if this is the case, we can consider them more change-prone compared to 
other classes. For defect-proneness we investigate the same aspects, but 
only the commits that were identified as bug-fixes are included in the 
analysis. 

 A tool that can be utilized to detect design flaws, study their evolution and 
quantify their impact on the 3 quality aspects discussed above (testability, 
change- and defect-proneness). This tool needs to be as modular as 

possible; there will be different types of modules for each of the steps from 
the proposed approach. For example, there are going to be several modules 
in which we define the detection strategies for every category of static 
constructs. Another module shall be responsible for retrieving the historical 
data necessary for studying evolution. Finally, the tool will have a group of 
modules for assessing each of the software quality aspects. The 

aforementioned modules can be combined to form the required analysis. 
The tool also needs to be highly extendable, new modules with detection 
strategies or models for other software quality aspects may be added 
without too much effort. 

 An empirical study in which we use this tool for different categories of static 
constructs. First, we must define the appropriate detection strategy for each 
type (e.g., stateful / stateless singletons). Then we can analyse their 

presence / usage both for the latest version of a system and for monthly 
commits. Finally, we shall use the proposed models / procedures to 
determine whether or not instances of a certain type have a negative impact 
on the quality aspects investigated. Through this empirical study we will 
obtain a good understanding of 1) how static constructs are utilized, 2) the 
way in which they have evolved, and 3) their effect on the 3 software 
quality aspects. Some interesting observations are going to be made; they 

will be discussed in depth in the chapters that follow. 

 

 

1.4. Main objectives 
 

We have set several objectives that must be accomplished in order to 
provide the contributions presented above. The main objectives of this thesis are: 

 O1. Studying the state of the art for the topics of interest: design flaw 

detection (with an emphasis on static constructs) and evolution, models for 
quantifying software quality aspects, and design flaws that have an impact 
on the aspects we are investigating. 

 O2. Categorizing the static constructs and defining detection strategies 
through which instances of each type can be identified. Additionally, 
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analysing the presence and usage of these instances both for the latest 
version of a project and throughout its entire lifespan. 

 O3. Developing procedures through which the quality aspects considered, 
class testability, change- and defect-proneness, can be evaluated. Also 
establishing whether or not the static constructs from each category have an 
effect on them. 

By achieving these objectives we should: 1) have a good understanding of 

the related literature, 2) determine what types of static constructs appear more 
frequently and how they evolved, 3) establish which instances are the most harmful 
to the 3 software quality aspects investigated. 
 

 

1.5. Outline 
 
 In this section, we explain how the rest of the thesis is structured. The 

following chapter discusses related work from fellow researchers. It contains 4 
sections that cover: 1) different approaches to identifying design flaws; 2) 
methodologies for analysing the evolution of specific parts of the production code; 
3) ways of assessing software testability and change- / defect-proneness; 4) design 
flaws that have been proven to have a negative impact on these quality aspects. We 
end this chapter with a section that thoroughly discusses the differences between 

our work and the other publications with regard to: 1) design flaw detection; 2) 

studying software evolution (with an emphasis on the design flaws of interest, 
namely static constructs); 3) quantifying testability and change- / defect-proneness; 
4) tools for investigating one or more of the previous aspects. 
 In Chapter 3, we detail the proposed approach. First, we disclose how static 
constructs were categorized and present the detection strategies for each type. 
Then we describe the process through which we study the evolution of static 
constructs. The following sections discuss the model for quantifying class testability 

and the methods for assessing change- / defect-proneness. We conclude the 
chapter by providing implementation details for the entire data collection process 
and presenting the tool that was developed. 
 Chapter 4 explains how the empirical study was conducted. It starts by 
discussing the main goal of the study, the formulated hypotheses, and the 
independent and dependent variables for each hypothesis. Afterwards, we present 

the criteria based on which we selected the systems included in the study. Finally, 

we describe in detail each of the 4 analyses that were performed, namely: 1) static 
construct presence / usage; 2) evolution of each static construct type; 3) impact on 
class testability; 4) impact on change- / defect-proneness. 
 Chapter 5 presents the results that were obtained for each of these 
analyses. It only includes raw results; their interpretation is provided in the 
following chapter. In Chapter 6 we revisit each research question and discuss the 

implications of the results. We also mention a series of threats that might impact 
the validity of the empirical study and explain how we tried to mitigate them. 
 The final chapter of the thesis contains conclusions and future work 
directions. We begin by reiterating the contributions provided through our research. 
Then we summarize what has been done and discuss the main results in connection 
with the research questions. In the following section, we reflect on our work and 
explain what could have been done better. We end the thesis with 6 future work 

directions that are being considered at the moment, namely: 1) improving the 
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empirical study; 2) analysing other design flaws; 3) enhancing the testability model; 
4) refining the process for identifying bug-fix commits; 5) studying everything at a 

lower level of granularity; 6) proposing refactoring solutions for static constructs 
and test smells. 
 

 

In summary, this chapter discusses: 

1. The problem that is being addressed in the thesis; it includes: 

 The importance of testing and the software quality aspects related to 
this process; 

 The motivation behind choosing static constructs as the design flaws 

of interest; 

 A short overview of how we plan to tackle the problem. 

2. The research questions that were formulated: 

 RQ1. Are static constructs used in complex software systems? 

 RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

 Do static constructs have a negative impact on software quality 
aspects? 

3. The relevance of our work along with the main contributions: 

 A methodology for studying design flaws, their evolution, and the 
impact they have on software quality; 

 A model for evaluating class testability based on the quantity and the 
quality of its corresponding unit tests; 

 A process for determining the fine-grained source code changes 
performed during a commit and establishing whether or not the 
respective commit is a bug-fix; 

 A tool that incorporates all these aspects; 

 An empirical study through which we answer the proposed research 

questions. 

4. The main objectives that must be accomplished through our work. 

5. How the rest of the thesis is structured: 

 Chapter 2 contains a comprehensive literature review of the articles 
that address topics which are similar to ours; 

 Chapter 3 describes the approach proposed in order to study the 

aspects of interest; 

 Chapter 4 presents the empirical study that was conducted; 

 Chapter 5 highlights the obtained results; 

 Chapter 6 provides an interpretation of the results in relation to the 
research questions along with potential threats to validity that might 
influence them; 

 Chapter 7 has the conclusions and future work directions. 
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2. RELATED WORK 
 

 
As explained in Chapter 1, we need a thorough understanding of what has 

already been done in terms of design flaw detection and evolution, models for 

quantifying software quality aspects, and flaws that affect these aspects. To this 
end, we surveyed the literature in order to find similar work from fellow 
researchers; the rest of the chapter is structured as follows: Section 1 discusses 

detection strategies and tool support for identifying design flaws and test smells; 
Section 2 explains how the evolution of different parts of the source code has been 
studied thus far; Section 3 describes procedures that have been utilized to evaluate 
the software quality aspects of interest; Section 4 covers design flaws the negatively 
impact the aforementioned quality aspects; Section 5 summarizes the main 
contributions and limitations of the surveyed articles. 
 

 

2.1. Design flaw and test smell detection 
 

2.1.1. Detection strategies and tool support 
 

Identifying design flaws is a key activity when trying to accomplish the 
objectives specified in the previous chapter. In [31] Brown et al. introduce anti-
patterns and discuss ways in which they can be detected. The authors define an 
anti-pattern as “a commonly occurring solution to a problem that generates 
decidedly negative consequences”. They group them into three categories: software 

development anti-patterns, software architecture anti-patterns, and software project 
management anti-patterns. This thesis will focus on anti-patterns from the first 
category, as we will analyze the production code of software systems. For each of 
the anti-patterns mentioned the authors explain the problem, list the symptoms by 
which it can be identified and discuss its consequences. This publication can serve 
as a guideline for understanding a specific anti-pattern and provide a basis for 
developing the detection techniques necessary for identifying it. 

 In [32] Marinescu presents a metrics-based approach for detecting design 

problems and describes concrete techniques that can be used to identify 2 well-
known flaws, God Class and Data Class. The approach consists of 4 steps: 1) a 
quantitative analysis of the design-flaw used to define a detection strategy; 2) 
metrics selection used to express the detection strategy as a combination of 
metrics; 3) detection of suspects used to obtain a list of code fragments that might 

be affected by the design flaw; iv) examination of suspects used to decide whether 
or not those fragments are actually affected by the flaw. Based on the proposed 
approach, the author defines detection techniques for the above-mentioned flaws. 
An industrial case study was conducted in order to prove that these techniques can 
successfully identify instances of the God Class and Data Class design flaws. 
 The work is continued in [33], which provides a more in depth analysis of 
design flaw detection using metrics. The approach is validated through more than 

10 detection strategies and adequate tool support is provided. The ProDetection 
toolkit is introduced, which facilitates code inspections based on the detection 
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strategies defined. The process consists of 3 steps: 1) creating a meta-model of the 
software system, 2) running the detection strategies to obtain a list of suspect 

entities, and 3) manually verifying the results. The usefulness of the toolkit is 
demonstrated through an industrial case study, which also highlights the accuracy of 
the detection strategies that were defined. 
 Reference [34] introduces a tool (HIST) that can identify 5 design defects 
and provides an analysis on when they appear throughout the lifespan of a system. 
Besides structural information, this tool also leverages co-changes extracted from 

versioning systems to detect the following flaws: Divergent Change, Shotgun 

Surgery, Parallel Inheritance, Blob, and Feature Envy. For each of the smells a 
historical detector is defined using a combination of association rule discovery and 
by analyzing the set of classes / methods that are co-changed. Two empirical 
studies were conducted in order to evaluate HIST. The first assesses its recall 
(between 58% and 100%) and precision (between 72% and 86%) on 20 open-
source Java projects. The second study involved 12 developers of 4 open-source 
systems who concluded that more than 75% of the problems identified by HIST are 

actual design flaws. 
 In [35] Kessentini et al. go deeper than simply detecting design flaws, they 
also enable the refactoring of the analyzed code in order to remove them. The 
proposed approach utilizes Genetic Programming to automatically generate rules for 
detecting design flaws. Afterwards, a Genetic Algorithm is used to propose 
refactoring solutions that can be applied to get rid of the flaws that were identified. 

The approach is validated using 6 open-source software systems; the results show 
that more than 76% of the design flaws were successfully detected and the 
correction solutions suggested were able to remove 74% of them. 
 Besides detection strategies [36] also proposes a rigorous process (based on 
precision and recall) that may be used to validate the strategies. The main 
contributions of the article are: 1) a method that can be utilized to specify the steps 
required for detecting design flaws (DECOR), 2) a detection technique that 

instantiates this method (DETEX), and 3) an empirical validation of the detection 
technique. DETEX can be used to identify 4 design smells (Blob, Functional 
Decomposition, Spaghetti Code, and Swiss Army Knife) and their underlying code 
smells. It was validated on 11 open-source systems and showed a precision of over 
60% and 100% recall. The complexity of the obtained detection algorithms and the 
computation times required are also discussed, both of which look reasonable. 
 In [37] Wegrzynowicz and Krzysztof present an approach for building test 

suites for design pattern detectors. The usefulness of the approach is proven by 

creating a test suite for validating a set of implementation variants of the Singleton 
pattern. Afterwards, 3 pattern detectors were evaluated (in terms of accuracy) using 
this test suite and it was shown that each of them have their limitations in detecting 
all the variants correctly. A similar approach could be used to validate design flaw 
detectors. 

 

2.1.2. Test smells 
 
 The presence of design flaws in the production code might indicate that 
there are also problems in the test code. These problems are generally referred to 
as test smells; they represent deviations from the guidelines that were proposed to 

aid developers in creating good test suites. Reference [38] is one of the first papers 
to introduce test smells and proposes solutions for detecting 2 of them, General 
Fixture and Eager Test. The authors present the characteristics of a good test based 
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on the core principles of unit testing. Then they discuss the structural deficiencies 
that cause test smells to appear (in terms of test concepts and their characteristics). 

Based on this, a set of metrics is defined that can be used to identify the 2 test 
smells mentioned above. An initial validation of the detection strategies is done 
using manual inspection and code review. In [39] Bavote et al. present 2 empirical 
studies on test smells. The first analyzes the distribution of smells within the test 
base. The study includes 18 systems (2 industrial and 16 open-source) and shows 
that test smells are widely spread throughout these systems (in 82% of the test 

classes). The second study investigates their impact on program comprehension 

during maintenance and testing; it proves that there is indeed a negative impact. 
The authors go more in depth in [40], which demonstrates that test smells 

are harmful and occur frequently in software systems. Similar to the previous paper, 
2 empirical studies were conducted. The first study proves that test smells are 
present in both open-source and industrial systems with 86% of the unit tests 
having at least 1 smell. The second shows that these smells have a negative impact 
on maintenance and program comprehension. Its main finding was that 

comprehension is 30% higher if test smells are not present. 
In [41] Jianping et al. present an empirical study on the relationship 

between test smells and production class features. The study investigates whether 
or not the complexity properties of a class can be utilized to predict test smells in its 
corresponding unit tests. It was conducted using 5 open-source systems and found 
that Cyclomatic Complexity (CC) and Weighted Methods per Class (WMC) are good 

indicators of the presence of test smells, predominantly Eager Test and Duplicated 
Code. Other class characteristics were also considered; the Lack of Cohesion of 
Methods (LCOM) also correlated with the 2 test smells, while the Depth of the 
Inheritance Tree (DIT) did not. 

Reference [42] is a PhD thesis that addresses software testability and the 
quality of the testing performed in object-oriented software systems. It contains 
several important findings, including the fact that there is a correlation between 

certain code smells and test smells. The study also shows that unit tests are not 
distributed in line with the system’s dynamic coupling. Many of the tightly coupled 
classes do not have associated unit tests, while the loosely coupled ones have at 
least 1 direct test. Furthermore, the results highlighted that there is a connection 
between class testability and dynamic complexity. A larger number of unit tests is 
required to address classes that are executed more frequently within the code. 
 

 

 

2.2. Software evolution 
 

 Historical data have already been used to improve design flaw detection 
[43]. We also utilized this kind of information to study the co-evolution between 
production and test code [44]. We did this in order to obtain a better understanding 
of the way in which tests evolve as a result of changes in the production classes. An 
association rule mining technique was used to uncover 6 fine-grained co-evolution 
patterns. We also established that the testing effort that was put into a project does 

have an impact on the observed patterns. 
 The lifespan of code smells is studied in [45]; the authors investigate the 
behavior of the developers with regard to the removal of code smells and anti-
patterns. Their results indicate that software engineers are aware of the presence of 
these flaws, but are not too concerned about their impact on software quality. This 
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observation is further supported by [46], which found that code smell removal with 
refactoring tools is often avoided during maintenance. 

 One of the first attempts to study the evolution of a particular design flaw 
(God Class) is presented in [47]. The histories of 2 open-source projects are 
analyzed in order to establish how God Classes appeared, their prevalence, and 
whether or not they are still part of the system or were removed during its 
evolution. The authors also manage to distinguish between the God Classes that 
were created by accident and those that are so by design.  

 The evolution of design smells along with their impact on the change 

behavior of software systems is evaluated in [48]. The proposed analysis identifies 
“good” and “bad” phases in the evolution of a system, which correspond to 
decreases / increases in the number of components that contain smells. It also 
proves that the respective classes have a higher change frequency. However, only 2 
flaws, God Class and Shotgun Surgery, are considered and the study includes just 2 
open-source systems. Five other smells, Blob Class, Class Data Should be Private, 
Complex Class, Functional Decomposition, and Spaghetti Code, are studied in a 

similar manner in [49]. The paper is aimed at understanding when and why the 
code starts to smell bad, but (just like the previous study) only addresses a limited 
number of smells for a small number of systems. 
 We will strive to obtain an analysis as thorough as the one presented in 
[50], but with a lot more design flaws and systems. Tools that could assist us in this 
regard have started to emerge. As mentioned before, [34] introduces HIST which 

can identify 5 design defects and provides an analysis on when they appear during 
the lifespan of a project. Another example would be Coming [51], a tool that can be 
utilized to mine instances of change patterns. 
 
 
 

2.3. Evaluating software quality aspects 
 

2.3.1. Assessing software testability 
 

Considering that our research is concerned with improving the testability of 
object-oriented systems, there is a need to develop a model through which this 
quality aspect can be quantified. In [52] Mouchawrab et al. describe one of the first 
attempts to measure the testability of software systems. The proposed framework 

does not start from the source code but from the UML diagrams that model the 
system. The authors also introduce a set of attributes that can have an impact on 
testability; they group them into 3 categories: 1) Object Constraint Language 

Expression Complexity, 2) Use Case Model and System Interface Complexity, and 3) 
Interactions Between Inherited and Overridden Features. Measurement procedures 
are provided for each of the attributes. The authors also discuss ways in which these 
measurements can be interpreted in order to assess the testability of the system. 
 Reference [53] is the first publication to investigate code metrics that can be 
utilized to quantify testability. Five Java systems (1 open-source and 4 industrial) 

were analyzed using the GQM/MEDEA framework. It was found that there is a 
correlation between production code metrics (such as Lines of Code, FANOUT, and 
Response for Class) and test case metrics (such as Lines of Code for Test Class and 
Number of Test Cases). 
 Similar ideas are presented by Zhou et al. in [54], who show that there is 
indeed a connection between testability and software structure metrics. The main 
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findings of this empirical study are that: 1) the metrics related to size, complexity, 
and coupling have a higher impact on the testability of a software system compared 

to other production code metrics (related to cohesion or inheritance), but 2) metrics 
alone cannot predict the amount of effort required for unit testing a class. The study 
also demonstrates that it is better to apply partial least square regression (PLSR) 
than multiple linear regression (MLR) when trying to correlate metrics with unit 
testability. 

Reference [55] contains a survey on models that can be used to determine 

the testability of an object-oriented software system. For each of the analyzed 

models the authors discuss the method used to assess testability along with the 
achievements of the model and its main issues. They conclude that “there is no 
single superior model”, thus a testability model should be chosen based on the 
particularities of the analysis that is being conducted. All of the surveyed models try 
to assess testability during the design and analysis phase, they do not address 
already implemented code. 
 

2.3.2. Assessing change- / defect-proneness 
 
 Just as for testability, the first studies that focus on change-proneness try to 
evaluate this software quality aspect based on the design of a system. For example, 
[56] proposes a method for calculating the behavioral dependency measure (BDM), 

a metric that can be utilized to predict change-proneness. The work is continued in 

[57], where the authors present a case study in which they evaluate the usefulness 
of this metric using a multi-version open-source project called JFlex. 
 There are several articles that investigate the capability of object-oriented 
metrics to predict change-proneness. However, most of them only take into account 
a small amount of OO metrics or study a limited number of systems. In [58] the 
authors analyze 102 Java projects and assess the effect of 62 metrics. Their results 

show that size metrics have the highest ability to predict whether or not a class is 
susceptible to modifications. For the coupling and cohesion metrics, the capacity is 
lower, while inheritance metrics cannot be used to distinguish between the classes 
that are change-prone and those which are not. 
 Other studied use machine learning techniques to predict change-prone 
classes. The effectiveness of such approaches is evaluated in [59] and compared 
with that of statistical techniques. The article proves that both types of methods can 

be used to assess this software quality aspect. It also highlights a series of OO 
metrics that are more suitable in this regard. 

 Reference [60] investigates the relationship between design patterns / 
meta-pattern roles and change-proneness. The authors also study the effect of the 
size of a class on this quality aspect. The results show that the latter has a much 
larger impact on change-proneness compared to the patters and the meta-pattern 

roles. 
Object-oriented metrics have also been used to assess software defect-

proneness. For example, the effects of size on this software quality aspect have 
been investigated in [61]. Cox proportional hazards modeling with recurrent events 
is utilized for the assessment; however, only 1 project (Mozilla) is used in the 
evaluation. 

A considerably more complex model for quantifying defect-proneness is 

proposed in [62]. It incorporates 3 types of bad design indicators, including several 
code smells, high method dependency, and large file size. The study shows that 
each of these types has a negative effect on defect-proneness and that these effects 
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are relatively independent of one another. This is an important observation 
considering that we plan to investigate the impact of a specific category of design 

flaws (static constructs) on the aforementioned quality aspect. 
There are few publications that try to leverage historical data for defect 

prediction. As an example, in [63] Moser et al. categorize Java classes as defective 
or defect-free based on 2 sets of metrics, product related and process related; they 
prove that the metrics from the second category are more efficient for predicting 
errors. This observation is further supported by [64]; it shows that code metrics do 

not change that much from one version to another, thus leading to the stagnation of 

the defect-proneness prediction models. 
 
 
 

2.4. Design flaws that affect software quality 
 

Design flaws have an impact on various aspects of software systems, 
including understandability [65] and maintainability [33]. Our study complements 
existing ones and focuses on their effect on testability and change- / defect-
proneness. 
 

2.4.1. Testability 
 

 In [66] Hevery presents several design flaws that make software projects 
difficult to test. They are grouped into 4 categories: Constructor does Real Work, 
Digging into Collaborators, Brittle Global State and Singletons, and Class Does Too 

Much. For each of these categories the author discusses the reasons why they have 
a negative impact on testability, a series of warning signs, and ways in which they 
can be fixed. Additionally, concrete examples are provided that allow for a better 
understanding of the underlying problems together with possible refactoring 
solutions. 
 Reference [67] describes a tool that was developed based on the concepts 
introduced in [66]. The tool can be used to analyze software systems and generate 

a testability report. This report contains information about the design flaws that 
affect a system’s classes along with scores that quantify each flaw’s impact on the 
testability of a certain class. Besides the testability evaluation, the tool also provides 
concrete refactoring solutions that can improve the overall testability of a system. 

 In [68] Sabane et al. investigate the effects of anti-patterns on the cost of 
unit testing and propose a number of refactorings that can reduce this cost. The 
indicator of testing cost considered is the number of test cases that satisfy the 

minimal data member usage matrix (MdMUM) criterion. A study was conducted 
using 4 open-source systems which shows that the classes that contain design flaws 
require a higher number of unit tests compared to other classes that are not 
affected by flaws. It also highlights that the testing cost can be significantly reduced 
by refactoring the classes to remove the design flaws. An additional finding is that 
certain flaws (such as Blob, Anti-Singleton, or Complex Classes) have a higher 

impact on this cost compared to others (such as Method Chain or Lazy Classes). 
 Reference [69] introduces the concept of testability anti-patterns and 
discusses 2 configurations of an object-oriented design that have a negative impact 
on its testability. These anti-patterns appear when “potentially concurrent client / 
supplier relationships between the same classes along different paths exist in a 
system”. The paper also discusses testability issues that might arise when applying 



                                                23 

certain design patterns. Based on this, the testability grid was created which can 
serve as a guideline on the risk of using a specific pattern. Furthermore, the authors 

define a series of testability constraints that can help minimize this risk. 
 Design flaws are not the only factors that have an impact on the testability 
of software projects. In [70] Tahir et al. present an empirical study on the degree of 
association between runtime properties and the class-level testability of object-
oriented systems. Similar to our work, testability is evaluated at unit test level; 2 
measurements are used to characterize it, size (test lines of code) and intended 

design (number of test cases). The results prove that there is a correlation between 

Dynamic Coupling / Key Classes and the testability of a class. Some of the Dynamic 
Coupling metrics utilized (such as Export Coupling) have a stronger correlation with 
the 2 testability measurements than others (such as Import Coupling). 
 Other properties of software systems can make them difficult to test. 
Reference [71] introduces the concept of test-critical dependencies and proposes an 
approach that can be used to identify them. They are “dependencies within a 
system that are critical to test complexity” and therefore should have an effect on 

testability. The main findings are that a small number of dependencies have a high 
impact on the testability of a system and that conventional coupling metrics cannot 
be used to pinpoint them. 
 

 2.4.2. Change- / defect-proneness 
 

 The impact of several design flaws on software defects is discussed in [72]. 
The flaws considered are: Brain Method, Feature Envy, Intensive Coupling, 
Dispersed Coupling, and Shotgun Surgery. The results show that although the flaws 
do correlate with software defects, it was impossible to determine which ones are 
the most harmful. They also prove that an increase in the number of design flaws 
makes a system more susceptible to errors. 

 Reference [73] assesses technical debt based on the flaws present in a 
particular version of a project. A framework is proposed and its effectiveness is 
proven by analysing the evolution of technical debt symptoms and uncovering past 
refactoring actions. The study shows that these refactoring actions are not always 
organized and coherent, not even when experienced developers are involved. 
 A study on the effects of anti-patterns on change- and fault-proneness is 
presented in [74]. However, there are several key differences between this research 

and what we are going to do: 1) from the 13 anti-patterns investigated only 1 is 
overlapping with our work, namely stateful Singleton; 2) only major releases are 

considered for the studied systems, while we will adopt a more fine-grained 
approach (analyse all the commits); 3) the methods for quantifying change- / 
defect-proneness are different in terms of versioning system, metrics, and 
categorization (e.g., bug-fix commits). 

 Similar observations can be made with regard to [75]. While this study is 
more elaborate than the previous one, it does not consider the category of flaws 
that we will focus on (static constructs) or the ones we plan to address in the future 
(e.g., object instantiations in constructors / methods or Law of Demeter violations). 
Furthermore, we want to investigate a large variety of quality aspects, not just the 
ones related to maintainability. 
 There are also publications which suggest that design flaws have a very 

limited effect on certain software quality attributes or no impact at all. One such 
example would be [76] in which the authors conclude that the effect of smells on 
the overall maintainability of a system is relatively minor. Reference [77] also 
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establishes that the impact of the 12 design smells that were investigated on 
maintenance effort is small. Similarly, [78] proves that even though some smells do 

have an effect on fault-proneness this effect is quite limited. All these aspects are 
worth investigating for other design flaws that have not been considered to date. 
 

2.4.3. Class dependencies 
 
By studying the design flaws that make object-oriented systems difficult to 

test or more change- / error-prone, it was found that those related to class 
dependencies have one of the biggest negative impact [79]. This includes global 
state (and singletons) and instantiations that occur in constructors or methods, so 
we have decided to investigate these flaws in greater depth. 

In [80] Hevery explains why static methods have a negative impact on the 
testability of software systems. He states that the main problem with this type of 
methods is the fact that they represent procedural code which is difficult to test. 

Unit testing assumes that a part of the application can be instantiated in isolation. 
During instantiation a series of dependencies are put together using mock objects in 
order to replace the real dependencies, thereby enabling that part of the code to be 
tested. This is impossible for procedural programming because there are no objects 
involved, the methods and the data are separate from one another. 

Reference [28] presents the most common cases in which the static 

keyword is used in the code and gives a number of reasons why it has a negative 

impact on several aspects of object-oriented systems, including maintainability and 
testability. The cases mentioned are: i) worker methods (used for different kinds of 
processing tasks), ii) factory methods (used to return preconfigured instances of a 
class), iii) singleton methods (used to limit the number of instantiations to a single 
global instance), and iv) global variables (used to store various configurations). The 
reasons why this static code is problematic are: because it causes violations of the 

main principles of object-oriented programming (such as encapsulation), 
encouraging tight coupling between the system’s classes and hindering unit testing. 

Reference [82] introduces the concept of “Class-Oriented Programming” and 
explains the main issues with this paradigm. It refers to classes that have only static 
attributes and methods and are never instantiated. The article discusses the 
problems caused by such classes and concludes that without objects and their 
interaction it is impossible to build complex software systems. Similar ideas are 

presented in [83]; the article mentions the only 2 situations in which using the static 
keyword does not cause problems, global constants and constructor-like static 

functions (used to replace overloaded constructors which might become 
ambiguous). In all the other cases having static members may cause problems 
because it is unclear in which class they should actually be placed. In general, static 
methods tend not to use the attributes of the classes in which they reside, thereby 

leading to violations of the Single Responsibility Principle (SRP). Some other reasons 
why static methods should not be used are the fact that they cannot be called 
polymorphically, they increase the complexity of a software system, and they are 
difficult to test (especially when new instances of other classes are created within 
them). 

In [84] Feathers proposes a rule that should be followed to make the code 
easier to test: “Never hide a Test Unfriendly Feature within a Test Unfriendly 

Construct”. The Test Unfriendly Constructs (TUCs) mentioned include static 
methods, static initialization expressions and static initialization blocks, while the 
Test Unfriendly Features (TUFs) are lengthy computations, accesses to side effecting 
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APIs and database / file system / network accesses. The author also advocates 
using Test-Driven Development as a means to ensure testability. 

The authors of [85] discuss both the benefits and the drawbacks of the Java 
instantiation mechanism. The benefits mentioned are a clear and comprehensible 
syntax, the ability to chain constructors in class hierarchies, and the fact that 
correct initialization can be enforced on the class’s clients. However, there are also 2 
drawbacks, namely that it is not polymorphic and that it allocates memory from the 
heap. These do not occur in all the cases, memory is not allocated when the 

constructor is called using super and calling constructors through reflection is 

polymorphic. In the context of testability, the second drawback causes major 
difficulties. Using new to instantiate a specific class in a constructor or method 
creates a dependency to the concrete type of the class that is being instantiated 
(because new is non-polymorphic). Nonetheless, this can be solved through 
Dependency Injection. The usefulness of DI is also discussed in [86], where Hevery 
provides a concrete example that highlights why Dependency Injection is better that 
object instantiation. 

Reference [87] contains 2 chapters in which Feathers discusses how to deal 
with global mutable state and object creation in constructors when trying to refactor 
legacy code. In terms of instantiations in constructors, the author specifies adding 
an additional parameter (instead of the instantiation) as the recommended solution. 
Overloaded constructors can be used so that not all the clients are forced to pass 
the additional argument. Feathers also proposes several solutions that can be 

applied when testing global state. For singletons, a static setter could be added to 
the class and the constructor can be changed to protected. Afterwards the singleton 
can be subclassed, and an object of the subclass will be created and passed to the 
setter. For static attributes, making them non-static and passing them as 
parameters is considered a better practice than accessing them as global variables. 
All the refactorings mentioned above make the legacy code easier to test, thereby 
providing a solid basis for restructuring it. 

Feather’s book also introduces the concept of seam. The author defines it as 
“a place where you can alter behavior in your program without editing in that 
place”. The usefulness of seams is highlighted when trying to break dependencies in 
order to test legacy code. The types of seams differ from one programming 
language to another; Feathers provides examples of processing seams, link seams, 
and object seams. Considering that in our investigations we will be utilizing systems 
developed in an object-oriented programming language (Java), only the last 2 

categories of seams are of interest. Java does not have a build stage before 

compilation, therefore processing seams cannot be leveraged. Each seam has an 
enabling point which is “a place where you can make the decision to use one 
behavior or another”. For link seams, the author provides an example where 
classpath is used as the enabling point that switches between different 
implementations of a class (which is included in the class under test). Calling a 

method on an object that is received as a parameter by the method in which the call 
is made was the basic example given for object seams. In this case, the enabling 
point is the parameter as its type can be controlled through the argument given to 
the method during unit testing. The author specifies that object seams are the best 
choice when trying to get portions of the code under test in object-oriented 
languages. The other types of seams are not as explicit as object seams and can 
make the tests that depend on them more difficult to maintain. 

In [88] Gil et al. introduce a catalog of micro-patterns that can be identified 
in the source code of Java systems. The authors argue that more than 75% of a 
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system’s code is written based on these micro-patterns. The patterns are divided 
into 8 main categories, 3 of which address static members (attributes or methods): 

Degenerate Behavior, Degenerate State, and Controlled Creation. In terms of actual 
micro-patterns, the ones of interest are: Stateless (a class with only static final 
fields), Common State (a class with only static fields), Restricted Creation (a class 
with no public constructors and at least 1 static fields of the same type as the class), 
and Cobol Like (a class with a single static method and with no instance members). 
Finally, the authors hint at nano-patterns (which are patterns of methods) and state 

that a combination of micro- and nano-patterns can be used to decompose an entire 

system. 
Reference [89] illustrates how Java developers implement and test 

singletons. Several aspects were taken into account including multithreading, 
classloaders, and serialization. However, the problems introduced by singletons in 
the context of testability persist. Singletons represent a global and static way of 
obtaining an instance of a class, which makes mocking impossible. Similar ideas are 
expressed in [90], which discusses the main issues with singletons and possible 

ways in which they can be removed. The author states that singletons are 
dangerous because they make debugging and unit testing difficult. The main 
problems mentioned are that they create dependencies which are hidden within the 
code (cannot be detected by examining the interfaces of classes or methods) and 
other classes are tightly coupled with the singleton instance (thus polymorphism 
cannot be used). These problems could be alleviated using Dependency Injection, 

possibly through DI frameworks like Spring or Guice. The main takeaway from the 
article is that object creation should be separated from business logic and singletons 
are preventing this. 
 
 

2.5. Main contributions and limitations 
 

The previous sections present the research that has already been done on 
the topics of interest. A series of limitations have been identified for the publications 
included and we will discuss them in the current section; this information is 
summarized in Table 2.5. 

 
Table 2.5. Main contributions and limitations of the surveyed articles 

Section Subsection Art. Main contributions Main limitations 

Design flaw and 
test smell 
detection 

Detection 
strategies and 
tool support 

[32] - provides concrete 
detection strategies 
for God Class and 
Data Class 

- only 2 flaws, not 
related to any software 
quality aspects 

[67] - only tool to address 

design flaws in the 
context of testability 
- assesses how 
difficult it is to test a 
particular class 

- based on the 

concepts introduced in 
[66] 
- the testability report 
is difficult to interpret, 
very restrictive 
interface 
- analyses can only be 
performed at class level 

[33] - proposes strategies 
for other design flaws 
(Shotgun Surgery, 
Refused Bequest) 

- none of the tools take 
into account software 
quality when / after 
identifying the design 



                                                27 

[34] - proposes strategies 
for other design flaws 
(Blob, Spaghetti 
Code, Swiss Army 

Knife) 

flaws 

[36] - uses change history 
information to detect 
different flaws 
(Divergent Change, 
Parallel Inheritance) 

[35] - provides refactoring 
solutions for the 
flaws it can identify 

[81] - can be used to 
define detection 
strategies for a large 
variety of design 
flaws 
- capable of 
integrating multiple 
analyses into a single 
uniform interface 

- the platform’s 
features could have 
been highlighted 
through a case study 

Test smells [38] - describes ways to 
detect test smells 

- none of the articles 
have used test smells 
as indicators of testing 
quality 

[39], 
[40] 

- prove that test 
smells are widely 
spread throughout 
the test code and 
that they impact 
program 
comprehension 

[41] - establishes a 
correlation between 
test smells and 
production class 
features 

[42] - establishes a 
correlation between 
test smells and 
design flaws 

Software 
evolution 

 [43] - utilizes historical 
data to improve 
design flaw detection 

- prove that historical 
data is useful, but are 
not related to the 
evolution of design 
flaws 

[44] - utilizes historical 
data to study the co-
evolution between 
production and test 
code 

[45], 
[46] 

- study the lifespan 
of code smell 

- none of the papers 
address any kind of 
static constructs [47] - initial attempt to 

investigate the 
evolution of a 
particular design flaw 
(God Class) 

[48], 
[49] 

- study the evolution 
of other design flaws 
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Evaluating 
software quality 
aspects 

Assessing 
software 
testability 

[52] - one of the first 
models to quantify 
testability 

- the proposed model 
evaluates testability at 
the design and analysis 
phase rather than at 

the implementation 
phase 

[53], 
[54] 

- investigate code 
metrics that can be 
used to quantify 
testability 

- none of the models 
evaluate testability 
based on the 
corresponding unit 
tests [55] - surveys the existing 

models for assessing 
testability 

Assessing 
change- / defect-
proneness 

[58] - analyzes the 
capability of metrics 
to predict change-
proneness 

- none of the proposed 
approaches utilize 
process related metrics 
for this prediction 

[59] - uses machine 
learning techniques 

to predict change-
proneness 

[60] - investigates the 
relationship between 
design patterns and 
change-proneness 

[61] - studies how a 
system’s size affects 
defect-proneness 

- only 1 system is used 
in the evaluation 

[62] - a more complex 
model for evaluating 
defect-proneness 

- although it considers 
3 types of bad design 
indicators (code smells 
being one of them), 
none of the static 
constructs are taken 
into account 

[63], 
[64] 

- prove that process 
related metrics are 
more efficient for 
predicting errors 

 

Design flaws 
that affect 
software quality 

Testability [66] - provides a list of 
design flaws that 
impact testability 

- problems were 
identified for each of 
the proposed flaws 
- does not try to 
validate that they 
actually affect 
testability 

[68] - investigates the 
effects of anti-
patterns on the cost 
of unit testing 

- do not explicitly 
address class testability 

[69], 
[70], 
[71] 

- other factors that 
have an impact on 
software testability 

Change- / 
defect-proneness 

[72] - discusses the 
impact of several 
design flaws on 
software defects 

- do not directly 
address change- / 
defect-proneness 
- do not consider static 
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[73] - evaluates technical 
debt based on the 
design flaws present 

constructs 

[74], 
[75] 

- study the effects of 
anti-patterns on 
change- / defect-
proneness 

- with the exception of 
Singleton, none of the 
publications study any 
other category of static 
constructs [76], 

[77], 
[78] 

- argue that design 
flaws have a limited 
impact on certain 
software quality 
aspects 

Class 
dependencies 

[80] - discusses the 
problems introduced 
by static methods 

- none of the articles 
provide ways in which 
the design flaws can be 
detected 
- they do not actually 
prove that the 
proposed flaws make 
the code more difficult 
to test 

[81] - discusses cases of 
“bad static” 

[83] - discusses cases of 
“good static” 

[84] - shows that static 
constructs can 
become even more 
problematic based on 
the features that are 
implemented in them 

[85] - explains the 
problems introduced 
by object 
instantiation 

[89], 
[90] 

- explain the 
problems introduced 
by singletons 

 
 
 
 
 

 
 
 

In summary, this chapter discusses: 

1. Different types of approaches that have been proposed to identify design 

flaws. 

2. Methodologies for studying the evolution of certain parts of the source 
code. 

3. Models for quantifying the software quality aspects of interest, namely 

class testability, change- and defect-proneness. 

4. Design flaws that were shown to have a negative effect on these quality 
aspects. 

5. A discussion on the differences between our work and the other articles 
presented in this chapter. 
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3. APPROACH 
 
 

 The chapter discusses the approach adopted in order to study 1) how static 
constructs are used (both in the latest version of a system and in previous 
iterations) and 2) their effect on several software quality aspects. First, we explain 

how the static constructs have been categorized and propose detection strategies 
for each type. Next, we describe the process through which we analyse the 
evolution of the different types of static constructs and the production classes that 
utilize them. The methods used for 1) assessing the testability of a particular class 
and 2) identifying change- / error-prone classes are thoroughly discussed in the 
following 2 sections. We end this chapter by providing concrete implementation 
details for the entire data collection process; for each decision that needed to be 

taken we try to explain the reasoning behind it. 
 
 

3.1. Categorizing and detecting static constructs 
 
 As discussed in Chapter 1, we do not believe that all static constructs are 
detrimental to the software quality aspects investigated. For example, constants 
should not have a negative effect on the testability of 1) the production classes in 
which they are declared or of 2) the classes that utilize them (if any). Because they 
are final, only 1 unit test is needed to determine if the value stored in them is 
correct. On the other hand, we do think that other static constructs (such as stateful 

singletons) have a high impact on this quality aspect. While they themselves might 
not be that difficult to test, the production classes that use them may be tested less 
because of the setup required to configure the appropriate singleton state. 

In order to establish which types of static constructs influence the quality 
aspects studied we must first categorize them. Considering the different 
granularities of the constructs in which the static keyword is used (entire classes for 

singletons vs. small parts of a class for constants or static methods), we decided to 

perform a multilevel categorization. At class level, we distinguish between 3 types of 
static constructs: 1) singletons (both stateful and stateless), 2) utility classes, and 
3) classes that contain only smaller instances. The detection strategies for the first 2 
types are as follows: 
 

 for singletons 3 conditions have to be met for the general form: 

1. there are no public constructors within the class; 

2. the class has a private static attribute (the ”singleton instance”) and a 
public static accessor method that performs lazy instantiation on this 
attribute and returns it; 

3. the aforementioned method is the only way in which the respective 
attribute can be accessed. 

 for utility classes there are also 3 conditions: 

1. there are no constructors within the class; 
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2. the class has only static final attributes (constants); 

3. all the public methods from the respective class are static. 

 
Figure 3.1. Overview of static construct categories 

 

 For singletons the strategy was further refined so that it can detect several 
variations of the pattern, namely the ones discussed in [91]. Therefore, besides the 
general, Lazy Instantiation variant, we are also able to identify 7 other forms: Eager 
Instantiation, Replaceable Instance, Subclassed Singleton, Delegated Construction, 
Different Placeholder, Different Access Point, and Limiton. By doing this we expect 
to increase the number of detectable instances, thereby improving the quality of the 

analysis. An additional condition is required to distinguish between stateful and 

stateless singletons. For the stateless ones we need to check that the respective 
class has only constants as attributes. 

 The classes that contain static constructs but are not singletons or utility 
classes are categorised based on the types of the instances present. Those that 
have static methods are divided into 2 categories: a) the static methods utilize / 
modify the class’s attributes and b) the static methods only operate on the received 
parameters. For these 2 types of instances the detection strategies are: 

1. the method is static; 

2. it is not part of a singleton or a utility class; 

3a. it uses at least 1 non-final attribute from the class in which it is located; 

      3b. it uses only the parameters that are received and static final attributes from 
the class. 
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 Finally, there are 3 more types of static constructs included in this 
categorization. The first 2 are related to attributes, namely static non-final ones and 

constants. They are easily detectible by going through all the attributes of a class 
and determining those that are declared static; in order to be categorized as 
constants they also need to be final. The last type of constructs are static 
initialization blocks, chunks of code enclosed in braces that are preceded by the 
static keyword. They are identified by determining the static instances from a class 
that are neither attributes nor methods. An overview of all the categories of static 

constructs is depicted in Figure 3.1. 

 
 
 

3.2. Studying evolution 
 

We rely on Git to obtain the data necessary for studying how static 
constructs and their clients have evolved throughout the lifespan of a system. 
GitHub was chosen because it provides access to numerous repositories for a wide 
variety of software projects. For each of the analysed systems sampling is 
performed on their commits with a frequency of 1 commit per month. We consider 
this time frame appropriate because although it is possible that static constructs 

were added and subsequently deleted in a single month, we do not think that such 
rapid changes are meaningful for our analysis. Afterwards, we compute the 

differences between each commit and the one that was selected for the previous 
month. We do this for every category of static constructs; these differences include: 
the total number of instances per category, the number of client classes for each 
instance, and the average number of clients for the entire project. Additional data 

related to each static construct and all of its clients from the respective commit are 
also recorded along with other useful information (e.g., a class being marked as 
Deprecated). These data are then used in our analysis on the evolution of different 
types of static constructs. 
 
 
 

3.3. Quantifying class testability 
 

Unlike previous studies that address this software quality aspect, we 

evaluate the testability of a production class based on the quantity and the quality 

of its corresponding unit tests. We rely on code coverage data to determine 
quantity, while for quality we check for certain smells that might appear in the test 
classes. Coverage information was considered because the lack of code coverage for 
a specific class in comparison to other similar classes would indicate that the 
respective class is more difficult to test. We look at 2 aspects when evaluating 
quantity: 1) the line coverage obtained for a production class, and 2) the 
percentage of methods from the class that are addressed by unit tests. Although the 

first aspect would already be a good indicator of how thoroughly a class is tested, 
we also investigate the second aspect in order to avoid situations in which a limited 
number of large production methods are adequately covered by tests while all the 
remaining ones (of smaller size) are completely disregarded. The coverage data are 
collected using JaCoCo [92] as it can be utilized on both Maven and Gradle projects 
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and provides a detailed report which also includes some class / method complexity 
measurements. 

Test smells are problems in the unit tests that might negatively affect the 
quality of test suites, thus also having an impact on the production code that is 
being addressed. Reference [93] defines them as “deviations from the guidelines 
that were proposed to aid developers in creating good test suites”. The presence of 
certain smells in the tests that cover classes which have / use static constructs can 
indicate that they are indeed harmful to testability. Let us consider singletons as an 

example. The Eager Test smell may appear because several production methods 

that utilize a singleton are called in the same unit test in order to avoid recreating 
the specific state needed for the singleton in multiple tests. In the same vein, the 
General Fixture test smell might be present in the setup method of a test class due 
to the fact that the state of a singleton is configured in the respective method even 
though it is only required in some of the unit tests. Both of the above are examples 
in which using singletons in the production code determines bad practices in the test 
classes. 

In terms of test smell detection, they are identified through tsDetect [94]. 

The tool takes as input a CSV file containing all the test classes of a system along 

with the production classes they are covering. As output it generates a CSV file that 

indicates which of the 19 smells are present in each test class. An overview of the 

test smells that can be detected is provided in Table 3.1. Even though some of the 

smells are quite general (e.g., Empty Test), most of them represent real problems 

in the test code that may be correlated with a class's lack of testability. Simply 

determining whether or not a specific smell is present in a test class is insufficient 

for a thorough analysis on unit test quality. Therefore, the tool was extended so that 

it can identify which (and how many) smells are present in a particular unit test. 

When assessing the testability of a production class we do not compare it to 

all the other classes in the system, but rather with similar classes in terms of size 

and complexity. It would not make sense to compare the testability of a large, 

complex class (which by its nature is difficult to test) with that of a small, trivial 

one. To compute similarity, we rely on Patrools [95] to extract size metrics (such as 

lines of code or number of methods) while for complexity we also integrate the 

scores provided by JaCoCo. Now that we have determined the groups of production 

classes which can be considered similar, we need a suitable method for comparing 

the classes that are part of a group. It would be difficult to reason in terms of 

individual values (e.g., line coverage or total number of smells present in the 

corresponding test classes); thus, an aggregate metric is much more appropriate. 

To aid us in this endeavour we introduce the testability score. This complex 

metric combines both the quantitative and the qualitative aspects of the 

corresponding test code and represents the difficulty of testing a certain class. If a 

production class has a higher testability score than another, then the latter is harder 

to test. In order to compute this score, the aspects of interest are assessed 

independently. As discussed before, for test code quantity we consider 1) line 

coverage and 2) the percentage of production methods addressed by unit tests, 

while for quality we look at 1) the percentage of unit tests in which smells are 

present and 2) the number of different types of smells that appear in a test class. 

For each of these 4 aspects, a score between 0 and 5 is assigned based on a set of 

threshold values; the thresholds for each aspect are summarized in Figure 3.2. For 

example, the corresponding score for line coverage is: 0 if less than 10% of the 
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code is addressed by unit tests; 1 for coverage between 10% and 25%; 2 for 

coverage between 25% and 50%; 3 for coverage between 50% and 75%; 4 for 

coverage between 75% and 90%; 5 if more than 90% of the code is covered by 

tests. 

Table 3.1. Test smells identified by tsDetect 

Test smell Acronym Description 

Assertion 
Roulette 

AR test method has multiple non-documented assertions 

Conditional Test 
Logic 

CTL test method has 1 or more control statements 

Constructor 
Initialization 

CI test class has a constructor declaration 

Default Test DT test class has default behaviour (auto-generated by 
various development environments) 

Duplicate Assert DA test method has more than 1 assertion with the same 
parameters 

Eager Test EaT test method has multiple calls to more than 1 production 
method 

Empty Test EmT test method does not have a single executable statement 

Exception 
Handling 

EH test method has at least 1 throw statement or catch clause 

General Fixture GF not all the attributes instantiated in the setup method of a 
test class are utilized in every unit test 

Ignored Test IT test method or the entire test class has an @Ignore 
annotation 

Lazy Test LT multiple unit tests from a test class call the same 
production method 

Magic Number 
Test 

MNT test method has 1 or more assertions with a numeric literal 
as an argument 

Mystery Guest MG test method has object instances of file or database classes 

Redundant Print RP test method calls 1 or more write methods from the 
System class 

Redundant 
Assertion 

RA test method has an assertion in which the expected and 
actual parameters are the same 

Resource 
Optimism 

RO test method makes an optimistic assumption that an 
external resource (e.g., a file) is available 

Sensitive Equality SE test method calls the toString() method in 1 or more of its 
assertions 

Sleepy Test ST test method calls the Thread.sleep() method 

Unknown Test UT test method does not have a single assertion or 
@Test(expected) annotation parameter 

 

The scores for the 2 aspects from each category (quantity / quality) are 

aggregated through a mean value; thus, we compute 2 new scores, one for quantity 

and another for quality. These 2 values are aggregated once again using the same 

procedure, thereby obtaining the final score for testability. As an example, we have 

a production class for which we calculated the following metrics: 1) 57.5% line 

coverage, 2) 46.5% of its methods are addressed by unit tests, 3) 23% of the tests 

have at least 1 smell, 4) 5 different types of test smells were encountered. The 

corresponding individual scores are 3, 2, 4, and 2, respectively. Therefore, the 

quantitative score for this class is 2.5 while the qualitative one is 3. As a result, the 

testability score for the class is 2.75. If a similar class has an overall score of 4, it 

means that the class is easier to test than the one which was analysed. Both the 
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individual scores and the aggregate ones can provide insight into how difficult it is to 

test a particular class. By determining in which of the investigated aspects the 

production classes suffer more, we could suggest certain improvements to the 

testing process. 

 
Figure 3.2. Thresholds for the quantitative and qualitative aspects 

 
 

 

3.4. Identifying change- / error-prone classes 
 
 In order to detect the classes that are more susceptible to changes / errors 

we have to rely again on a system’s version history. The key difference when 
evaluating these 2 quality aspects is that for error-proneness we only consider the 
commits that correspond to bug-fixes. Therefore, determining whether or not errors 

were resolved in a particular commit is the first step in the entire process. Besides 
the information extracted from the commit message, we also need access to the Jira 
instance for the respective project to retrieve a list of issue keys corresponding to 
bugs. The following steps can be followed to establish if a commit is a bug-fix: 

1) we check whether or not the commit message contains a Jira issue key; 

2a) if it does, we test the key against the list that was computed earlier; 

3a) if the list contains the key, we mark the commit as a bug-fix; 

3b) otherwise, the commit is disregarded as it is related to other 
development tasks (e.g., adding a new feature); 

2b) if the commit message does not include an issue key, we check for 
specific keywords (such as bug, error, or fix) within the message; 

4a) if at least 1 keyword is present along with a production class / method 
name, the commit is considered a bug-fix; 

 4b) otherwise, it is ignored in the analysis concerning error-proneness. 
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Figure 3.3. Categorizing commits as bug-fixes 

 
As shown above, both the commit message and the information extracted 

from the associated Jira issue tracker are used to categorize commits as bug-fixes. 
First, the commit message is parsed in order to determine if it contains 1 or more 
issue keys. If this is the case, we check whether or not the respective key 
corresponds to a bug based on the list of bugs that was computed earlier. The 
commits with such keys are considered bug-fixes; the others are disregarded 
because the issue keys correspond to other development tasks, including but not 

limited to improvements, new features, auxiliary tasks, and testing. If there is no 
Jira issue key in the commit message, we check for variations of particular keywords 
such as bug, error, or fix; in case we find such a keyword, we also look for class / 
method names. If a class name is encountered, we consider that the respective 

production class was fixed in that commit. For method names, we go through the 
list of classes that were modified in that commit (computed while assessing change-
proneness) and determine the class that contains the methods of interest. If a 

commit does not have any Jira issue keys or specific keywords, then it does not 
represent a bug-fix; therefore, it is not included in our analysis on defect-proneness. 

 After we identify all the commits in which bugs were repaired, we start our 
evaluation on the impact of static constructs on change- and defect-proneness. 
First, we iterate over the commits and determine what was changed between 2 
consecutive versions. The basic features provided by Git dif were considered 
insufficient for a thorough analysis; therefore, we use a specialized tool called 
ChangeDistiller [96] to extract fine-grained source code changes. The categories of 
changes that can be identified along with the specific modifications from each 

category are summarized in Table 3.2. We included all types of changes in our 
study, even those related to comments and documentation. These were not 
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disregarded because, although they do not represent significant modifications (such 
as adding new features or fixing bugs), they do improve the understandability of the 

respective parts of the code. A class might be less susceptible to change due to the 
fact that its functionalities are understood properly. 
 Once all the fine-grained changes have been extracted, we can begin our 
assessment on class change- / defect-proneness. The analyses are similar, but in 
the one related to defect-proneness we only consider the commits that were 
categorized as bug-fixes. For each type of static construct, we want to establish 2 

things: 1) if the classes that contain them are modified more frequently compared 

to other similar classes, and 2) whether or not more changes are performed on 
them per commit. The first aspect is important because if that is the case, then the 
respective classes can be considered more change-prone (or error-prone if only the 
bug-fix commits are studied). The second aspect complements the first one; for 
example, there might be situations in which a production class was modified in a 
smaller number of commits, but the amount of changes that were performed in 
each commit is significant. Such a class should be categorized as having a higher 

change-proneness than one that was modified in more commits but only 1 or 2 
changes occurred per commit. Both aspects will be taken into account during the 
evaluation; in the particular case in which the values obtained for them when 
comparing 2 classes are contradictory, we will lean towards the one for which the 
difference is greater. As an example, if one class was modified in 30 commits with 
an average of 2.3 changes per commit while another was changed in 10 commits 

and the corresponding average is 2.6, then the first class is considered more 
change-prone. 
 

Table 3.2 Categories of changes retrieved by ChangeDistiller 

Change category Change Acronym 

ADDED_CLASS ADDITIONAL_CLASS AC 

REMOVED_CLASS REMOVED_CLASS RC 

CLASS_DECLARATION CLASS_RENAMING CR 

PARENT_CLASS_CHANGE PCC 

PARENT_CLASS_DELETE PCD 

PARENT_CLASS_INSERT PCI 

PARENT_INTERFACE_CHANGE PIC 

PARENT_INTERFACE_DELETE PID 

PARENT_INTERFACE_INSERT PII 

REMOVED_FUNCTIONALITY RF 

ADDITIONAL_FUNCTIONALITY AF 

METHOD_DECLARATION RETURN_TYPE_CHANGE RTC 

RETURN_TYPE_DELETE RTD 

RETURN_TYPE_INSERT RTI 

METHOD_RENAMING MR 

PARAMETER_DELETE PD 

PARAMETER_INSERT PI 

PARAMETER_ORDERING_CHANGE POC 

PARAMETER_RENAMING PR 

PARAMETER_TYPE_CHANGE PTC 

ATTRIBUTE_DECLARATION ATTRIBUTE_RENAMING AR 

ATTRIBUTE_TYPE_CHANGE ATC 

ADDING_ATTRIBUTE_MODIFIABILITY AAM 
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REMOVING_ATTRIBUTE_MODIFIABILITY RAM 

ADDITIONAL_OBJECT_STATE AOS 

REMOVED_OBJECT_STATE ROS 

BODY_STATEMENTS STATEMENT_DELETE SD 

STATEMENT_INSERT SI 

STATEMENT_ORDERING_CHANGE SOC 

STATEMENT_PARENT_CHANGE SPC 

STATEMENT_UPDATE SU 

BODY_CONDITIONS CONDITION_EXPRESSION_CHANGE CEC 

ALTERNATIVE_PART_DELETE APD 

ALTERNATIVE_PART_INSERT API 

COMMENTS COMMENT_DELETE CD 

COMMENT_INSERT CI 

COMMENT_MOVE CM 

COMMENT_UPDATE CU 

DOCUMENTATION DOC_DELETE DD 

DOC_INSERT DI 

DOC_UPDATE DU 

OTHERS UNCLASSIFIED_CHANGE UC 

DECREASING_ACCESSIBILITY_CHANGE DAC 

INCREASING_ACCESSIBILITY_CHANGE IAC 

ADDING_CLASS_DERIVABILITY ACD 

ADDING_METHOD_OVERRIDABILITY AMO 

REMOVING_CLASS_DERIVABILITY RCD 

REMOVING_METHOD_OVERRIDABILITY RMO 

 
 

 

3.5. Implementation 
 

The process employed to collect the necessary data is summarized in Figure 
3.4 and consists of 3 steps. First we address the presence / usage and the evolution 
of static constructs (and their clients), as shown in Figure 3.4(a). An Eclipse plugin 
called Patrools [95] was 1) used to extract data related to a system's class structure 
and 2) extended by us with the proposed detection rules and other measurements 

that were needed. As an example, for singletons we added a rule that checks if a 
class does not have any public constructors. Once all the detection strategies have 

been implemented, the analysis on static construct presence / usage can be 
conducted. For the latest version of a system, we determine the number of 
instances of each type (as per the categorization from Section 3.1). In terms of 
static construct usage, we identify the client classes of an instance based on the 
FAN-IN of the production class that contains it. 
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Figure 3.4. Implementation of the data collection process 
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We also integrated the jGit API into Patrools and utilized it to retrieve the 
source code of a system from the corresponding Git repository. We iterate over the 

commits starting from the initial one and select the last commit of each month as 
the version of interest. We run the detection strategies described in Section 3.1 in 
order to identify instances of static constructs together with all the classes that use 
them and compare the results with those obtained for the commit of interest from 
the previous month. By doing this, we are able to determine 1) which static 
constructs were added / removed since the previously studied commit and 2) how 

many production classes are currently using a particular instance. Other useful 

information, such as classes being marked as Deprecated, are also recorded and 
considered in our analysis. 

Figure 3.4(b) depicts the process through which the testability of a class is 
assessed in relation to other similar classes. For the latest version of a project we 
first build the entire codebase using either Maven or Gradle (depending on how the 
system is structured). Then JaCoCo is utilized to collect code coverage data, 
including line and branch coverage, along with an assessment of class / method 

complexity. The plugin generates a coverage report that is parsed using the jDom 
API in order to extract the values of interest. Besides coverage information, we have 
also included test smell data in our quantification of class testability. Patrools is used 
to determine all the production classes that are covered by a test class based on the 
latter's FAN-OUT. A CSV file is created which contains these associations; the file is 
then given as input to tsDetect [94]. The tool verifies which of the smells are 

present in each unit test and generates another CSV file with the results that is 
parsed using OpenCSV. We extended tsDetect so that it reports the smells per unit 
test, not for an entire test class; this allows for a more thorough analysis on the 
quality of the unit tests. 

Patrools is also utilized to calculate size and complexity measurements for a 
system's production classes. This is done in order to find classes that are similar to 
those with static construct instances. Similarity is computed using both the 

complexity scores provided by JaCoCo and the Patrools measurements mentioned 
before. Two classes that are detected as similar can then be compared based on 
their corresponding testability scores. These values are obtained by aggregating the 
1) code coverage and 2) test smell data described above. 

Finally, Figure 3.4(c) illustrates how change- and defect-proneness can be 
evaluated. First, we establish an HTTP connection to the Jira server for the 
respective system using the Java HttpURLConnection class. Afterwards, subsequent 

GET requests are performed until all the information related to the issues is 

collected. The data is retrieved in JSON format and parsed using the JSON.simple 
library. Once this is completed, we rely again on the jGit API to fetch the system’s 
source code from the Git repository and iterate over its commits. For each commit, 
we apply text processing techniques on the commit message to extract the 
information necessary for establishing whether or not it is a bug-fix. 

We also compute the differences between each commit and the one before it 
in order to determine the classes that were modified. As discussed in the previous 
section, a simple Git diff would not have been enough for a thorough analysis, 
therefore we use ChangeDistiller to obtain fine-grained source code changes. With 
this tool we are able to gather data related to the production classes that suffered 
modifications, the entities that were altered, and the changes that were performed. 
After collecting all the information, we can assess if the classes with static 

constructs were changed more frequently during standard / bug-fix commits and 
determine the specific types of the modifications that occurred. 
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All these aspects are integrated into a tool that was built on top of Patrools, 
thereby obtaining a new Eclipse plugin. This tool has separate modules for 

identifying design flaws, studying their evolution, and evaluating a specific software 
quality aspect. We configured it: 1) with the appropriate detection strategies for the 
different categories of static constructs; 2) to gather the information needed for 
analysing the evolution of these constructs; 3) with the metrics required for 
quantifying the 3 quality aspects of interest (e.g., the testability score). After 
collecting all these data, we are able to perform our analyses (on which we will 

detail in the following chapter). 

 

 
 
 
 

In summary, this chapter discusses: 

1. The categorization of static constructs and the detection strategies for 
each of the following categories:  

 singletons (both stateful and stateless), general form along with 
several variations of the pattern; 

 utility classes; 

 static methods that access state / only operate on parameters; 

 static non-final attributes and constants; 

 static initialization blocks. 

2. The process for studying the evolution of different types of static 

constructs which includes: 

 the total number of instances from a category; 

 the number of client classes for each instance; 

 additional information (e.g., instances being marked as Deprecated). 

3. The model for evaluating class testability; more specifically, the testability 
score which is an aggregate of: 

 a quantitative score based on line coverage and the percentage of 

production methods that are covered by unit tests; 

 a qualitative score based on the percentage of tests that contain 
smells and the number of different types of smells present in a test 
class. 

4. The method for assessing change- / error-proneness which entails: 

 establishing whether or not a commit is a bug-fix; 

 extracting fine-grained source code changes for all the commits of a 
system; 

 determining if the classes that have static constructs were modified 
more frequently during normal / bug-fix commits and whether or not 
more changes were performed on them per commit. 

5. The implementation of the entire data collection process. 
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4. DESIGN OF THE EMPIRICAL STUDY 
 

 
This chapter explains how we designed the empirical study that was 

conducted. We start by discussing the main goal of the study and the hypotheses 

that were formulated. Then we describe the independent and dependent variables 
considered, together with the procedures through which they were measured. The 
criteria based on which we selected the systems included in the study are also 

covered. Finally, the last section of this chapter presents all the analyses that were 
conducted as part of the empirical study. 
 
 

4.1. Main goal 
 

 As explained in Chapter 1, the goal of this thesis is to provide a better 
understanding of static constructs, their evolution, and the software quality aspects 
on which they have a negative impact. In order to achieve it, we formulated 3 

research questions: 

 RQ1. Are static constructs used in complex software systems? 

 RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

 RQ3. Do static constructs have a negative impact on software quality 
aspects? 

 The main objective of the empirical study is to obtain answers to these 
research questions. To do this, we analyse each of these aspects in isolation. First, 
we investigate what types of static constructs are present in complex software 
systems and whether or not they are utilized by other production classes. Then we 
study the evolution of each category of static constructs throughout the lifespan of a 

system. The effects of using these constructs on several software quality aspects 
are also considered. By performing these analyses, we will understand which types 
of static constructs are problematic and should be avoided, thereby aiding 

developers in creating better systems. 
 
 
 

4.2. Formulated hypotheses 
 
 As discussed in Section 1.2, we made several assumptions in regard to 
static constructs, their evolution, and the effects they cause on various software 

quality aspects. The first major assumption was that instances of such constructs 
are present in the production code and there are other classes that utilize them. If 
this assumption does not hold, then there is no reason to proceed with our study. 
The second assumption addresses the evolution of static constructs; we want to 
determine if the number of instances increases as a system grows in size. If this is 
not the case, then we could consider it a first sign that some static constructs are 
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dangerous and the developers have already become aware of the potential problems 
they cause. Finally, the third assumption is that static constructs have a negative 

impact on the 3 quality aspects we are investigating. While we do not expect all 
types of static constructs to be detrimental, we are confident that at least some of 
them are (e.g., stateful singletons). 
 In order to establish whether or not these assumptions are true, we 
formulated a series of hypotheses corresponding to each of them. For every 
hypothesis we provide a null and an alternative variant; we want to determine which 

of the variants holds true. 
 

Hypothesis 1 

 Null hypothesis (H1null): Static constructs rarely appear in complex 

software systems. 
 Alternative hypothesis (H1alt): Static constructs are present in the 

production code and there are other classes that utilize them. 

Hypothesis 2 

 Null hypothesis (H2null): Static constructs are being used less in later 
iterations of a project compared to the initial versions. 

 Alternative hypothesis (H2alt): The number of static constructs increases 
as a system grows in size. 

Hypothesis 3 

 Null hypothesis (H3null): Static constructs do not have a negative impact 
on software quality. 

 Alternative hypothesis (H3alt): There are some types of static constructs 
that negatively affect the software quality aspects investigated. 

 

 The first hypothesis covers RQ1, while the second one addresses RQ2. The 
last hypothesis was refined for each quality aspect of interest. As an example, for 
testability the null variant would be “Static constructs do not have a negative impact 
on class testability”, while the alternative one is “There are some types of static 
constructs that negatively affect the testability of the production classes in which 
they are present / that utilize them”. Establishing which of the variants is true for 
each of these hypotheses represents the main focus of the empirical study. The 

following sections describe the experiments that were performed in order to validate 

these hypotheses. 
 
 
 

4.3. Independent and dependent variables 
 

We determined the independent and dependent variables for each of the 
hypotheses and developed methods for measuring them. Table 4.1 provides an 
overview of these variables along with their measurement procedures. Most of the 
procedures have already been discussed in the chapter regarding the approach; 

those that were not are explained in the subsections covering their corresponding 
hypothesis. 
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Table 4.1: Independent and dependent variables per hypothesis 
Hypothesis Independent 

Variables 
Procedure Dependent 

Variables 
Procedure 

H1 System 
characteristics 

Subsection 4.3.1 Types of static 
constructs present 

/ utilized 

Section 3.1 

H2 System size and 

complexity 

Subsection 4.3.2 Number of static 

construct instances 

/ client classes 

Section 3.2 

H3 Static construct 

presence / usage 

Section 3.1 Impact on the 3 

software quality 

aspects 

Sections 3.3 and 

3.4 

 

 4.3.1. Hypothesis 1 
 For the first hypothesis, the independent variables are the specific 

characteristics of a software system. We want to determine if they have an impact 
on the dependent variables, namely the types of static constructs that appear / are 
utilized by other classes in the production code. We expect different categories of 
static constructs to be encountered more frequently depending on the particular 
characteristics of a project. For example, libraries should have more utility classes 
compared to other types of systems. 

 The static construct instances are categorized based on the procedure 
discussed in Section 3.1. Both the instances and their client classes are identified 
through the detection strategies introduced in the respective section. The procedure 
computes the number of instances / clients from each category for the latest version 

of a project. We are keen to observe which categories appear / are utilized more 
depending on a system’s characteristics. Besides the general characteristics, such as 
size and complexity, there are several others that will be investigated (e.g., key 

functionalities). As an example, considering their nature, we expect libraries to have 
a considerable amount of static methods. 
 

 4.3.2. Hypothesis 2 
 The second hypothesis addresses the evolution of static constructs and their 
usage. It tries to establish whether or not more static constructs are introduced as a 

system grows in size and becomes more complex. While additional instances should 
appear as new classes are created for the respective project, this may not 
necessarily be the case; if some types of static constructs have been proven harmful 
to one or more software quality aspects, then the developers might refrain 
themselves from using them in the future. Therefore, of particular interest are 

instances 1) for which the number of client classes has decreased or 2) that were 

completely removed from the production code. 
 The independent variables for this hypothesis are the metrics related to size 
and complexity for a particular version of the project. While the general trend is that 
more classes are added and the existing ones become increasingly more complex as 
a system evolves, there might be some versions (e.g., refactorings) in which the 
number of classes / methods or their complexity decreases. We want to see what 
happens with the number of instances of static constructs and the classes that 

utilize them especially when such situations occur. Also, we will try to go beyond 
just the numbers and understand the reasons why a static construct was removed 
or lost a considerable amount of clients. The measurement procedure for the 
dependent variables was discussed extensively in Section 3.2. 
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 4.3.3. Hypothesis 3 
 For the final hypothesis, the independent variables are the different 
categories of static constructs and their client classes. We want to establish whether 
or not they have a negative impact on the 3 software quality aspects that are 
investigated, namely class testability, change-proneness, and defect-proneness. 
While some types (such as constants) should not make testing more difficult, there 
are others (e.g., stateful singletons or static non-final attributes) that might be 
extremely harmful. We will investigate every category of static constructs in 

isolation for each quality aspect. 
 As previously mentioned, the process for categorizing and detecting the 
instances (and their clients) is described in Section 3.1. Sections 3.3 and 3.4 contain 
the methods through which we quantify the 3 quality aspects. Class testability is 
evaluated from both a qualitative and a quantitative perspective; this assessment 
enables us to obtain a testability score for each production class. Change- and 
defect-proneness are determined in a similar manner, the only difference being that 

for the latter only bug-fix commits are taken into account (not the entire commit 
history). A class is considered change- / error-prone if it was modified more 
frequently throughout its existence and more changes were performed on it 
compared to other similar production classes. 
  
 

 

4.4. System selection 
 

When choosing the systems for the empirical study we took into account a 

number of criteria, including the ones discussed by Pinto et al. in [97]. The projects 
needed to be: 

 relevant in terms of size and complexity (especially the production code). 
We tried to avoid trivial systems as they do not represent appropriate 
examples. Therefore, we selected projects that have a large number of 
classes / methods and complex hierarchies. The smallest system 
(Digester) has roughly 200 classes, while others have up to 2000 (e.g., 

Tomcat). 
 available through Git and have a substantial number of versions. 

Considering that we are studying the evolution of different types of static 
constructs, each system needed to have a corresponding Git repository 

that contains its commit history. We selected projects with a large amount 
of commits; the number of versions ranges from 800 (jHotDraw) to more 
than 23000 (Tomcat). Additionally, all the systems are still in active 

maintenance; there are no projects that have not received an update in 
more than several months. 

 extensively covered by unit tests. Class testability is one of the three 
software quality aspects investigated in our study. We evaluate it based 
on the quantity and the quality of the associated unit tests; thus, it would 
not make sense to include projects that do not have an appropriate test 

suite. The only exception is jHotDraw, a system which is not tested 
properly; we decided to include this system because it is used as 
reference in [91], an article which addresses the different variations of the 
Singleton anti-pattern (that we are also detecting). Besides this project, 
the ratio between the number of lines of test and production code for the 
rest of the systems is above 0.5. 
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 associated with a Jira issue tracker. To study defect-proneness we need to 
identify the commits in which bugs were fixed. As explained in Section 

3.4, if the commit message contains a Jira key, then we rely on the 
corresponding issue tracker to determine whether or not the respective 
key is related to a bug. Therefore, the selected projects should have a Jira 
instance with all the issues that were created during development 
available for analysis. 

 

Table 4.2 Overview of the selected systems 
System # 

Versions 

First version Last version Test / 

code 

ratio 
# 

Classes 

# 

Methods 

# 

Tests 

Release 

date 

# 

Classes 

# 

Methods 

# 

Tests 

Release 

date 

BCEL 1704 359 2897 0 29/09/2001 432 3749 383 19/04/2021 0.99 

Commons 

Collections 

3567 6 113 64 14/03/2001 525 4451 3523 19/04/2021 1.44 

Commons 

Lang 

6330 14 199 294 19/06/2002 318 3599 4567 19/04/2021 1.76 

Commons 

Math 

6622 4 85 22 12/04/2003 820 5800 5471 13/04/2021 0.69 

Digester 2187 14 176 9 22/04/2001 188 927 768 19/04/2021 0.70 

Geode 10173 4992 56289 29812 29/03/2015 4528 55799 24775 20/04/2021 0.52 

jHotDraw 804 1 6 0 12/09/2000 291 2713 200 22/05/2020 0.05 

Pig 3696 177 932 177 29/09/2007 1756 11870 5706 15/10/2020 0.59 

Spring 

Core 

22423 167 1059 608 21/09/2008 646 4827 4124 21/04/2021 0.54 

Tomcat 23127 1024 10771 0 27/02/2006 2126 21180 6637 20/04/2021 0.53 

Wicket 21060 188 1068 502 01/09/2004 1235 8094 5217 21/04/2021 0.56 

 
 Based on the above criteria, we selected 11 projects to be included in the 
empirical study. We tried to choose systems that differ in terms of 1) size and 
complexity, 2) development practices, and 3) testing effort, while still meeting the 

criteria. Table 4.2 presents an overview of the main characteristics of the chosen 
projects; it shows the number of versions studied (column 2), metrics gathered for 
the first version of a system and the last release considered (columns 3-10), and 
the test / production code ratio for the latest version (column 11). A visual 
representation of the collected metrics is provided in Figures 4.1-4.3. Geode was not 
included in these visualizations because of its considerably higher values compared 

to the other projects, which would make the rest of the data more difficult to 
interpret. 
 The initial version considered is the first commit in which actual code was 

present (not just configuration files and documentation). Besides the initial and final 
versions of a project, we also included intermediate ones when trying to illustrate 
how the 11 systems have grown in terms of number of classes, methods, and unit 
tests. These intermediate versions are the last commits of each year for the entire 

lifespan of a project. A general observation would be that the number of classes / 
methods increased considerably in the first years of development, and then they 
remained constant or even decreased (e.g., Commons Math) once a system reached 
maturity. This is an important consideration that should be kept in mind when 
studying the evolution of static constructs. The number of unit tests follows a similar 
evolutionary pattern (especially for the systems that are extensively tested). 
However, there are several cases in which no unit tests were present in the initial 

version; they were added in subsequent commits. 
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Figure 4.1. Evolution of the number of classes for each project 

 

 
Figure 4.2. Evolution of the number of methods for each project 
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Figure 4.3. Evolution of the number of unit tests for each project 

 

 
 

4.5. Analyses conducted 
 
 We begin the empirical study with a preliminary analysis of the selected 
systems; this allows for a better understanding of 1) a system’s size and structure, 
2) its history, and 3) the quantity and quality of the testing that was performed on 

its latest version. The following 3 analyses are directly related to the research 
questions that were formulated. The first one addresses the static construct 
instances present in the production code, their types, and the other classes that 
utilize them (their clients). In the second analysis, we study how instances from 
each category have evolved throughout a project’s lifespan. Finally, the last analysis 
evaluates the impact of each type of static construct on the 3 software quality 

aspects considered. 

 

4.5.1. Preliminary analysis 
 
This analysis goes beyond the initial measurements that were performed on 

the selected systems (which were presented in the previous section). Besides the 

number of classes and methods, we are also interested in the overall complexity of 
a system and the class hierarchy. Several other characteristics (such as key 
functionalities) are also recorded. All this information is extremely important 
considering that for the first hypothesis the independent variables are the specific 
characteristics of a project. 

With regard to evolution, in addition to the number of versions we also want 
to determine 1) the average number of classes that were modified during a commit 

and 2) the average number of fine-grained source code changes that were 
performed. This allows us to have an idea of the general patterns by which a system 
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evolves. It can serve as a basis for studying if classes that have static constructs 
evolve differently, a topic which will be addressed in a following analysis. During this 

preliminary analysis, we also establish which of the commits are bug-fixes (by 
following the procedure from Section 3.4). 

Last but not least, we evaluate the overall quantity and quality of the unit 
tests for the latest version of a project. For quantity we first perform code coverage 
measurements; however, we also want to calculate the percentage of production 
methods that are addressed by at least 1 test. In terms of quality, we are keen to 

observe 1) which types of smells are present in the test code (based on the 

categorization from Section 3.3) and 2) the average number of smells per test class. 
These metrics will allow for an initial assessment of the testing that was performed 
on the respective system. 
 

4.5.2. Static construct presence / usage 
 

As mentioned above, the main analysis is split into 3 parts. First, we study 
the latest version of a system in order to establish 1) if static constructs are present 
and 2) how they are utilized. Besides the number of instances, we are also 
interested in their types (as categorized in Section 3.1). Each category of constructs 
is analysed in great detail. As an example, for singletons we distinguish between 
stateful and stateless ones; moreover, the analysis is further refined so that all the 

singleton variations discussed in [91] are considered. 

In terms of usage, we want to go beyond the number of client classes and 
understand if they are localized in several packages or spread throughout the source 
code. We compare the results with those obtained for other entities of the same 
type, thus allowing us to determine if certain types of static constructs are used 
differently. 
 

4.5.3. Evolution of static constructs 
 
Regarding the evolution of the instances from each category, we analyse 

monthly commits to establish whether or not such instances / classes that utilize 
them were added / removed within this timeframe. We are keen to observe if the 
number of static constructs increased as a system grew in size. Similar to the 

previous analysis, the instances from each category are studied separately. Special 
attention is dedicated to cases in which an instance was deleted or marked as 
Deprecated because we want to understand the reasons behind such a decision. 

The number of client classes for each instance is also examined from its 
creation up to the latest version considered (or until it was removed) and compared 
to that of similar classes. We are very interested in cases in which the number of 

clients suddenly dropped and want to see what happened with the respective static 
construct in previous commits. In our analysis on evolution, we use graphs to 
display how each category of instances / their clients have evolved for every system 
included in the study. By doing this, we are able to visualize the entire process and 
uncover certain patterns that might appear. 
 

4.5.4. Impact on software quality aspects 
 
In the last analysis, we are looking for correlations between the usage of 

static constructs and lower values for the 3 software quality aspects that are 
investigated. Each category of static constructs is studied in isolation, thereby 
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allowing us to determine which types have the highest effect on the respective 
quality aspects. For example, to study the impact of static non-final attributes on 

class testability, we compare the testability scores of the classes that have such 
instances with the scores obtained for other similar classes. More specifically, we 
want to establish if the former 1) are covered more thoroughly by unit tests and 2) 
the tests are of better quality (in terms of test smells). As explained in Section 3.3, 
the testing effort is quantified based on line coverage and the percentage of 
production methods that are addressed by tests. For the test code quality, we look 

at the percentage of unit tests that contain smells and the different categories of 

smells present in a test class. The process is repeated for all the other categories of 
static constructs, thus obtaining a better understanding of the impact of each type 
on testability. 

The effect on the other 2 quality aspects is investigated in a similar manner. 
Both for change- and defect-proneness we try to determine if the classes that 
contain different types of static constructs 1) were modified more frequently and 2) 
more changes were performed on them compared to other production classes. The 

only difference between the 2 quality aspects is that for error-proneness we only 
consider the commits that were categorized as bug-fixes (as explained in Section 
3.4). This is done for each category of static constructs, thus enabling us to pinpoint 
which types are the most detrimental. Some types may have a negative impact on 
only 1 or 2 of the aspects, while others might affect all 3. The latter are the most 
problematic and should be avoided at all cost. 

 
 
 

In summary, this chapter discusses: 

1. The main goal of the empirical study, namely to answer the 3 research 
questions that address:  

 static construct presence / usage; 

 the evolution of different types of static constructs; 

 their impact on 3 software quality aspects: testability, change-
proneness, and defect-proneness. 

2. The hypotheses that were formulated; for each research question there 
are 2 hypotheses, a null version and an alternative one. 

3. The independent and dependent variables for each hypothesis along with 
their corresponding measurement procedures. 

4. The system selection process with an emphasis on the criteria based on 
which the projects were chosen: 

 relevancy in terms of size and complexity; 

 availability on Git and a considerable amount of versions; 

 appropriate coverage through unit testing; 

 availability of a corresponding Jira issue tracker. 

5. The analyses that were conducted as part of the empirical study: 

 a preliminary analysis on the size and structure of the systems, their 
history, and the effort that was put into testing them; 

 an analysis on the presence / usage of different types of static 

constructs; 

 an analysis on the evolution of each of the respective types; 

 3 analyses on the impact of static constructs on the quality aspects. 
investigated. 
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5. RESULTS 
 
 

5.1. Static constructs identified 
 
 First, we studied the different types of static constructs that appear in the 
latest version of a project. Besides the number of instances, we also wanted to 
determine how they are utilized and whether or not their clients are localized or 
spread throughout the system. For attributes we only computed the average 
number of methods that access them from other production classes; because the 
values were so low (there are very few such methods), we decided not to calculate 

the average number of packages from which the attributes are accessed as those 
values would have been even lower. Also, the initialization blocks are a special kind 
of static constructs, they do not have any clients nor are there any other constructs 
that can be considered similar to them; therefore, for this category we only 
calculated the total number of instances. Finally, for static methods we regarded the 
other methods that invoke them as clients (rather than the classes that contain the 
respective methods); the classes from which they are called were utilized afterwards 

to study the client spread (instead of packages, which were used for singletons / 

utility classes). For each category of static constructs, we compare the clients and 
their localization to those of the remaining entities of the same type. 
 

 5.1.1. BCEL 

 
Table 5.1.1: Static constructs BCEL 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 20 0.05 - 0.1401 - 

Constants 694 0.2983 - 

Singletons Stateful 1 65 4 9.331 2.0886 

Stateless 2 1 1 

Static 
methods 

Utility classes 11 35 2.4545 8.753 2.0831 

Access state 13 5.1538 2.1538 18.0181 6.1455 

Operate on 
parameters 

119 4.2941 1.5126 

Static initialization blocks 5 - - - - 

 
 There are 1706 attributes in BCEL, 714 (41.85%) of which are static; most 
of them are constants, only 20 being non-final (1.17%). The constants seem to be 
used by more classes compared to the non-static attributes (average number of 
clients of 0.2983 vs. 0.1401), while the non-final ones are not (usage of only 0.05). 
 From the 432 classes found in the latest version of the system, only 3 

(0.69%) singletons were identified. The first one, Type, is stateful; however, the 2 
non-final attributes are marked as Deprecated and the developers specify that they 
should be final. The other 2 singletons, DOUBLE_Upper and LONG_Upper, extend 
the aforementioned class, therefore they were categorized as Subclassed 
Singletons. The number of clients / packages for the stateful singleton are 
significantly higher than the averages for the stateless variants or the other 
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production classes, but the results might be skewed due to the fact that this class 
has several Deprecated attributes and a lot of methods still use them. 

 There are 11 utility classes (2.55%) that contain a total of 107 methods. 
Although they have considerably more clients (an average of 35) compared to other 
classes (8.753), the package distribution for the client classes is very similar 
(2.4545 vs. 2.0831). The system has 3749 methods in total, but only 132 (3.52%) 
are static methods that are not part of singletons or utility classes. From them 13 
(0.35%) access their class’s state, while 119 (3.17%) only operate on parameters. 

Both types of methods have fewer clients compared to other methods and their 

usage is more localized; on average, they are used by roughly 5 methods from 1-2 
other classes, while for their non-static counterparts these values are much higher 
(over 18 methods from more than 6 classes). 
 Finally, there are 5 classes that contain 1 static initialization block each: 
Utility, ConstantUtf8, InstructionConst, Class2HTML, and InstructionFinder. 
 

 5.1.2. Commons Collections 

 
Table 5.1.2: Static constructs Commons Collections 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 0 - - 0.3044 - 

Constants 260 0.0731 - 

Singletons Stateful 0 - - 1.0519 0.7058 

Stateless 5 0.8 0.6 

Static 
methods 

Utility classes 31 3.4194 1.3226 0.9008 0.668 

Access state 1 2 1 15.1232 9.7912 

Operate on 
parameters 

198 2.5909 1.5404 

Static initialization blocks 1 - - - - 

 
 There are 871 attributes in the latest version studied, 260 (29.85%) of 
which are static. All the static attributes are constants, no static non-final ones were 
encountered. They have, on average, a lower number of client classes compared to 

the attributes that are not static (0.0731 vs. 0.3044). 
 Five of the 525 classes analysed are singletons; they are all stateless and 
their average number of clients is slightly lower than that of the other classes (0.8 
vs. 1.0519). This observation also holds true for the average number of packages 

from which they are utilized (0.6 vs. 0.7058). In terms of actual types, they are all 
Eager Instantiations. 
 There are 4451 methods in the system’s production classes. With regard to 

utility classes, 31 such instances containing 512 methods (11.5%) were found. They 
have a much higher average number of clients than other production classes 
(3.4194 vs. 0.9008). Furthermore, they are utilized from more packages (1.3226 
vs. 0.668). This suggests that such classes are a key part of Commons Collections, 
a project which is structured as a library. 
 We encountered only 199 static methods (4.47%) that are not part of 
singletons or utility classes. One of them accesses its class’s state, while the other 

198 (4.45%) solely operate on parameters. These methods are called, on average, 
by roughly 2 other methods from 1-2 classes; the values are significantly lower than 
for non-static methods (15.1232 methods and 9.7912 classes, respectively). 
 Only 1 static initialization block was found in the version of Commons 
Collections that was analysed; it is part of the FunctorException class. 
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5.1.3. Commons Lang 

 
For Commons Lang, which is also structured as a library, there are 

numerous static attributes and methods. From the 862 attributes present in the 
system’s classes 526 of them are static (over 61%). Most of the static attributes 
represent constants and are generally used only in the class in which they are 
declared, therefore their average number of clients is very low (0.0913). It is 

surprising that the corresponding value for non-static attributes is even lower 
(0.0774), however the difference is not significant. Only 1 of the static attributes is 
non-final, defaultStyle from the ToStringBuilder class, which has 0 clients. In terms 

of packages from which the attributes are utilized, it is difficult to make a distinction 
between the different types of attributes due to the small number of client classes. 
 

Table 5.1.3: Static constructs Commons Lang 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 1 0 - 0.0774 - 

Constants 525 0.0913 - 

Singletons Stateful 0 - - 1.4227 0.7828 

Stateless 1 0 0 

Static 
methods 

Utility classes 51 2.6471 1.4847 1.1835 0.6448 

Access state 3 1.3333 0.6667 3.0867 1.6488 

Operate on 
parameters 

204 1.049 0.5931 

Static initialization blocks 15 - - - - 

 
 With regard to singletons, only 1 instance was identified. 
ObjectToStringComparator is a stateless singleton of type Eager Instantiation; there 

are no production classes in the latest version of Commons Lang that utilize it. 
 Similarly to attributes, 1702 out of the 3599 methods are static (47.29%). 
There are 51 utility classes which contain a total of 1495 methods (41.54%). They 
have, on average, more clients (2.6471 vs. 1.1835) from more packages (1.4847 
vs. 0.6448) compared to other production classes. The rest of the static methods 
are divided into 2 categories, the ones that access their class’s state (3) and those 
that only operate on parameters (204). It can be observed that these types of static 

methods have, on average, a lower number of client methods compared to the non-

static methods and are utilized from fewer classes (around 0.6 for both types vs. 
1.6488). 
 Finally, 15 static initialization blocks were found in 11 production classes. 
Most of the classes contain 1 such instance, but there are 2 which have more 
(ClassUtils and FieldUtils with 4 and 2 instances, respectively). 
  

 

 5.1.4. Commons Math 

 

There are 644 static attributes (30.31%) from a total of 2125; only 12 
(0.56%) are non-final while the other 632 (29.74%) are constants. The non-final 
ones are only used in the class in which they are declared; the constants are rarely 
utilized in other production classes, the average number of clients is comparable to 
that of the non-static attributes (0.0934 vs. 0.1141). 
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Table 5.1.4: Static constructs Commons Math 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 12 0 0 0.1141 - 

Constants 632 0.0934 - 

Singletons Stateful 0 - - 3.9048 1.3443 

Stateless 1 1 1 

Static 
methods 

Utility classes 25 17.72 4.4 3.4667 1.2478 

Access state 10 5.9 3.2 27.9794 6.8239 

Operate on 
parameters 

181 4.453 1.8287 

Static initialization blocks 12 - - - - 

  
 Only 1 singleton was detected in the latest version of the system, 

Decimal64Field. It is of type Lazy Instantiation and has a single client (Decimal64). 
From the 820 production classes in the project 25 are utility classes (3.05%), much 
fewer than for the previous 2 libraries. They contain 414 static methods and are 
used, on average, by 17.72 classes, which is significantly higher than the average 
number of clients for the other classes (3.4667). In terms of localization, the clients 
are more spread out in the project. From the total of 5800 methods, 10 (0.17%) are 
static and access their class’s state while 181 (3.12%) operate solely on 

parameters. These categories of methods have a smaller number of clients (on 
average 5.9 and 4.453, respectively) compared to the non-static methods 

(27.9794). Correspondingly, the average number of classes from which they are 
utilized is also lower. 
 There are 12 static initialization blocks in the system’s production classes. 
Only 1 class contains more than 1 initialization block, FashMath which has 3 such 
instances. 

  

 5.1.5. Digester 

 
Table 5.1.5: Static constructs Digester 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 0 - - 0.0311 - 

Constants 36 0 - 

Singletons Stateful 0 - - - - 

Stateless 0 - - 

Static 
methods 

Utility classes 2 1.5 1 2.6882 1.3011 

Access state 0 - - 4.1058 1.9593 

Operate on 
parameters 

7 2 2 

Static initialization blocks 0 - - - - 

 
 For the smallest system that was analysed, several types of static constructs 

are missing. From the 325 attributes found in the latest version of Digester, only 36 
are static (which is roughly 10%). All of them are constants, there are no static non-
final attributes. The constants do not have any clients, they are utilized only in the 
classes that declare them. The average number of classes from which the non-static 
attributes are used is also very low, thus suggesting that the developers have a 
strict policy of not accessing attributes from other classes directly. 
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 No singletons were identified in this system, which only has 188 classes. 
There are however 2 utility classes (1.06%), AnnotationsUtils and LogUtils, that 

have a total of 8 static methods. They have less clients (1.5 vs. 2.6882) compared 
to the other production classes and are utilized from fewer packages (1 vs. 1.3011). 
Out of 927 methods, there are no static methods that access their class’s state and 
only 7 static methods that operate on parameters (0.76%). Their average number 
of clients is considerably lower than for non-static methods (2 vs. 4.1058), but the 
average number of classes from which they are called is roughly the same (2 vs. 

1.9593). Just as for singletons, there are no production classes that contain static 

initialization blocks. 
  

 5.1.6. Geode 

 
Table 5.1.6: Static constructs Geode 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 308 0.3019 - 0.2832 - 

Constants 8030 0.2391 - 

Singletons Stateful 17 7.2611 2.2906 6.8429 2.2489 

Stateless 64 2.5601 0.8804 

Static 
methods 

Utility classes 243 8.5144 2.4198 8.8869 2.9502 

Access state 184 18.8587 10.0271 39.9615 17.3232 

Operate on 
parameters 

1804 20.5937 12.0061 

Static initialization blocks 107 - - - - 

 
 There are 22176 attributes in total in Geode’s production classes, 8338 

(over 37.5%) of which are static. From the static ones, 8030 (96.31%) of them are 
constants while the remaining 308 are non-final. There is no significant difference 
between the average number of clients for the static non-final attributes (0.3019) 
compared to constants (0.2391). The values obtained are also similar to the one for 
the non-static attributes (0.2832). 
 From a total of 4992 production classes, 81 are singletons (1.62%); 17 of 

them are stateful and 64 stateless. Subclassed Singleton appears to be the 
predominant type as 51 singletons are children of BaseCommand and 4 are of 
InternalFunction. The rest of the singletons are either Lazy Instantiations or Eager 
Instantiations, the sole exception being HexThreadIdPatternConverter which is a 

Limiton. Unlike the other systems, Geode has 3 singletons that are marked as 
Deprecated in its latest version. In terms of usage, the average number of clients / 
packages from which stateful singletons are utilized is comparable to that of other 

classes (7.2611 vs. 6.8429 and 2.2906 vs. 2.2489, respectively). However, the 
corresponding values for the stateless variants are considerably lower (2.5601 for 
clients and 0.8804 for packages). 
 The version studied has 243 utility classes (4.87%) that contain 1391 static 
methods. Both their average number of clients and the average number of packages 
from which they are used resemble the ones obtained for the other classes (8.5144 
vs. 8.8869 and 2.4198 vs. 2.9502, respectively); this shows that for Geode the 

usage patterns for utility classes are no different to those of other production 
classes. Out of a total of 55671 methods, only 3379 are static. From these 184 
access their class’s state (0.33%) while 1804 solely operate on parameters 
(3.24%). Both types are invoked by a comparable number of other methods 
(18.8587 and 20.5937); these averages are lower than the one obtained for the 
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non-static methods (39.9615). Consequently, the average number of classes from 
which they are called is also smaller (10.0271 and 12.0061 vs. 17.3232). 

 Only 107 static initialization blocks were found in the system’s production 
classes. Most of the classes have 1 such instance, but there are some that have 
more; the ones with more than 2 static initialization blocks are: NativeCallsJNAImpl 
(5), LinuxNativeCalls (4), and FreeListManager (3). 
  

 5.1.7. jHotDraw 

 
Table 5.1.7: Static constructs jHotDraw 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 25 0.04 - 0.1992 - 

Constants 369 0.0705 - 

Singletons Stateful 0 - - 4.11 1.3093 

Stateless 1 3 2 

Static 
methods 

Utility classes 4 6.75 2.25 4.0694 1.2986 

Access state 6 0.8333 0.8333 9.8773 4.5476 

Operate on 
parameters 

39 2.9231 2.8462 

Static initialization blocks 2 - - - - 

 
 From the 866 attributes present in the latest version of jHotDraw, 394 are 

static (which is roughly 45.5%). Only 25 of them are non-final (2.89%), while the 
other 369 are constants (42.61%). Both types of static attributes have less clients 
than their non-static counterparts, but all the averages are very low. 
 In terms of singletons, only 1 stateless instance was found 

(FigureLayerComparator) which is of the Eager Instantiation type. It has 3 clients 
that are localized in 2 nested packages; the other production classes have, on 
average, more clients (4.11), but they are generally from the same package.  

Out of the 292 production classes 4 (1.37%) are utility classes: 
ResizeHandleKey, AttributeKeys, TransformHandleKit, and PaletteUtilities. They 
contain a total of 45 static methods, have more clients than the other production 

classes (6.75 vs. 4.0694), and these clients are more spread out through the code 
(2.25 vs. 1.2986 packages on average). There are 2719 methods in the version 
analysed, but only 45 (1.66%) of them are static and not part of singletons or utility 
classes. Six (0.22%) access state, while the other 39 (1.43%) only operate on their 

parameters. These static methods have fewer clients than their non-static 
counterparts (especially the ones from the first category) and their utilization is 
more localized (0.8333 classes for the former and 2.8462 for the latter vs. 4.5476 

for non-static methods). 
 There are only 2 classes that contain 1 static initialization block each, 
DefaultDrawingView and AttributeKeys. 
 

 5.1.8. Pig 

 

The system’s production classes have 4423 attributes, out of which 1346 
(30.43%) are static. From these 1101 are constants (24.89%) while the remaining 
245 are non-final (5.54%). The average number of clients for the attributes that are 
static non-final is lower (0.151) than the corresponding values for constants 
(0.3406) or non-static attributes (0.3133), which are comparable. 
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Table 5.1.8: Static constructs Pig 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 245 0.151 - 0.3133 - 

Constants 1101 0.3406 - 

Singletons Stateful 14 13.9286 4.9286 6.435 2.8546 

Stateless 4 37.5 10.75 

Static 
methods 

Utility classes 75 11.2667 4.2133 6.356 2.5172 

Access state 86 26.4651 13.4186 42.4463 15.8513 

Operate on 
parameters 

451 9.6186 3.8315 

Static initialization blocks 34 - - - - 

 
From the 1756 classes in the latest version studied, 18 of them are 

singletons (1.03%). Unlike what was observed thus far, Pig is a project in which 
most of the singletons (14) are stateful. The stateful singletons have more than 
double (13.9286) the number of clients when compared to the average for the other 
production classes (6.435). However, the most surprising finding would be the 
average number of clients for the 4 stateless singletons (37.5); this is mainly due to 
1 class, TupleFactory, having a large amount of clients (128). The average number 
of packages from which singletons are utilized is also considerably higher (4.9286 

for stateful and 10.75 for stateless singletons vs. 2.8546 for the other classes). 
There are 75 utility classes (4.27%) containing 520 static methods. They 

have, on average, 11.2667 clients, which is almost double than the corresponding 
value for the other production classes (6.356). Furthermore, the average number of 
packages from which utility classes are called is also higher (4.2133 vs. 2.5172). 
From the 9050 methods found, only 86 (0.95%) are static ones that access state 
while 451 (4.98%) are static and solely operate on their parameters. They also have 

fewer clients (26.4651 the ones from the first category and 9.6186 those from the 
latter), thus suggesting that such methods are not called as frequently in projects of 
this kind. 

Finally, we encountered 34 static initialization blocks in 31 of the system’s 
classes. Most of the production classes have 1 such block, but there are 3 classes 
that contain 2, TezJobSplitWriter, JrubyScriptEngine, and Main. 

  

 5.1.9. Spring Core 
 

Table 5.1.9: Static constructs Spring Core 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 10 0.3 - 0.6 - 

Constants 611 0.5827 - 

Singletons Stateful 0 - - 3.3239 1.0845 

Stateless 5 2 0.8 

Static 
methods 

Utility classes 63 7.5397 2.1111 2.9177 0.9811 

Access state 13 3.6923 2.2308 5.2999 2.7307 

Operate on 
parameters 

236 3.6017 2.0593 

Static initialization blocks 27 - - - - 

 
Roughly a third (621) of the project’s 1911 attributes are static. Most of 

them (611) are constants, while the remaining 10 are non-final. The average 
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number of clients for the static non-final attributes is lower (0.3) than the values 
obtained for constants (0.5827) and non-static ones (0.6). 
 Five classes (0.77%) were categorized as singletons from the system’s 646 
classes. All the singletons are of type Eager Instantiation and have on average 2 
clients, a value which is lower than the average number of clients for the other 
production classes (3.3239). The average number of packages from which they are 
accessed is also slightly lower (0.8 vs. 1.0845). 
 There are 63 utility classes, which is almost 10% of Spring Core’s production 

classes. They contain 768 static methods and have considerably more clients 

(7.5397 on average) than the rest of the classes (2.9177); their clients are also 
more spread out, they are part of 2 or more packages while the ones of the other 
classes are either from the same package or in 1 more. There are 4827 methods in 
total for the latest version of the project, but only 13 (0.27%) access state and 236 
(4.89%) operate on parameters. They have a lower number of clients (3.6923 and 
3.6017, respectively) compared to the non-static methods (5.2999); the average 
number of packages from which the static methods are called is also smaller, albeit 

not by much (2.2308 and 2.0593 vs. 2.7307). 
 The latest version of Spring Core studied contains 27 static initialization 
blocks. There are only 2 production classes that have more than 1 such block, 
ReflectUtils and ReflectionUtils (both with 2). 
 

 5.1.10. Tomcat 
 

Table 5.1.10: Static constructs Tomcat 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 134 0.1119 - 0.1344 - 

Constants 3106 0.1806 - 

Singletons Stateful 8 1.5 0.625 1.5724 0.6555 

Stateless 5 3.2 1.4 

Static 
methods 

Utility classes 149 0.8322 0.4966 1.2004 0.5105 

Access state 46 3.1304 1.8478 5.7686 2.689 

Operate on 
parameters 

420 3.669 1.1024 

Static initialization blocks 99 - - - - 

 
 From a total of 9652 attributes there are 134 static non-final ones (1.39%) 

and 3106 constants (32.18%). The average number of clients is very small for both 
types (0.1119 for the former and 0.1806 for the latter); they are comparable to the 
value obtained for the non-static attributes (0.1344). 

 There are 13 singletons (0.61%) from the system’s 2126 production classes, 
8 of which are stateful; Tomcat is only the second project for which we found more 
stateful variants than stateless ones. There is little difference between the average 
number of clients / packages for stateful singletons and the remaining classes (1.5 / 
0.625 vs. 1.5724 / 0.6555). For stateless singletons the corresponding values are 
significantly higher (3.2 for clients and 1.4 for packages). 
 The number of utility classes is also quite low; there are only 149 instances 

(around 7%). They are utilized less compared to singletons or the other production 
classes; the average number of clients is 0.8322, while for packages it is 0.4966. 
Similar observations can be made with regard to other static methods; there are 
only 46 that access state and 420 which solely operate on parameters. All these 
values are low considering the size of Tomcat. The average number of methods that 
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invoke these instances is also lower than the one obtained for the non-static 
methods (3.1304 and 3.669 vs. 5.7686); furthermore, they are called from fewer 

classes (1.8478 and 1.1024 vs. 2.689). 
 Finally, we encountered 99 instances of static initialization blocks in 95 of 
Tomcat’s production classes; there are 4 classes that contain 2 such instances. 
  

 

 5.1.11. Wicket 
  

Table 5.1.11: Static constructs Wicket 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 22 0.0857 - 0.1059 - 

Constants 1036 0.0998 - 

Singletons Stateful 0 - - 3.8 1.8973 

Stateless 8 4 2.125 

Static 
methods 

Utility classes 25 3.6774 2.6452 3.8032 1.8851 

Access state 6 49.1667 25.1667 15.1127 7.4537 

Operate on 
parameters 

209 22.8995 24.5694 

Static initialization blocks 3 - - - - 

 
 There are 2617 attributes in all of Wicket’s classes, 1058 of which are static 

(roughly 40%); 22 of the static ones are non-final, while the vast majority are 

constants. The average number of clients is very similar for all 3 types of attributes 
(static non-final, constants, and non-static); it can be observed that they are rarely 
utilized by other production classes. 
 From the 1423 classes present in the latest version of the project, 8 were 
categorized as singletons (0.63%). All the singletons are stateless and of type Eager 
Instantiation. One of the instances, EmailAddressPatternValidator, is marked as 
Deprecated in the version studied. In terms of client classes, there seems to be very 

little difference between the average number of clients / packages from which 
stateless singletons are utilized compared to the other production classes (4 vs. 3.8 
/ 2.125 vs. 1.8973). 
 There are 25 utility classes (1.76%) that contain a total of 172 static 
methods. The observation that was made with regard to the average number of 
clients / packages for stateless singletons also applies to utility classes, although 

their usage is a little bit more spread out (2.6452 vs. 1.8851 packages). Out of the 
9162 methods found, only 6 are static and access state (0.07%) while 209 solely 
operate on parameters (2.28%). Both types are called by more methods (49.1667 
and 22.8995 vs. 15.1127) than their non-static counterparts; the methods that 
invoke them are also part of more classes (roughly 25 in both cases compared to 
7.4537). 
 Only 3 classes have static initialization blocks, WicketTagIdentifier (2 such 

instances), TagUtils, and JavaSerializer (both with 1 instance). 
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5.2. Evolution of static constructs 
 

Next, we studied the evolution of the different types of static constructs. We 
did not focus solely on the number of instances present in a specific version of the 
system; we also wanted to establish the reasoning behind the addition / removal of 
certain instances or their clients. Furthermore, for the class-level constructs 

(singletons and utility classes) we also analysed their usage throughout the lifespan 
of the project. It would have been difficult to study this aspect for the more fine-

grained static constructs (e.g., static non-final attributes or initialization blocks) due 
to the reasons discussed in the previous section. For each case we created a graph 
that depicts the total number of instances / the percentage of production classes 
that utilize instances of that type (y-axis) over time (x-axis). We try to explain why 
certain situations occur, such as a large decrease of the instances of interest or a 

class losing most of its clients. 
 

 5.2.1. BCEL 

  

 
Figure 5.2.1.1: Evolution of static non-final attributes for BCEL 

 
 There are very few static non-final attributes compared to constants or non-
static ones. We found 25 such instances in the initial version studied. Then this 
number increased to 33 in May 2003 and remained constant for roughly 6 years 
even though other types of attributes were being added. From there on it started to 

decrease with one exception; between May 2013 and August 2015 the number of 
static non-final attributes increased from 23 to 29, remained constant for about 1 
year, and then dropped to 25. Finally, there are only 20 instances in the latest 
version that was analysed. 
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Figure 5.2.1.2: Evolution of constants for BCEL 

 
 In the first version of BCEL 514 (54.68%) of the 940 attributes were 
constants. Up until September 2015 both the number of constants and the total 

number of attributes increased constantly; at that moment there were 1138 
constants (over 70%) out of 1618 attributes. From there on the number of 
attributes continued to grow while the number of constants dropped to 648. Then it 

slowly increased; in the latest version of BCEL there are 694 such attributes 
(40.75%) from a total of 1703. 

Four singletons were found in the very first version of BCEL. Two of them, 
LONG_Upper and DOUBLE_Upper, were stateless and of type Subclassed Singleton 

while the others (Type and BranchHandle) were stateful. With the exception of 
BranchHandle they were part of the project for its entire existence. In August 2002 
another stateless singleton was introduced, InstructionComparator; it was of type 
Eager Instantiation and remained in the system until August 2015. A series of 
interesting events occurred in the respective time period; for example, 
BranchHandle became a stateless singleton and remained in that form until June 

2016 when state was added to it once again. Finally, in February 2019 
BranchHandle was removed along with its superclass. 
  

 
Figure 5.2.1.3: Evolution of singleton usage for BCEL 
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 The usage of stateful singletons is high due to the fact that Type (a class 
with 61 clients) was implemented as a loose variation of the pattern. Initially, the 

percentage of production classes that utilize such singletons was around 30%; then 
it started to slowly decrease until reaching 26.04% in 2018. During that time one of 
the singletons (BrachHandle) was removed, thereby causing the percentage to drop 
to 14.8%. At the end of the development process a number of production classes 
were removed; this caused a slight increase in stateful singleton usage (to 15.05%). 
The percentages for the usage of stateless singletons are very low compared to their 

stateful counterparts. Between 2002 and 2015 they were roughly around 0.75%. 

The value increased to 1.67% when BranchHandle became stateless and dropped all 
the way to 0.23% when state was added back to it. 
 

 
Figure 5.2.1.4: Evolution of utility classes for BCEL 

 
 The initial version of the project contained 6 utility classes. The number of 

instances remained the same until August 2015 when it grew to 9; then it increased 
again to 10 in May 2016 and to 11 in July 2019. It can be observed that the number 
of utility classes does not grow constantly as the system increases in size. In terms 
of usage, while there were only 6 utility classes the percentage of production classes 
that utilized them was constant (between 10% and 11%). When new instances were 
added, this percentage spiked to 64.82% because one of them (Constants) had 259 

clients (from a total of 415 classes). Then the usage increased by a small margin to 
66.2% for the latest version studied. 
 

 
Figure 5.2.1.5: Evolution of utility class usage for BCEL 
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Figure 5.2.1.6: Evolution of static methods for BCEL 

 
 In the first version there were 12 static methods that access state (0.43%) 
and 63 that only operate on parameters (2.23%) out of a total of 2822 methods. 
The number of methods from the first category increased slightly in the first years of 

development until reaching a maximum of 20 in June 2006. It remained constant for 
almost 4 years, then it dropped to 11 in May 2010. From there on, the number of 

instances fluctuated; there are 13 static methods that access state (0.35%) in the 
latest version of the system. On the other hand, the amount of static methods that 
solely operate on parameters increased constantly over the years. There were 87 
such instances in 2003, 101 in 2010, and 113 in 2018. A maximum value of 119 
(3.27%) was reached in April 2020; no such methods were added ever since, but 

their percentage decreased to 3.17%. 
 

 
Figure 5.2.1.7: Evolution of static initialization blocks for BCEL 

  
There were 4 static initialization blocks in the first version of BCEL that was 

studies. However, a class that contained such an instance (Repository) was removed 
in June 2002. Another instance was added in May 2013 as part of the ConstantUtf8 
class. Finally, the fifth and last static initialization block was created in August 2015 
in Class2HTML; the number of instances has remained constant ever since. 
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 5.2.2. Commons Collections 

 
There were 1 static non-final attribute and 1 constant in the initial version of 

the project which contained a total of 35 attributes. The number of static non-final 
attributes grew in the first year of development until reaching 7 in February 2002. 
From there it dropped to 3 (even though the number of attributes was continuously 
growing) and remained constant until June 2018. All 3 instances were removed the 
following month; there are no static non-final attributes in the latest version of 

Commons Collections that was studied. 
 

  
Figure 5.2.2.1: Evolution of constants for Commons Collections 

  
 Just like the total number of attributes, the number of constants increased 
rapidly in the first 2 years of development. At the end of 2003 there were 204 
constants (20.54%) from the existing 993 attributes (the peak value in terms of 

number of attributes). Since then, the number of constants increased slowly until 
reaching the maximum value of 265 in August 2012. From there on, this number 
fluctuated as some minor refactorings occurred within the system. It can be 
observed that the evolutions of the number of constants and the total number of 
attributes are very similar. Finally, the latest version of the system has 260 
constants (29.85%) out of the 871 attributes present. 
 

 
Figure 5.2.2.2: Evolution of singletons for Commons Collections 
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 There were no singletons in the earlier versions of Commons Collections. In 
July 2012 7 such instances were created, all corresponding to different types of key 

analyzers (e.g., StringKeyAnalyzer, ByteKeyAnalyzer, or IntegerKeyAnalyzer). They 
were all stateless and from the Eager Instantiation category. However, most of 
them were part of the system for less than 1 year; in June 2013 StringKeyAnalyzer 
was the only singleton left. From there on, the number of singletons started to 
increase; DefaultEquator was added in November 2013, PropertiesFactory and 
SortedPropertiesFactory in June 2019 and NoValuesIterator in February 2020. 

Similar to before, all the singletons were stateless and of type Eager Instantiation; 

this shows that the developers refrained themselves from creating stateful 
singletons. 
 

 
Figure 5.2.2.3: Evolution of singleton usage for Commons Collections 

 
The usage of singletons is very low throughout the project’s lifespan, less 

than 1% of the production classes utilize such instances. Oddly enough, no client 
classes were found when the first 7 singletons were added. Three clients were 

encountered in 2013, 1 for StringKeyAnalyzer and 2 for DefaultEquator, making the 
usage 0.72%. Since then, the percentage started to decrease as no new clients 
appeared and the system was still growing in size. The only increase occurred in 
2020 when the last singleton (NoValuesIterator) was created. 
 

 
Figure 5.2.2.4: Evolution of utility classes for Commons Collections 
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 The number of utility classes increased rapidly in the first 3 years of 
development; there were 3 instances in 2001, 8 in 2002, and 27 at the end of 2003. 

From there on, this number remained rather constant between 2003 and 2019. The 
least amount of instances (22) were found between September 2009 and June 
2012. In the last 2 years of development, the number of utility classes reached a 
peak value of 31. 
 

 
Figure 5.2.2.5: Evolution of utility class usage for Commons Collections 

 
The usage of utility classes also increased in the earlier stages of 

development to around 8% between 2002 and 2004. Then we can observe a slight 
decrease followed by a spike to over 10% in 2009. Afterwards the usage remained 
constant at around 10% for almost 10 years; during this period 4 instances were 

added along with their client classes, but the project was also growing in size. 
Finally, in the last 2 years the usage increased to over 12% during the time when 
the number of instances reached its highest value (31). 
 

 
Figure 5.2.2.6: Evolution of static methods for Commons Collections 
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In the first version of Commons Collections there were no static methods 
that access state and only 1 that solely operates on parameters. The number of 

instances from the first category is very low throughout the lifespan of the project. 
There were 2 instances between 2002-2003 and 1 between 2004-2008. No static 
methods that access state were found afterwards, until April 2013 when 1 such 
methods was added; it remained part of the system ever since. In terms of static 
methods that only operate on parameters, their number increased considerably in 
the first 3 years of development; there were 164 instances (4.78%) in June 2004. 

From there on, this number fluctuated until June 2015 when it reached a value of 

181 (4.99%). It continued to increase in the last years of development; there are 
198 static methods that solely operate on parameters in the latest version studied. 
 Very few static initialization blocks were found for Commons Collections 
throughout the project’s history. One such instance was encountered in the very 
first commits; it was located in the BeanMap class and remained part of the system 
until the respective class was remove in September 2009. In May 2003 another 
static initialization block was used in the FunctorException class. No initialization 

blocks were added ever since. 
 

 5.2.3. Commons Lang 

  
 The number of static non-final attributes increased rapidly in the first year of 

development (from 2 to 23 instances). Afterwards, this number started to decrease 

with some fluctuations; for example, it went from 12 in July 2003 to 18 in 
September 2007 and back to 12 again in August 2011. From there on, the number 
continued to decrease until April 2017 when it reached a minimum value of 1. The 
respective attribute, defaultStyle, is still part of the system. 
  

 
Figure 5.2.3.1: Evolution of constants for Commons Lang 

 
 The image shows that the number of constants evolved similarly to the total 
number of attributes. Both values grew constantly year after year, the only 

exception being February 2008 when the constants dropped from 327 instances to 
302 while the total number of attributes decreased from 549 to 515; during this 
refactoring the number of classes also went from 139 to 127. Since then, the 2 
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values co-evolved gracefully; in the latest version studied there are 530 constants 
(over 60%) from a total of 875 attributes.   

 The only singletons found for Commons Lang, ObjectToStringComparator, 
was created in January 2020 and is still part of the system. It is a stateless 
singleton of type Eager Instantiation that does not have any clients in the latest 
version of the project; however, it did have 1 client when it was first added. 
  

 
Figure 5.2.3.2: Evolution of utility classes for Commons Lang 

 
 There were 7 utility classes in the initial release of the system. Their number 
rose fast in the first year of development; 27 instances were found in a version from 
April 2003. Then it remained relatively constant the following 4 years. Afterwards, 
the number of utility classes increased continuously over the lifespan of the project. 
A maximum of 51 instances was encountered in the latest version of Commons Lang 
that was studied. 

 

 
Figure 5.2.3.3: Evolution of utility class usage for Commons Lang 
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 Utility class usage increased in the first years of development from 13.33% 
in the initial version to 30.89% in January 2010. From there on, this value fluctuates 

as both utility classes and other production classes are being created. In May 2018 a 
peak usage of 35.77% was reached; since then, the value has started to decrease. 
The utility class usage for the latest version analysed is 24.84%. 
 

 
Figure 5.2.3.4: Evolution of static methods for Commons Lang 

 
 There were no static methods that were not part of utility classes in the 
initial version of Commons Lang. The number of static methods that access state 
increased slightly in the first years of development until reaching a maximum of 17 
(1.3%) in September 2007. From there on, it decreased to 5 (0.42%) instances in 
March 2009 and remained relatively constant ever since. There are 3 static methods 

that access state (0.08%) in the last version of the system. On the other hand, for 
static methods that solely operate on parameters the amount of instances grew 
constantly over the years. There are nonetheless 2 exceptions, 2011 when this 
value decreased from 127 to 112 and 2015 when it went from 166 to 141. The 
maximum was reached in the last year of development; 204 (5.67%) such methods 
were found in the latest version studied. 
 

 
Figure 5.2.3.5: Evolution of static initialization blocks for Commons Lang 
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 The number of initialization blocks increased rapidly in the project’s first 
years of development. For example, there were 2 such constructs in January 2003, 

5 in April, 7 in August, and 9 in December 2003. Then it continued to grow along 
with the system until reaching a maximum of 16 in May 2008. From there on, it 
started to fluctuate even though the project was still growing in size. The number of 
instances decreased to 8 in February 2010 and then it started to increase again to 
15 in March 2017; the value remained constant ever since. 
 

 5.2.4. Commons Math 
 

 
Figure 5.2.4.1: Evolution of static non-final attributes for Commons Math 

 
 There were no static non-final attributes in the initial version of Commons 
Math. The number of instances increased slowly in the first 2 years of development 
until reaching 16 in June 2005. In February 2007 new functionalities were added to 
the project and the number of static non-final attributes increased almost 4 times to 

61 such instances. Most of these attributes were part of the system for less than 1 
year; in January 2008 only 20 were still present. From there on, this number 
fluctuated until November 2015 when it dropped to 11. Only 1 more instance was 
created ever since, there are 12 in the latest version studied. 
 

 
Figure 5.2.4.2: Evolution of constants for Commons Math 



                                                71 

In the first version of Commons Math there were 13 constants (17.33%) 
from a total of 75 attributes. The number of instances increased over time until 

December 2014 when 988 constants (33.34%) were found out of 2963 attributes. 
Then there was a small decline followed by an increase, thereby obtaining a 
maximum of 993 instances in December 2016. From there on, both the number of 
constants and the total number of attributes decreased continuously; there are 632 
instances (under 30%) from 2125 attributes in the last version analysed. 

The first singleton, DummyStepHandler, was created in February 2007; it 

was stateless, of type Lazy Instantiation, and had 2 clients (RungeKuttaIntegrator 

and AdaptiveStepsizeIntegrator). This instance was part of the project for 2 and a 
half years until it was removed in September 2009. The only other instance to ever 
be created, Decimal64Field, was introduced in March 2012 and is still present in the 
latest version studied. It is also stateless but of type Eager Instantiation and had 
only 1 client throughout its existence (Decimal64). Singleton usage peaked when an 
instance was created and slowly decreased as new classes were added to the 
project. For example, when DummyStepHandler was introduced it was 0.9%, then it 

dropped to 0 for the last commits in which the singleton was present (because the 
class did not have any clients anymore). Similarly, the usage was 0.14% at 
Decimal64Field’s creation and is 0.12% for the latest commit. 
 

 
Figure 5.2.4.3: Evolution of utility classes for Commons Math 

 

 The number of utility classes was rather constant in the first 6 years of 
development, then it rapidly increased from 9 to 38 in the following years. The 
amount of instances that were added was significantly higher than the number of 
production classes that were created. For example, 5 new utility classes appeared 
between 2012-2013 and 7 between 2013-2014; during these periods around 100 
production classes were developed, a number which is comparable to the ones 

obtained for the previous 1 year intervals (in which little to no utility classes were 
added). From 2016 onwards, the number of instances started to decrease until it 
reached a value of 25 for the latest version studied. This is in concordance with the 
refactorings that occurred in these later years of development, which caused the 
total number of production classes to also decrease. 
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Figure 5.2.4.4: Evolution of utility class usage for Commons Math 

 
 The usage of utility classes for Commons Math is much higher compared to 
the other systems that were studied. Even at the beginning of the development 

process between 10% and 17.5% of the production classes utilized at least 1 utility 
class (although there were only 6-9 instances). Since 2010 when the number of 
instances started to increase considerably, the percentage of client classes is much 

higher (over 30%). It continued to grow until reaching a maximum of 38.37% in 
February 2016; from there on it decreased by a small margin, but was still around 
34%-36%. It proves once again that this type of classes are very important in 

projects such as Commons Math (that are structured as libraries). 
 

 
Figure 5.2.4.5: Evolution of static methods for Commons Math 

 
 The first static methods that access state (4 instances) were created in 
February 2007. Since then, the amount of instances grew to a maximum of 36 
(0.75%) in May 2011. It immediately dropped to 4 and started to increase once 

again. There were 14 such methods in February 2013 and 17 (0.23%) in April 2014. 
This number remained constant for roughly 3 years and began to decrease 
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afterwards. There are 10 static methods that access state (0.17%) in the final 
version of Commons Math that was analysed. For static methods that solely operate 

on parameters the situation is quite different. The number of instances increased 
from 1 in the initial version of the project until reaching a maximum of 291 in 
December 2014. From there on it started to decrease, albeit with some fluctuations; 
there are 181 static methods that only operate on parameters (3.12%) in the latest 
version of the system. 
 

 
Figure 5.2.4.6: Evolution of static initialization blocks for Commons Math 

  

Unlike what was observed thus far for this system, there were very few 
instances of static initialization blocks in the first 8 years of development although 
the project was growing rapidly. The number of instances spiked from 3 in 2010 to 
10 in 2011 and to 15 in 2012. From there on, it remained rather constant until 2016 

when it reached a peak value of 19. Since then the system has undergone a series 
of refactorings, thereby reducing the amount of production classes from 1011 
(January 2016) to 820 (January 2021). Unsurprisingly, the number of static 
initialization blocks also decreased from 19 to 12. 
 

 5.2.5. Digester 

  

 
Figure 5.2.5.1: Evolution of static attributes for Digester 
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There was only 1 static non-final attribute in the initial version of the 
system, factory from the Digester class, which was removed in August 2002. 

Afterwards, the number of instances started to increase as more classes were being 
added until reaching a maximum value of 21 in April 2004. This value remained 
constant until March 2011 when a major refactoring occurred in which all the static 
non-final attributes were either made final or removed. No new instances were 
created ever since. 

The evolution of the number of constants is similar to that of the total 

number of attributes. There was 1 instance in the first version of Digester out of 67 

attributes. Then this number started to increase with minor fluctuations until 
reaching 21 in August 2010. As mentioned before, a refactoring took place in the 
following months in which some of the static non-final attributes became constants, 
thus obtaining a peak value of 36 in December 2011. Since then, the value 
remained constant as no attributes were added / removed afterwards. 

Throughout the entire lifespan of the project only 1 stateless singleton was 
created, RuleSetCache. It appeared in August 2010 and was part of the system in 

that form for a couple of commits. It initially had 1 client from a total of 152 classes 
for the respective commit. In the commit that was studied from September 2010, it 
was observed that the instance was refactored into a final class; no singletons were 
introduced from there on. 

 

 
Figure 5.2.5.2: Evolution of utility classes for Digester 

 

 
Figure 5.2.5.3: Evolution of utility class usage for Digester 
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 The first utility class, DigesterLoader, was added to the system in December 
2001. Since then, the number of instances grew constantly until reaching a 

maximum of 6 in August 2010. In May 2011 a series of refactorings occurred in 
which 4 of the utility classes were modified / removed, thereby causing the amount 
of instances to drop to 2; only AnnotationUtils and LogUtils remained and are still 
part of the project. Similar to the number of utility classes, their usage increased as 
more instances were introduced. While DigesterLoader did not have any clients 
initially, the percentage of production classes that utilized such instances grew over 

time until reaching 6.1% in January 2004. Afterwards, even though another utility 

class was created, the percentage decreased because significantly more classes 
were developed (from 97 to 152). From that point on, the usage continued to drop 
as no new instances appeared (4 were even modified / removed) while production 
classes were still being created; thus, the utility class usage finally stabilized at 
1.6% from 2015 onwards. 
 There were very few static methods which were not part of utility classes 
throughout the lifespan of Digester. Only 2 static methods that access state 

(0.35%) were encountered; they appeared between November 2003 and March 
2004. For static methods that only operate on parameters, their number increased 
from 1 (0.57%) in the initial version of the system to 7 (0.77%) in 2011; it 
remained constant ever since. 
 Only 1 static initialization block was found in the entire history of Digester. 
It was added to the ParserFeatureSetterFactory class in January 2004 and remained 

part of the project until March 2011. As mentioned before, we did not study the 
clients for this type of static constructs as they are supposed to be used only for 
initialization purposes. 
  

 5.2.6. Geode 

  

 
Figure 5.2.6.1: Evolution of static non-final attributes for Geode 

 
 In the first version of Geode that is available on GitHub we found 632 static 

non-final attributes, which is roughly 2.5% of the total number of attributes. The 
number of instances increased to 650 at the beginning of 2016, but then it began to 
decrease. Between July 2018 and January 2019 this value dropped from 611 
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(2.19%) to 343 (1.41%). The number of static non-final attributes continued to 
decrease in the following year to 309 instances in January 2020. It remained almost 

the same ever since; there are 308 (1.39%) such attributes in the latest version of 
Geode. 
 

 
Figure 5.2.6.2: Evolution of constants for Geode 

 

 The graphs for the number of constants and the total number of attributes 
are very similar. Initially, there were 13954 constants (53.18%) from 26241 
attributes. The number of instances increased in the first year of development to 

14583 (50.68%), then it slowly decreased to 7899 (36.03%) in January 2020. From 
there on, it grew by a very small amount; there are 8030 constants (36.21%) out of 
a total of 22176 attributes. 
 

 
Figure 5.2.6.3: Evolution of singletons for Geode 

 

 The total number of singletons decreased as Geode evolved. There were 25 
stateful instances and 100 stateless ones in the first version available on GitHub. For 
stateful singletons, this number continuously decreased until January 2021 when 
there were only 16 instances. Another stateful singleton was added in February 
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2021, thus taking the number of instances to 17 for the latest version analysed. 
Similar observations can be made with regard to the stateless singletons. However, 

there have been cases in which the number increased; for example, 3 stateless 
singletons were created between July 2016 and January 2017, thereby increasing 
the number of instances from 95 to 98. Over the years, they continued to get 
removed; there are 64 stateless singletons in the last version of Geode. 
 

 
Figure 5.2.6.4: Evolution of singleton usage for Geode 

 
 In terms of singleton usage, the trend is also towards a decrease. For 

stateful singletons the percentage dropped from 6.98% for the first version to 
4.89% for the latest version, while for the stateless ones the corresponding values 
are 4.18% and 2.76%, respectively. Throughout the system’s lifespan there were 
cases in which this percentage increased (e.g., when a new instance was created or 
when a bunch of production classes that were not singleton clients have been 
removed), but in general singleton usage is continuously decreasing. As an 
example, the percentage for the stateful variants increased from 4.31% to 5.14% 

between July 2018 and January 2019 even though the number of instances 
remained constant (at 20); a series of refactoring occurred during that period, in 
which almost 200 production classes were removed. 
 

 
Figure 5.2.6.5: Evolution of utility classes for Geode 
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 In the first version analysed there were 275 utility classes. This number 
increased in the following 6 months to 288 instances in July 2015. Then it remained 

relatively constant for almost 4 years; we found 286 utility classes in January 2019. 
From there on this value started to decrease, more abruptly at first (from 286 to 
242 in less than 1 year) and slowly afterwards. Finally, it grew a bit in the first 
months of 2021; the latest version of Geode contains 243 utility classes. 
 

 
Figure 5.2.6.5: Evolution of utility class usage for Geode 

 
The usage of utility classes fluctuates between 25% and 32% throughout 

the project’s lifetime. It was 29.35% for the initial version studied; then it slowly 
increased until reaching a maximum value of 32.11% at the beginning of 2018. 
Utility class usage remained almost the same the following 2 years. Similar to the 

number of instances, it dropped to 26.27% at the end of 2019. The usage suffered 
only minor changes ever since; for the last version investigated it is 25.91%. 
 

 
Figure 5.2.6.7: Evolution of static methods for Geode 
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 There were 333 static methods that access state (0.67%) and 1892 that 
only operate on parameters (3.79%) in the first version available. For the former, 

the number of instances increased to 354 in August 2015, then it slowly decreased 
over the years; there are 184 (0.33%) such methods in the last version studied. For 
the second category of static methods, their amount fluctuated throughout the 
lifespan of Geode. The maximum of 2095 was reached in June 2015. In the latest 
version of the system there are 1804 (3.24%) such instances. One thing to note is 
that the total number of methods decreased by roughly 4000 from the initial version 

to the last release analysed. 

 

 

Figure 5.2.6.8: Evolution of static initialization blocks for Geode 
 

 Unlike the number of production classes that increases constantly and only 
drops when certain refactorings occur, for static initialization blocks we can observe 
a continuous decrease from the first version of the project available on GitHub to 
the last one studied. There were 171 instances at the beginning and 109 in January 
2020. Since then, this number has remained relatively constant; 107 static 
initialization blocks were encountered in the latest version of Geode. 
 

 5.2.7. jHotDraw 

 

 
Figure 5.2.7.1: Evolution of static attributes for jHotDraw 
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 There were 13 static non-final attributes (3.55%) and 75 constants 
(20.49%) in the first version of the project which had 366 attributes in total. In the 

first 6 years of development these numbers increased steadily; in 2006 we found 72 
non-final ones (9.64%) and 109 constants (14.59%) from a total of 747 attributes, 
thus showing that more instances from the first category were added. The values 
spiked in 2007 and continued to increase rapidly until 2015 when 546 static non-
final attributes (11.18%) and 1660 constants (33.99%) were present. Since then, 
the number of attributes suffered only minor modifications until the beginning of 

2020 when they dropped to 25 for static non-final attributes (2.91%) and 369 for 

constants (42.91%) out of a total of 860. 
 

 
Figure 5.2.7.2: Evolution of singletons for jHotDraw 

 
 There was 1 stateful singleton in the initial version of the project, Clipboard, 
and no stateless ones. A second stateful singleton was added in August 2002; both 

instances were part of the system until 2006 when they were removed during a 
series of refactorings in which a stateless singleton (FigureLayerComparator) was 
also added. In the following 5 years 3 stateful singletons, PaletteLookAndFeel (April 
2008), PaletteLabelUI (May 2008) and ActivityManager (September 2011), and 1 
stateless singleton, PaletteButtonUI (April 2008), were created. They were all part 
of the project until March 2020 when all but FigureLayerComparator were deleted. 

 

 
Figure 5.2.7.3: Evolution of singleton usage for jHotDraw 
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 The usage of the 2 types of singletons varies depending on the number of 
instances present. For the stateful ones it spiked to 10.88% when the second 

instance was added; then it remained relatively constant for 4 years and dropped to 
0 when both instances were removed. From there on, stateful singleton usage 
started to increase again as 3 new instances were created subsequently. Finally, in 
the last year of development the usage became 0 once more because the 3 stateful 
singletons were deleted from the system. The usage of stateless singletons was 0 
until the first instance was introduced in November 2006. Afterwards, it increased 

again once the second instance was added and then slowly decreased over the 

years as no new instances were created while the number of production classes 
continued to rise. An interesting situation appeared in the final year of development 
when 1 of the stateless singletons was removed, but the usage increased from 
0.61% to 1.03%; this is due to the fact that a considerable number of production 
classes were deleted during that period. 
 

 
Figure 5.2.7.4: Evolution of utility classes for jHotDraw 

 
 There were 3 utility classes in the initial version of jHotDraw. The number of 
instances increased to 30 between 2002-2003, but in 2006 a series of refactorings 
occurred and this value dropped to 20. Afterwards it continued to increase, thereby 
reaching a maximum of 39 in May 2009. The number of utility classes remained 

relatively constant between 2009-2014; in 2015 a major refactoring in which almost 
400 production classes were removed caused a large decrease in utility classes 
(from 39 instances to 11). Then, no major changes were performed on the system 
until March 2020 when another refactoring made the number of instances drop to 3. 

 

 
Figure 5.2.7.5: Evolution of utility class usage for jHotDraw 
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 Although the number of utility classes increased during the first years of 
development, utility class usage continually decreased from 14.69% in the first 

version to 7.35% in September 2003. Then it started to increase until reaching 
15.81% in October 2007, around the time when the maximum number of instances 
was encountered. From there on, the usage slowly decreased over the years; in the 
latest version studied a usage of only 8.59% was reached, which is close to the 
overall minimum. 
 

 
Figure 5.2.7.6: Evolution of static methods for jHotDraw 

 
 The cases for the other 2 types of static methods are very similar, but the 
values are a bit higher for those that solely operate on parameters. There were 11 
static methods that access state (0.79%) and 20 from the latter category (1.44%) 
out of a total of 1392 methods. In both cases, the number of instances increased 

over the years until reaching a maximum in the same year (2015). There were 185 
(1.53%) instances from the first category and 250 (2.08%) from the second. The 
values remained constant for several years, then they dropped heavily; there are 6 
static methods that access state (0.22%) and 39 that only operate on parameters 
(1.43%) in the final version of jHotDraw. 
 

 
Figure 5.2.7.7: Evolution of static initialization blocks for jHotDraw 
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 There were no static initialization blocks in the initial version of jHotDraw. 
The first instance was added to the TextAreaFigure class in April 2002. Since then, 

the number of static initialization blocks continued to increase until reaching a 
maximum of 23 in November 2010. It remained constant for several years until a 
major refactoring occurred in February 2015 and the amount of instances dropped 
to 8. An important observation is that the number of production classes also 
decreased during this refactoring from 1043 to 663. Although the project was 
modified significantly in the following years, no static initialization blocks were 

added / removed ever since. 

 
 

 5.2.8. Pig 

  

 
Figure 5.2.8.1: Evolution of static attributes for Pig 

 
 The number of instances for static non-final attributes, constants, and non-
static attributes all increased constantly from the initial version of Pig to 2017. For 

example, there were 32 static non-final attributes (8.06%) and 64 constants 
(16.12%) in the first version studied from a total of 397 attributes. These numbers 
increased considerably in the first year of development; in 2008 there were 149 
static non-final ones (13.24%) and 219 constants (19.47%) out of 1125 attributes. 
The increase was less pronounced in the following years and then these values 
remained almost the same in the final 3 years. For the last version analysed there 
are 245 static non-final attributes (roughly 5.5%) and 1101 constants (almost 25%) 

from the total 4423 attributes. It can be observed that the percentage of instances 
grew considerably throughout the project’s lifespan for constants, while for static 
non-final attributes it slightly decreased. 
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Figure 5.2.8.2: Evolution of singletons for Pig 

 
 There were 2 stateful singletons, BagFactory and PerformanceTimerFactory, 

and 0 stateless ones in the first version of Pig. The number of stateful instances 
increased over the years; there were 6 stateful singletons in 2010, 11 in 2014, and 
14 in 2017. The only exception occurred in March 2011 when UDFContext was 
removed. In the last 3 years of development no new stateful singletons were added; 
14 instances were found in the latest version studied. The first stateless singleton, 
TupleFactory, was created in June 2008. Since then, 3 new stateless instances were 
introduced: DownloadResolver (November 2015), SparkShims (July 2017), and 

NonWritableTuple (August 2017); they have been part of the system ever since. 
 

 
Figure 5.2.8.3: Evolution of singleton usage for Pig 

 
 In the initial version of the project stateful singleton usage was 5.65%. It 
quickly increased as new instances were created to a maximum of 14.75% in 
December 2009; then the usage decreased to 9.61% in 2011. From there on, the 
value fluctuated by increasing when stateful singletons / singleton clients were 
added and decreasing when other types of production classes were created. For the 
last version investigated stateful singleton usage is 9.28%. In terms of stateless 

singletons, their usage was 9.09% when the first instance was introduced. 
Afterwards, it started to slowly decrease as more production classes (that were not 
stateless singleton clients) were added to Pig; a minimum of 6.45% was reached in 
April 2016. In the last years of development stateless singleton usage increased by 
a small margin due to the fact that 2 new instances appeared; for the latest version 
analysed it is 7.06%. 
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Figure 5.2.8.4: Evolution of utility classes for Pig 

 
 There were 5 utility classes in the first version of Pig. The number of 
instances increased throughout Pig’s lifespan. At the beginning of the development 
cycle this increase was higher; 20 utility classes were found in 2008, 37 in 2010, 

and 62 in 2014. In the following years the rate of increase was considerably lower; 

a maximum of 75 utility classes was reached in October 2018. No instances were 
created ever since. 
 

 
Figure 5.2.8.5: Evolution of utility class usage for Pig 

 
 In terms of usage, it increased rapidly in the first year of development from 
7.91% to a peak value of 38.63%. From there on, it started to slowly decrease even 
though new utility classes were being created. This is because the number of 
production classes was also rising and the added classes were not clients of utility 

classes. In the last 7 years utility class usage was around 30%; for the latest 
version of Pig the exact value is 29.16%. 
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Figure 5.2.8.6: Evolution of static methods for Pig 

 
 The number of instances for both types of static methods increased 
continuously over the years. There were 7 static methods that access state (0.79%) 
and 25 that solely operate on parameters (2.82%) in the first version of Pig. In the 
first 3 years of development the increase was more pronounced, while in the 
following years significantly fewer static methods were added. The 2 values 

remained constant in the last 3 years; there are 86 static methods that access state 

and 451 that only operate on parameters in the latest version of Pig that was 
analysed. 
 

 
Figure 5.2.8.7: Evolution of static initialization blocks for Pig 

 
The number of static initialization blocks increased constantly from October 

2007 to September 2014 when 28 such instances were present in the production 
code. In October 2014 a major refactoring occurred and even though the number of 
classes only increased by 3, the amount of static initialization blocks went from 28 

to 37 (nearly 25% increase). The maximum was reached in October 2015 (39 
instances), then it suddenly dropped to 30 the following month although the number 
of production classes continued to rise. From there the number of static initialization 
blocks grew again until October 2018 (34 instances) and remained constant ever 
since. 
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 5.2.9. Spring Core 

  

 
Figure 5.2.9.1: Evolution of static non-final attributes for Spring Core 

 

 There were no static non-final attributes in the first version of Spring Core. 
The number of instances started to increase slowly in the first 2 years of 
development, then it spiked to 30 in August 2010. The maximum was reached in 

November 2012 when 34 such instances appeared. Afterwards, this number first 
fluctuated and then it dropped to 6 in November 2017 even though the total number 
of attributes continued to increase. From there on, the number of static non-final 

attributes remained fairly constant; there are 10 instances in the latest version 
investigated. 
 

 
Figure 5.2.9.2: Evolution of constants for Spring Core 

 
 Unlike the static non-final attributes, both the number of constants and the 
total number of attributes increase constantly as the system evolves. In the first 
years of development constants were continuously being introduced. The number of 
instances spiked between 2012-2013 (from 153 to 373) as a considerable amount 
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of functionality was added during that time period. Then it continued to increase, 
just like the total number of attributes. There are 611 constants (31.97%) from a 

total of 1911 attributes in the last version analysed. 
The first 2 singletons to be added to this system, OrderComparator and 

StaticLabeledEnumResolver, were stateless and of type Eager Instantiation. They 
were introduced in February 2009 and are still part of the project. The next 
singletons, ComparableComparator and AnnotationAwareOrderComparator, were 
created in August 2012 and November 2012, respectively. They had similar 

characteristics to the aforementioned OrderComparator; the first had the same 

superclass as OrderComparator while the second directly extended it. 
StaticLabeledEnumResolver was removed in April 2013. Two more stateless 
singletons of type Eager Instantiation were added in 2014, SpringNamingPolicy and 
DefaultOrderProviderComparator. The latter was not part of the system for long; it 
was deleted during a refactoring in September 2014. Finally, in May 2020 
ResourcePropertiesPersister was introduced in Spring Core; it is the fifth stateless 
singleton (of the same type) that was identified in the latest version of the project. 

 

 
Figure 5.2.9.3: Evolution of singleton usage for Spring Core 

 

 For stateful singletons the usage was 2.49% in July 2013 when the first 
instance was created. Then it continued to rise as more clients of the respective 
class were added to the project. The highest usage (6.51%) occurred 1 month after 
the second instance appeared; for the final version investigated stateful singleton 
usage is 6.35%. In terms of stateless singletons, the usage started at 1.57% when 
the first 2 instances were created. Then it fluctuated between 1% and 2%; even 
though 3 more instances were introduced, very few of the production classes that 

have been subsequently created were clients of the existing stateless singletons. For 
the latest version of Spring Core the usage is 1.39%. 

 



                                                89 

 
Figure 5.2.9.4: Evolution of utility classes for Spring Core 

 
 There were 32 utility classes in the initial version that was studied. The 
number of instances increased almost linearly until reaching 63 for the latest version 
of Spring Core. During the entire period we found only minor fluctuations, the most 

notable one being between 2015-2016. On closer inspection, it was observed that a 

major refactoring occurred during that time which caused the total number of 
production classes to drop from 4745 to 4085. Utility classes have continued to be 
added after that event, thereby obtaining a maximum of 63 instances in March 
2019. 
  

 
Figure 5.2.9.5: Evolution of utility class usage for Spring Core 

 
The usage of utility classes is high throughout the project’s history (roughly 

between 39% and 46%). However, we can observe that it was a bit higher towards 
the beginning of the development process. The usage started at over 43% and 
reached a peak value of 46.27% in September 2010. Then it decreased by a few 

percentages to a minimum of 39.03% in Match 2014. From there on, it fluctuated 
for several years until finally stabilizing at around 41% in 2019. 
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Figure 5.2.9.6: Evolution of static methods for Spring Core 

 
 There were no static methods that access state and 6 which solely operate 
on parameters (0.43%) in the first version of Spring Core that contained code. Only 
4 instances from the first category were created until 2013. From there on, their 
amount started to slowly increase until reaching a maximum of 17 in March 2019. In 
the last version studied there are 13 (0.27%) such methods. For static methods that 

only operate on parameters, the number of instances increased more heavily 
(except for 2012 when a major refactoring occurred) up to 236 in September 2018.  
It remained almost the same ever since; there are also 236 static methods of this 
kind (4.89%) in the latest version analysed. 
 

 
Figure 5.2.9.7: Evolution of static initialization blocks for Spring Core 

 

 The number of static initialization blocks grew constantly in the first half of 
the development period, from 7 instances in October 2008 to 28 in December 2015. 
From there on, the amount of initialization blocks remained more or less the same 
until the final version investigated (April 2021, 27 instances). However, during these 
last years of development, only a relatively small number of production classes were 
added; there were 4745 in January 2016 and now there are 4827 classes. 
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 5.2.10. Tomcat 
 

 
Figure 5.2.10.1: Evolution of static non-final attributes for Tomcat 

 
 There were 424 instances of static non-final attributes in the initial version 
analysed. First, the number increased to a maximum of 520 in October 2008; then 
it dropped to 229 in November 2009 even though the number of constants and the 

total number of attributes were growing. The number of instances continued to 
decrease over the years and remained fairly constant in the last 4 years of 

development; there are 134 static non-final attributes in the latest version of 
Tomcat. 
 

 
Figure 5.2.10.2: Evolution of constants for Tomcat 

 
 Just as the total number of attributes, the number of constants increases 
slowly as Tomcat evolves. There were 1591 instances (28.14%) from a total of 5653 
attributes in the first version of the project. In the last version that was analysed 

there are 3106 constants (32.18%) out of 9652 attributes. The percentages are 
very similar throughout the entire lifespan of the system. 
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Figure 5.2.10.3: Evolution of singletons for Tomcat 

 
 Throughout Tomcat’s lifespan there are very few singletons considering the 

size of the system. In the initial version of the project there were 5 stateful 
singletons and a stateless one. The number of stateful instances fluctuated in the 
first 6 years of development; 4 were found in October 2012 and then their amount 
increased to 8 in May 2014. From there on, 1 instance was removed in September 
2015 while another was added in April 2019; the number of stateful singletons has 

not changed ever since. For the stateless ones the number of instances increased to 
3 in December 2011, then it remained fairly constant until 2018. Two new stateless 

singletons were created in the following 2 years; there are 5 such instances in the 
last version of Tomcat. 
 

 
Figure 5.2.10.4: Evolution of singleton usage for Tomcat 

 

 The usage of both types of singletons is also low for this project (less than 
2.5%). For the stateful ones it was 2.47% initially and then it continuously 
decreased until reaching a minimum of 0.76% in January 2013 (when there were 
only 4 such instances). Since then, it began to slowly increase over the years as 
new stateful singletons / singleton clients were created; for the latest version of 
Tomcat stateful singleton usage is 1.44%. For the stateless variants, it is the other 
way around; usage was very low at first and grew over time, although not by a 
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significant amount. In the first version of the system this value was 0.38%. It 
remained relatively constant in the first 4 years of development and then spiked to 

1.32% in December 2011. The only decrease occurred between 2013-2015 when a 
minimum of 0.15% was reached. Stateless singleton usage increased in the final 
years of development. A peak value of 2.45% was encountered in December 2020; 
not much has changed since. 
 

 
Figure 5.2.10.5: Evolution of utility classes for Tomcat 

 

 There were 75 utility classes in the first version of Tomcat. The number of 
instances constantly increases throughout the system’s lifespan. The only 
exceptions occurred between 2007-2008 and 2010-2011 when this number 
decreased from 86 to 84 and from 95 to 92, respectively. Since then, the value only 

increased; there are 149 utility classes in the latest version investigated. 
 

 
Figure 5.2.10.6: Evolution of utility class usage for Tomcat 

 
 For the initial version of the project utility class usage was 17.01%. In the 
following 3 years this value decreased to 15.46% as instances were added / 
removed while the number of production classes was always growing. A similar 
situation can be observed between 2011-2014; although instances were created, 
many more production classes that were not clients of utility classes were 
introduced in the system. From there on, the usage grew constantly in conjunction 

with the number of utility classes that were created; it is 21.35% in the last version 
of Tomcat that was analysed. 
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Figure 5.2.10.7: Evolution of static methods for Tomcat 

 

 There were 60 static methods that access state (1.85%) and 134 which only 
operate on parameters (4.13%) out of a total of 3246 methods. The number of 
instances for the former decreased until halfway through the development period; 
18 such instances appeared in a version from March 2013. From there on, the value 
slowly increased; there are 46 methods that access state (0.22%) in the latest 

version of Tomcat. For the static methods from the second category, the 
corresponding value saw a small increase followed by a decrease until reaching a 

minimum of 100 (2.75%) instances in November 2009. Since then, the number of 
static methods that solely operate on parameters increased continuously; a 
maximum of 434 was encountered in December 2020. In the last version of the 
project there are 420 (1.98%) such methods. 
 

 
Figure 5.2.10.8: Evolution of static initialization blocks for Tomcat 

 
 With the exception of 2009, static initialization blocks were constantly being 
added to Tomcat until October 2018. The number of instances was 49 for the first 
version that was studied and peaked at 110. During this period roughly 100 
production classes were created per year, some of which contained initialization 

blocks. From 2018 onwards, the number of instances started to slowly decrease; 
there are 99 in the latest version that was investigated. However, the number of 
production classes is also smaller (2126 vs. 2160 in 2019). 
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 5.2.11. Wicket 
 

 
Figure 5.2.11.1: Evolution of static non-final attributes for Wicket 

 
The number of static non-final attributes increased in the first 4 years of 

development from 33 until reaching a maximum value of 50 in October 2009. 

Afterwards, it dropped to 27 in November 2012 and remained fairly constant ever 
since; from July 2017 onwards there are 22 static non-final attributes in Wicket’s 
classes. 

 

 
Figure 5.2.11.2: Evolution of constants for Wicket 

 
The evolution of the number of constants looks very similar to that of the 

total number of attributes. The amount of instances increased in the first years of 
development until reaching a maximum of 1204 in December 2008. Then a series of 

refactorings occurred which caused both the number of constants and the total 
number of attributes to decrease significantly (from 1163 to 793 and from 2789 to 
2032, respectively). Since then, both values have increased steadily over the years; 
there are 1036 constants (almost 40%) from a total of 2617 attributes. 
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Figure 5.2.11.3: Evolution of singletons for Wicket 

 
There was 1 stateful singleton, Result, and 11 stateless ones in the first 

version of Wicket in which the code was added. The stateful singleton was removed 
in July 2014 and no instances of this type have been created ever since. In the 
following 3 years, 2 new stateless instances were added and 1 was removed. In 
March 2010 the number of stateless singletons dropped to 6 and then it spiked to a 
maximum of 13 in November 2011. From there on, the amount of instances 

remained relatively constant the following 5 years. Afterwards it started to decrease 
with one exception, the addition of PageViewCSSResourceReference and 
WicketCoreCSSResourceReference in January 2020. There are 8 stateless singletons 
in the latest version studied. 
 

 
Figure 5.2.11.4: Evolution of singleton usage for Wicket 

 
 The usage of stateful singletons is very low as only 1 such instance 
appeared throughout Wicket’s lifetime. It started at 0.27% and slowly grew to 
0.44% right before the respective singleton was removed. For stateless singletons, 
the usage was 5.48% for the first version and it increased to a maximum of 5.86% 
in October 2007. From there on it began to decrease, more abruptly at first and 

slowly since 2011. This is due to the fact that the number of stateless singletons 
decreased, numerous other production classes were created, and they were not 
singleton clients. For the latest version of Wicket stateless singleton usage is only 
0.65%. 
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Figure 5.2.11.5: Evolution of utility classes for Wicket 

 
 It can be observed that the number of utility classes fluctuates throughout 
the project’s lifespan. In the first years of development it doubled from 14 in 2005 
to 28 in 2009. Then the amount of instances dropped to 14 again in 2010; the 
system was completely refactored during that time period with more than 200 

production classes getting removed. From there on it started to slowly increase, 

thus reaching a peak value of 32 instances in March 2016. Oddly enough, the 
number of utility classes decreased once again in the next year even though the 
number of production classes remained roughly the same. Since then it stays almost 
constant (around 25 instances) until the last version analysed. 
 

 
Figure 5.2.11.6: Evolution of utility class usage for Wicket 

 
 At the beginning of the development process, the usage of utility classes 
follows the same pattern as the number of instances. However, the drop that 
occurred in 2010 was significantly steeper; the usage went from a peak value of 

16.72% to 5.7% in less than 1 year. Then it fluctuated around 6%-8% for the rest 
of the time period. In the latest version that was studied the utility class usage is 
6.23%. 
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Figure 5.2.11.7: Evolution of static methods for Wicket 

 

 The number of static methods that access state increased in the first 2 years 
of development until reaching a maximum of 24 (0.33%) in 2008. From there on, it 
decreased continuously throughout the lifespan of Wicket; there are only 6 (0.07%) 
such instances in the latest version studied. The amount of static methods that 
solely operate on parameters also increased at first; a maximum value of 269 

(3.18%) was encountered in October 2009. Then this value dropped to 87 (1.44%) 
the following year and started to increase again afterwards. There are 209 (2.28%) 

static methods of this kind in the last version of Wicket. 
 

 
Figure 5.2.11.8: Evolution of static initialization blocks for Wicket 

 
 No static initialization blocks were found for Wicket until 2012 when 2 such 
instances were introduced as part of the XMLTokener and TagUtils classes. In May 
2013 another initialization block appeared in WicketTagIdentifier; a second instance 

was added to the aforementioned class in November 2015. Approximately 1 year 
later XMLTokener was removed from the system. Finally, in December 2020 an 
additional class that contained a static initialization block (JavaSerializer) was 
created. 
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5.3. Impact on class testability 
 

As explained in the previous chapter, we rely on testability scores to 
compare the classes that contain static constructs to other classes which are similar 
to them in terms of size and complexity. We do this for each category of static 
constructs; the comparison is performed both from a quantitative and from a 

qualitative perspective. As discussed in Chapter 3, we assess quantity based on 1) 
line coverage and 2) the percentage of production methods addressed by unit tests. 

The quality of the testing that was done on a particular class is evaluated through 
its corresponding test class; the metrics considered are 1) the percentage of unit 
tests that have smells and 2) the number of different types of test smells present in 
the respective class. Based on these metrics we compute the quantitative and 
qualitative scores, which are then aggregated to obtain the overall testability score. 

For each system, we provide a table that contains the 3 scores for the classes with 
different categories of static constructs / the similar classes. 
 

 5.3.1. BCEL 
 

BCEL is a project that appears to be average in terms of the quantity and 

quality of its unit tests. However, the classes that contain static non-final attributes 
have a lower overall score compared to other similar classes (2.25 vs. 2.5565). 
They are covered by fewer unit tests (average quantitative score of 2.4667 vs. 

2.871) and the tests are of lesser quality (average qualitative score of 2.0333 vs. 
2.2419). Constants on the other hand are much more thoroughly tested (2.9483 vs. 
2.5233), but the qualitative score is again lower (2.3621 vs. 2.4685); nevertheless, 

the overall testability score of the classes that have this kind of static constructs is 
higher (2.6552 vs. 2.4959) than for similar classes. 
 
Table 5.3.1: Testability of classes with static constructs vs. similar classes for BCEL 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 2.4667 2.0333 2.25 2.871 2.2419 2.5565 

Constants 2.9483 2.3621 2.6552 2.5233 2.4685 2.4959 

Singletons Stateful 3.5 2 2.75 3.5143 2.1429 2.8281 

Stateless 0 - - 2.9167 2.1538 2.5353 

Static 
methods 

Utility classes 3.1818 2.3636 2.7727 3.2353 2.1618 2.6986 

Access state 2.5 2.125 2.3125 2.2874 2.2986 2.293 

Operate on 
parameters 

2.5294 2.4118 2.4706 2.3151 2.3288 2.322 

Static initialization blocks 2.9 2.3 2.6 2.7407 2.1176 2.4292 

  
 One stateful singleton (Type) and 2 stateless ones (LONG_Upper and 
DOUBLE_Upper) were found in the latest version of BCEL studied. The testability of 
the stateful one is comparable to that of similar classes (2.75 vs. 2.8281). Both its 
quantitative and its qualitative score are on par with the average scores obtained for 
the classes that were categorized as similar to it. Surprisingly, the stateless 
singletons are not addressed by any unit tests (code coverage of 0%); therefore, it 

was impossible to compute a qualitative score and correspondingly an overall 
testability score. It will be interesting to see how the singletons from the following 
systems rate in terms of testability. 
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 The utility classes also have average quantitative and qualitive scores that 
are comparable to the ones of similar classes (3.1818 vs. 3.2353 and 2.3636 vs. 

2.1618, respectively); therefore, the overall testability scores are very close (2.7727 
vs. 2.6986). For the rest of the production classes that contain static methods we 
found that the testability of the ones with methods that access state is comparable 
to that of similar classes, while for those with methods that only operate on 
parameters it is considerably higher. The latter have higher quantitative (2.5294 vs. 
2.3151) and qualitative (2.4118 vs. 2.3288) scores when compared to similar 

classes. For the former only the score related to quantity is greater (2.5 vs. 2.2874) 

while the qualitative one is smaller (2.125 vs. 2.2986). 
 The 5 classes that contain a static initialization block are actually better in 
terms of testability compared to other similar classes. Both the average quantitative 
score (2.9 vs. 2.7407) and the average qualitative one (2.3 vs. 2.1176) are higher, 
thus the overall testability score is also greater (2.6 vs. 2.4292). 
 

 5.3.2. Commons Collections 

 
Table 5.3.2: Testability of classes with static constructs vs. similar classes for 

Commons Collections 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final - - - - - - 

Constants 4.5673 1.5385 3.0529 4.7692 1.6254 3.1923 

Singletons Stateful - - - - - - 

Stateless 4.575 1.675 3.125 4.5897 1.547 3.0683 

Static 
methods 

Utility classes 4.5 1.5 3 4.6019 1.5534 3.0777 

Access state 4 2 3 4.6264 1.5287 3.0776 

Operate on 
parameters 

4.7467 1.4133 3.08 4.5534 1.6311 3.0922 

Static initialization blocks 4.5 2 3.25 4.5897 1.547 3.0684 

 
The latest version of Commons Collections does not have any mutable global 

state instances (stateful singletons and static non-final attributes). There is no 
significant difference between the average testability score of the classes that 
contain constants and the corresponding value for other similar classes (3.0529 vs. 
3.1923); however, the latter seem to be tested a bit more (average quantitative 

score of 4.7692 vs. 4.5673) and with better unit tests (average qualitative score of 
1.6254 vs. 1.5385). 

Similar observations can be made for stateless singletons; the average 
overall testability of the 5 instances is 3.125, while for similar classes it is 3.0683. 
The average quantitative scores are almost the same (4.575 vs. 4.5897), but for 
quality there is a small difference in favour of the former (1.675 vs. 1.547).  
 For utility classes the average quantitative and qualitative scores are also 

comparable to the ones obtained for similar classes (4.5 vs. 4.6019 and 1.5 vs. 
1.5534, respectively). The latter are a bit higher, thereby causing the overall 
testability score to be greater. With regard to the other classes that have static 
methods, their testability is close to that of similar classes. The classes that contain 
static methods which access state are covered by significantly fewer tests (average 
quantitative score of 4 vs. 4.6264), but the unit tests are of a higher quality 
(qualitative score of 2 vs. 1.5287); therefore, their overall testability score is a bit 

lower than the one obtained for classes which are similar to them in terms of size 
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and complexity (3 vs. 3.0776). For the other category however, the score is almost 
the same as for similar classes (3.08 vs. 3.0922); both the quantitative and the 

qualitative scores are close (4.7467 vs. 4.5534 and 1.4133 vs. 1.6311, 
respectively). 

Finally, the only class that contains a static initialization block, 
FunctorException, has a higher testability score than the average obtained for the 
classes that are similar to it. While there is little difference between the quantitative 
scores (4.5 vs. 4.5897), the one for quality is greater (2 vs. 1.547). 

 

 5.3.3. Commons Lang 

  
Table 5.3.3: Testability of classes with static constructs vs. similar classes for 

Commons Lang 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 4.5 1 2.75 4.7414 1.1034 2.9224 

Constants 4.8247 1.0928 2.9588 4.3158 1.1579 2.7368 

Singletons Stateful - - - - - - 

Stateless 5 1.5 3.25 4.7391 1.0957 2.9174 

Static 
methods 

Utility classes 4.5714 1.1667 2.869 4.8378 1.0676 2.9527 

Access state 5 0.5 2.75 4.64 1.22 2.93 

Operate on 
parameters 

5 1 3 4.6637 1.1239 2.8938 

Static initialization blocks 4.7778 1.4444 3.1111 4.7383 1.0748 2.9065 

 
 An interesting observation can be made with regard to the testability of 
Commons Lang’s classes. Most of them are adequately covered by unit tests (more 
than 75% line and method coverage), but the respective tests suffer in terms of 
quality (numerous test classes with a large amount of test smells). The only class 
that has a static non-final attribute, ToStringBuilder, has lower average scores both 

for quantity (4.5 vs. 4.7414) and quality (1 vs. 1.1034) compared to other classes 
that are similar to it; therefore, its overall testability score is also smaller. On the 
other hand, classes that only contain constants do not appear to be tested less / 
with tests of a lower quality. In fact, the average score for quantity is actually 
higher (4.8247 vs. 4.3158), while the one for quality is roughly the same as the 
average obtained for similar classes (1.0928 vs. 1.1579). This causes the overall 

testability score to be higher (2.9588 vs. 2.7368), albeit not by much. 
 In the latest version of Commons Lang there are no stateful singletons and 
only 1 stateless singleton. The respective instance, ObjectToStringComparator, has 
a perfect score in terms of quantity; the classes which are similar to it are also 
extensively covered by unit tests, the average quantitative score for them is 4.7391. 
In terms of quality, the singleton instance has a better score (1.5 vs. 1.0957), which 
makes its overall testability score considerably higher than the average one for 

similar classes (3.25 vs. 2.9174). 
 For utility classes their average testability score (2.869) is almost equal to 
the corresponding value for similar classes (2.9527). While they seem to be 
addressed by fewer tests (average quantitative score of 4.5714 vs. 4.8378), the 
unit tests are of better quality (average qualitative score of 1.1667 vs. 1.0676). 
From the rest of the production classes that contain static methods, those with 
methods that access state have a lower testability than other similar classes, while 

for the ones with static methods that only operate on parameters the testability 
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score is higher (3 vs. 2.8938). For the classes from the first category, the average 
quantitative score is greater (5 vs. 4.64) while the qualitative score is considerably 

lower (0.5 vs. 1.22); this causes their overall testability score to be lower as well 
(2.75 vs. 2.93), albeit not by much. Different observations can be made with regard 
to the classes that contain static methods that solely operate on parameters. Their 
average quantitative score is also higher (5 vs. 4.6637), but the qualitative score is 
close to that of similar classes (1 vs. 1.1239) which makes the overall testability 
score greater. 

 Finally, the classes with static initialization blocks have, on average, a 

higher testability score than other classes that are similar to them (3.1111 vs. 
2.9065). The average scores are roughly the same for quantity (4.7778 vs. 4.7383), 
but for quality there seem to be fewer smells in their corresponding unit tests 
(1.4444 vs. 1.0748). 
 

 5.3.4. Commons Math 

  
Table 5.3.4: Testability of classes with static constructs vs. similar classes for 

Commons Math 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 4.1667 0.3333 2.25 4.6129 0.4996 2.5563 

Constants 4.493 0.4406 2.4668 4.6066 0.4918 2.5492 

Singletons Stateful - - - - - - 

Stateless 4 0.5 2.25 4.413 0.4496 2.4313 

Static 
methods 

Utility classes 4.4444 0.5556 2.5 4.5167 0.4438 2.4802 

Access state 4.4375 0.75 2.5938 4.4841 0.7841 2.6341 

Operate on 
parameters 

4.2174 0.6304 2.4239 4.2294 0.4745 2.352 

Static initialization blocks 3.875 0.625 2.25 4.5219 0.4548 2.4883 

 

 For Math the average qualitative scores are very low both for the classes 
with instances of static constructs and for the groups of similar classes. The biggest 
difference in terms of testability was observed for the classes that contain static 
non-final attributes, namely DfpField, DSCompiler, and GeneticAlgorithm. Their 
average quantitative score is 4.1667 (compared to 4.6129 for similar classes), while 
the one for quality is 0.3333 (vs. 0.4996); thus, there is a 0.3063 difference 

between their overall testability score and the corresponding value for the classes 
which are considered similar to them. This is the largest difference encountered 
from all the categories of static constructs, thereby suggesting that this kind of 
instances have the highest impact on class testability. For constants, the values 
obtained are quite similar (4.493 vs. 4.6066 for quantity and 0.4406 vs. 0.4918 for 
quality); there is little difference between the overall testability scores (2.4668 vs. 
2.5492) for this type of instances and other similar classes. 

 There is only 1 stateless singleton in the version studied, Decimal64Field. 
While its quantitative score is smaller than the average one obtained for classes 
which are similar to it (4 vs. 4.413), the quantitative score is a bit higher (0.5 vs. 
0.4496). This makes their overall testability scores comparable (2.25 vs. 2.4313). 
For utility classes the respective scores are almost identical (2.5 vs. 2.4802); the 
average quantitative score is a bit lower (4.4444 vs. 4.5167), while the qualitative 
one is greater (0.5556 vs. 0.4438). 



                                                103 

 For the rest of the production classes that contain static methods, their 
overall testability score is comparable to the one obtained for other classes. The 

ones with methods that access state have a slightly lower score (2.5938 vs. 
2.6341), while for the classes with static methods that only operate on parameters 
this value is a bit higher (2.4239 vs. 2.352) than for similar classes. Those from the 
first category are tested less (4.4375 vs. 4.4841) and with tests of a lower quality 
(0.75 vs. 0.7841). For the latter only the qualitative score is larger (0.6304 vs. 
0.4745), the quantitative one is roughly the same (4.2174 vs. 4.2294). 

 The overall testability of the 10 classes with static initialization blocks seems 

to be considerably lower than for other similar classes (2.25 vs. 2.4883). This is due 
to the fact that the average quantitative score is significantly lower (3.875 vs. 
4.5219); on the other hand, the average qualitative score is higher (0.625 vs. 
0.4548). 
 

 5.3.5. Digester 

  
Table 5.3.5: Testability of classes with static constructs vs. similar classes for 

Digester 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final - - - - - - 

Constants 3.4583 3.375 3.4167 3.582 3.1214 3.3517 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes 4 3 3.5 3.6607 3.2105 3.4356 

Access state - - - - - - 

Operate on 
parameters 

3.6667 3.1667 3.4167 3.4776 3.3039 3.3908 

Static initialization blocks - - - - - - 

 

 As seen in the first section of this chapter, there are very few instances of 
static constructs in this system. However, the quantitative and qualitative scores are 
generally high for Digester (over 3.5 and between 3-3.5, respectively). For the 24 
classes with constants the overall testability score is almost the same as for similar 
classes (3.4167 vs. 3.3517). They are addressed by fewer unit tests (average 
quantitative score of 3.4583 vs. 3.582), but the tests are of better quality 

(qualitative score of 3.375 vs. 3.1214). 
 For the 2 utility classes the situation is the other way around. They have a 
higher average quantitative score (4 vs. 3.6607) and a lower qualitative score (3 vs. 
3.2105); nevertheless, the outcome is the same; their overall testability score is 
greater than that of similar classes (3.5 vs. 3.4356). Additionally, there are 6 
production classes that contain static methods that solely operate on parameters. 
For them the situation is exactly the same as for utility classes; their average 

quantitative score is higher (3.6667 vs. 3.4776) and the one for quality is lower 
(3.1667 vs. 3.3039) than for similar classes. Finally, the overall testability scores 
are more or less the same (3.4167 vs. 3.3908). 
 

 5.3.6. Geode 

  

 The testability scores for Geode are very low, even the quantitative ones. 
Classes that contain static non-final attributes have a lower overall score (1.0373 
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vs. 1.1628) compared to other similar classes, while for the ones with constants the 
values are comparable (1.1339 vs. 1.0884). The former are covered by fewer unit 

tests (quantitative score of 1.2521 vs. 1.3492) and the respective tests are of a 
lower quality (qualitative score of 0.8224 vs. 0.9763). For the latter the quantity is 
almost the same (1.3084 vs. 1.2929), but the quality is better (0.9593 vs. 0.8839). 
 
Table 5.3.6: Testability of classes with static constructs vs. similar classes for Geode 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 1.2521 0.8224 1.0373 1.3492 0.9763 1.1628 

Constants 1.3084 0.9593 1.1339 1.2929 0.8839 1.0884 

Singletons Stateful 1.2308 0.9231 1.077 1.2882 0.9176 1.1029 

Stateless 1.7222 0.8889 1.3056 1.4831 0.9487 1.2159 

Static 
methods 

Utility classes 1.6599 0.9594 1.3097 1.2586 0.9122 1.0854 

Access state 1.0751 1.0491 1.0621 1.3332 0.807 1.0701 

Operate on 
parameters 

1.6201 0.8939 1.257 1.2655 0.9947 1.1301 

Static initialization blocks 1.8026 0.9211 1.3619 1.3759 1.0674 1.2217 

 
 Similar observations can be made with regard to the 2 types of singletons. 
The stateful ones have a lower quantitative score (1.2308 vs. 1.2882) and an 
almost identical qualitative score (0.9231 vs. 0.9176) when compared to similar 

classes; therefore, their overall testability is also a bit lower (1.077 vs. 1.1029). The 
stateless singletons are addressed by considerably more tests (1.7222 vs. 1.4831 

for quantity) which are more or less the same in terms of quality (0.8889 vs. 
0.9487). The overall testability score for these instances is higher (1.3056 vs. 
1.2159) than the corresponding value for similar classes. 
 For utility classes both the quantitative and the qualitative scores are 
greater (1.6599 vs. 1.2586 and 0.9594 vs. 0.9122, respectively). This makes their 
overall testability score significantly higher (1.3097 vs. 1.0854) than the one 
obtained for classes that are similar to them in terms of size and complexity. For the 

rest of the classes that contain static methods, we found that those with methods 
that access their state are just as testable as other similar classes, while the ones 
with static methods that solely operate on parameters have an even higher 
testability. For the ones from the first category the coverage is lower (1.0751 vs. 
1.3332), but the quality of the tests is better (1.0491 vs. 0.807). It is the other way 
around for the classes from the second category; they have a much higher 

quantitative score (1.6201 vs. 1.2655) compared to similar classes, but the 
qualitative score is a bit smaller (0.8939 vs. 0.9947). 
 Finally, the classes with static initialization blocks have a better overall 
testability score (1.3619 vs. 1.2217) than other production classes. Their 
quantitative score (1.8026) is the highest one encountered for the classes with 
static constructs, while their qualitative score is also good (0.9211). 
 

 5.3.7. jHotDraw 

  
 For jHotDraw it was impossible to investigate the impact of the different 
types of static constructs on class testability. As explained in Chapter 4, this system 
was included in the study due to the fact that it was used as reference in an article 
that discusses variations of the Singleton design pattern. However, the amount of 

testing performed on the latest version of the system is insufficient for a proper 
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analysis on class testability; the test / production code ratio is 0.05 and there are 
only 200 unit test (compared to 2713 production methods). Selecting this project 

for the empirical study was especially important for the analysis on the evolution of 
singletons. As an example, we checked if the number of instances found at certain 
moments in time is in accordance with what is discussed in the paper. The system 
will also be useful in our analyses on change- / defect-proneness that follow. 
 

 5.3.8. Pig 

  
With regard to static attributes, there is a big difference between the 

testability of the classes that contain non-final ones and those with constants. The 
overall testability score of the latter is almost identical (1.7206 vs. 1.7) to that of 
similar classes; even the quantitative and qualitative scores are roughly the same 
(2.5588 vs. 2.5333 and 0.8824 vs. 0.8667, respectively). In contrast, the classes 
with static non-final attributes are covered by fewer unit tests (average quantitative 

score of 2.0909 vs. 2.4739) and the respective tests are of a poorer quality 
(qualitative score of 0.8182 vs 0.9211). 
 

Table 5.3.8: Testability of classes with static constructs vs. similar classes for Pig 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 2.0909 0.8182 1.4546 2.4739 0.9211 1.6975 

Constants 2.5588 0.8824 1.7206 2.5333 0.8667 1.7 

Singletons Stateful 2.2857 0.8571 1.5714 2.5636 0.8916 1.7276 

Stateless 2.5 1 1.75 2.4889 0.8491 1.669 

Static 
methods 

Utility classes 2.4333 0.9167 1.675 2.3261 0.913 1.6196 

Access state 2.2727 0.9091 1.5909 2.5526 1.0263 1.7895 

Operate on 
parameters 

2.4375 0.9375 1.6875 2.2 0.9556 1.5778 

Static init blocks 2.3571 0.7857 1.5714 2.2708 0.9375 1.6042 

 
 The testability of singletons varies depending on the type of the instances. 
The 14 stateful ones are tested less thoroughly (average quantitative score of 
2.2857 vs. 2.5636) compared to similar classes, but the quality of the unit tests is 
roughly the same (qualitative score of 0.8571 vs. 0.8916); all in all, the overall 
testability score is lower for this kind of singletons (1.5714 vs. 1.7276). For the 4 

stateless ones the values for both quantity and quality are higher (2.5 vs. 2.4889 
and 1 vs. 0.8491, respectively). This makes the testability score greater as well 
(1.75 vs. 1.669), but all 3 scores are very close. 
 For utility classes both averages are higher (2.4333 vs. 2.3261 for quantity 
and 0.9167 vs. 0.913 for quality), although not by much; thus the overall testability 
score is also greater (1.675 vs. 1.6196). On the other hand, production classes that 
have static methods which access state are tested less (2.2727 vs. 2.5526) and with 

unit tests that are worst in terms of quality (0.9091 vs. 1.0263). This suggests that 
they are less testable than classes that are similar to them in terms of size and 
complexity. For the classes with static methods that only operate on parameters the 
situation resembles the one observed for utility classes. The difference between the 
average quantitative scores is slightly bigger (2.4375 vs. 2.2), but the qualitative 
scores are more or less the same (0.9375 vs. 0.9556). In consequence, the overall 
testability score is a bit higher (1.6875 vs. 1.5778). 
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 Classes with static initialization blocks have a similar testability to other 
production classes (overall score of 1.5714 vs. 1.6042). Both the quantitative and 

qualitative scores are comparable to those of similar classes (2.3571 vs. 2.2708 and 
0.7857 vs. 0.9375, respectively).  
 

 5.3.9. Spring Core 

  
Table 5.3.9: Testability of classes with static constructs vs. similar classes for Spring 

Core 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 3.3 3.05 3.175 3.9356 3.374 3.6548 

Constants 3.8293 3.2439 3.5366 3.8696 3.4348 3.6522 

Singletons Stateful - - - - - - 

Stateless 4.2 4 4.1 3.8239 3.5535 3.6887 

Static 
methods 

Utility classes 3.697 3.4242 3.5606 3.8761 3.2301 3.5531 

Access state 3.5769 3.3077 3.4423 3.9593 3.3667 3.663 

Operate on 
parameters 

4.3125 3.875 4.0938 3.7786 3.1985 3.4885 

Static initialization blocks 4 3.2 3.6 3.8235 3.2794 3.5515 

 
There are 10 classes that contain static non-final attributes and their 

average testability is considerably lower than the corresponding value for similar 

classes (3.175 vs. 3.6548); this is by far the biggest difference encountered when 
compared to the other types of static constructs. Both the average quantitative and 
qualitative scores are lower (3.3 vs. 3.9356 and 3.05 vs. 3.374, respectively) than 
the ones obtained for similar classes. On the other hand, for classes with constants 
these differences are much smaller (3.8293 vs. 3.8696 for quantity and 3.2439 vs. 
3.4348 for quality). The average testability scores are comparable, 3.5366 for the 
classes that contain constants and 3.6522 for other classes that were categorized as 

similar to them. 
 There are no stateful singletons in the version of Spring Core that was 
investigated. Surprisingly, for the 5 stateless singletons found, their testability 
appears to be greater than that of similar classes both in terms of quantity (4.2 vs. 
3.8239) and quality (4 vs. 3.5535). This causes the overall testability score to be 
significantly higher (4.1 vs. 3.6887), thereby suggesting that this kind of singletons 

are not more difficult to test. 
 For utility classes, their testability is comparable to that of similar classes 
(3.5606 vs. 3.5531). Although they are covered by fewer unit tests (average 
quantitative score of 3.697 vs. 3.8761), these tests are of better quality (average 
qualitative score of 3.4242 vs. 3.2301). The testability of the remaining production 
classes that contain static methods is different depending on the type of the 
methods. Those with static methods that access their state scored lower for both 

quantity and quality (3.5769 vs. 3.9593 and 3.3077 vs. 3.3667, respectively). For 
the ones with static methods that solely operate on parameters the corresponding 
values are substantially greater (4.3125 vs. 3.7786 and 3.875 vs 3.1985) than for 
similar classes. This proves that the former are more difficult to test, while the latter 
are highly testable. 

Finally, for the 25 classes with static initialization blocks the situation is 
opposite to the one encountered for utility classes. The quantitative score is higher 
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(4 vs. 3.8235) and the qualitative one lower (3.2 vs. 3.2794), thus making the 
overall testability scores very similar (3.6 vs. 3.5515). 

 

5.3.10. Tomcat 
  

Table 5.3.10: Testability of classes with static constructs vs. similar classes for 
Tomcat 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 2.791 0.9701 1.8806 2.5698 0.9395 1.7547 

Constants 2.8866 1.0589 1.9728 2.4593 0.8147 1.637 

Singletons Stateful 2.5625 0.875 1.7188 2.6503 0.8024 1.7264 

Stateless 2.7 0.8 1.75 2.6106 0.8406 1.7256 

Static 
methods 

Utility classes 2.7382 0.9195 1.8909 2.6486 0.8856 1.7671 

Access state 2.5652 1.0435 1.8044 2.5194 0.975 1.7472 

Operate on 
parameters 

2.6738 1.0071 1.8405 2.4793 1.1563 1.8178 

Static initialization blocks 2.4105 0.8316 1.6211 2.731 0.9563 1.8437 

 
 For Tomcat, the classes that contain static non-final attributes actually have 
a higher overall score compared to other similar classes (1.8806 vs. 1.7547). They 
are covered by more unit tests (average quantitative score of 2.791 vs. 2.5698) and 

the tests are roughly the same in terms of quality (average qualitative score of 

0.9701 vs. 0.9395). Constants are also more thoroughly tested (2.8866 vs. 2.4593) 
and their qualitative score is greater (1.0589 vs. 0.8147); thus, the overall 
testability score of the classes that have this kind of static constructs is significantly 
higher (1.9728 vs. 1.637) than for similar classes. 
 The testability of singletons is comparable to that of similar classes 
(regardless of their type). The 8 stateful ones are tested a bit less thoroughly 
(average quantitative score of 2.5625 vs. 2.6503), but the quality of the unit tests is 

better (qualitative score of 0.875 vs. 0.8024); all in all, the overall testability scores 
are very close (1.7188 vs. 1.7264). For the 5 stateless singletons the values for 
both quantity and quality are comparable (2.7 vs. 2.6106 and 0.8 vs. 0.8406, 
respectively). This makes their testability scores more or less the same (1.75 vs. 
1.7256). 
 For the 149 utility classes their average testability score (1.8909) is higher 

than the corresponding value for similar classes (1.7671). They seem to be 
addressed by more tests (average quantitative score of 2.7382 vs. 2.6486) and the 
unit tests are of similar quality (average qualitative score of 0.9195 vs. 0.8856). 
Similar observations can be made with regard to classes that contain static methods 
that access state; all 3 scores are a bit higher (2.5652 vs. 2.5194, 1.0435 vs. 
0.975, and 1.8044 vs. 1.7472, respectively). For classes with static methods that 
solely operate on parameters the overall testability scores are close (1.8405 vs. 

1.8178). They are covered by more tests (2.6738 vs. 2.4793) compared to similar 
classes, but the quality of the tests is lower (1.0071 vs. 1.1563). 
 Finally, the overall testability of the 95 classes with static initialization blocks 
is lower than for other similar classes (1.6211 vs. 1.8437). This is due to the fact 
that both the average quantitative score (2.4105 vs. 2.731) and the average 
qualitative score (0.8316 vs. 0.9563) are lower. 
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5.3.11. Wicket 
  

Table 5.3.11: Testability of classes with static constructs vs. similar classes for 
Wicket 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Testability 

Static 
attributes 

Non-final 2.8667 2.0667 2.4667 2.9363 2.5247 2.7305 

Constants 2.9394 2.4061 2.6728 2.7556 2.6222 2.6889 

Singletons Stateful - - - - - - 

Stateless 2.875 2.625 2.75 2.7323 2.5743 2.6533 

Static 
methods 

Utility classes 3.1875 2.625 2.9063 2.8168 2.4059 2.6114 

Access state 2.875 2.375 2.625 3.1089 2.3932 2.7511 

Operate on 
parameters 

3.075 2.5 2.7875 2.7586 2.3809 2.5698 

Static initialization blocks 3.1 2.6 2.85 3.2105 2.5694 2.89 

 

 Wicket is a project in which the average quantitative and qualitative scores 
are very similar, with a small difference in favour of the first. The classes that 
contain static non-final attributes seem to be tested a bit less (average quantitative 
score of 2.8667 vs. 2.9363) and with unit tests of a lower quality (average 
qualitative score of 2.0667 vs. 2.5247) compared to other similar classes; therefore, 
their overall testability score is significantly smaller (2.4667 vs. 2.7305). On the 

other hand, the score for classes with constants is almost identical to that of similar 

classes (2.6728 vs. 2.6889). Their average quantitative score is higher (2.9394 vs. 
2.7556) while the qualitative score is lower (2.4061 vs. 2.6222). 
 There are no stateful singletons in the latest version of Wicket. For the 8 
stateless ones both the average quantitative and qualitative scores are higher 
(2.875 vs. 2.7323 and 2.625 vs. 2.5743, respectively), but not by a large margin; 
thus, the overall testability score is also greater (2.75 vs 2.6533) than for similar 
classes. 

 Utility classes actually have the highest testability score (2.9063) out of all 
the static constructs investigated. They are addressed by more tests (3.1875 vs. 
2.8168) compared to classes that are similar to them in terms of size and 
complexity; the quality of the unit tests is also better (2.625 vs. 2.4059). For the 
other classes that contain static methods, we found that those with methods that 
access their state have a lower testability than other similar classes (2.625 vs. 

2.7511), while for the ones with static methods that only operate on parameters the 
testability is considerably higher (2.7875 vs. 2.5698). For the former, although the 
quality of the tests is roughly the same (2.375 vs. 2.3932) as for similar classes, 
their quantity is much lower (2.875 vs. 3.1089). For the second category, the 
average scores for both quantity and quality are substantially higher (3.075 vs. 
2.7686 and 2.5 vs. 2.3809, respectively). 
 Finally, for the classes with static initialization blocks there does not appear 

to be any difference in terms of testability when compared to similar classes. The 
average quantitative score is slightly lower (3.1 vs. 3.2105), while the 
corresponding value for quality is a bit higher (2.6 vs. 2.5694). This causes the 
overall testability scores to be almost the same (2.85 vs. 2.89). 
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5.4. Impact on change- / defect-proneness 
 
 The proposed procedures for quantifying change- and defect-proneness 
were explained in Chapter 3. They are used to determine whether or not the classes 
with different types of static constructs were modified more frequently / more fine-
grained source code changes were performed on them. The only difference between 

them is that for error-proneness we only take into account the commits that were 
categorized as bug-fixes. The following table contains an overview of the bug-fix 

commits identified for each project. 
 

Table 5.4 Bug-fix commits identified 
System Total # 

Jira 
bugs 

# Commits 
containing 
issue keys 

# Commits with issue 
keys corresponding 
to bugs 

# Commits 
identified based 
on keywords 

Total # 
bug-fix 
commits 

BCEL 252 195 110 141 251 

Collections 362 485 175 373 548 

Commons Lang 707 1466 571 394 965 

Commons Math 728 2030 667 646 1313 

Digester 122 82 38 381 419 

Geode 4990 8877 4349 1075 5424 

jHotDraw - - - 76 76 

Pig 3109 3368 2094 150 2244 

Spring Core - - - 1903 1903 

Tomcat - - - 4696 4696 

Wicket 4163 6573 3727 3161 6888 

 
It can be observed that for 3 of the 11 systems we were not able to find a 

corresponding Jira issue tracker; therefore, for these projects we detected bug-fix 

commits solely based on keywords. Our evaluation of defect-proneness for these 3 
systems might not be as accurate as for the others. In both assessments (change- 
and defect-proneness), we compared the average number of changes performed on 
the classes that have a certain type of static construct with the corresponding value 
for the classes which are similar to them in terms of size and complexity. 
Furthermore, we also computed the average number of modifications per commit in 

order to determine if the instances of interest were altered in more commits than 
the similar classes. Finally, we were keen to observe which types of fine-grained 

source code changes occurred the most frequently and to establish whether or not 
the rankings are different for various categories of static constructs / similar classes. 
The acronyms correspond to the change types presented in Table 3.2. 

 

 5.4.1. BCEL 

  
Table 5.4.1.1: Change-proneness of classes with static constructs vs. similar classes 

for BCEL 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 200.0667 7.7333 24.8584 SD 
22.859 SU 
19.3269 SI 

40.6875 3.1875 27.1689 SU 
11.5408 SI 
10.9397 SD 
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7.1643 SPC 
3.4655 DU 

7.0193 IAC 
5.57 SPC 

Constants 77.2459 5.9836 19.7646 SU 
12.9013 SD 
11.602 SI 
8.1474 IAC 
7.7499 RAT 

35.5031 2.8696 30.2747 SU 
13.5497 SI 
13.471 SD 
5.6858 SPC 
4.6186 IAC 

Singletons Stateful 85 2.931 23.5294 SU 
17.6471 RF 
12.9412 SI 
8.2353 SD 
4.7059 PTC 

46.8298 3.3665 26.4632 SU 
14.2875 SD 
11.8403 SI 
5.9142 IAC 
5.8528 SPC 

Stateless 8.5 1.3077 17.6471 SU 
11.7647 AAM 
11.7647 AOS 
11.7647 ROS 
11.7647 SD 

37.1312 3.378 26.4576 SU 
13.265 SD 
12.8418 SI 
6.9082 IAC 
4.8417 SPC 

Static 
methods 

Utility 
classes 

135.9 6.4 19.1317 SI 
17.0714 SU 
16.1884 SD 
8.1678 DU 
6.0338 SPC 

44.5442 3.2841 27.2164 SU 
13.0244 SD 
12.3262 SI 
6.2413 IAC 
5.82 SPC 

Access state 148.375 6.125 24.4082 SD 
23.2566 SU 
19.0019 SI 
7.4216 SPC 
3.4869 RF 

41.3593 3.1866 28.1215 SU 
12.5436 SI 
10.9173 SD 
7.0649 IAC 
5.5024 SPC 

Operate on 
parameters 

142.8824 5.6471 29.4772 SU 
16.056 SI 
13.7505 SD 
13.2977 SPC 
5.4755 CEC 

42.4727 3.2596 25.9762 SU 
12.3384 SI 
12.1875 SD 
6.7739 IAC 
4.6703 SPC 

Static initialization blocks 132.8 4.8 19.5783 SU 
16.8675 SD 
15.0602 SI 
6.9277 RMO 
6.4759 SPC 

45.7937 3.3466 26.7129 SU 
13.1254 SD 
12.7556 SI 
6.1236 IAC 
5.8117 SPC 

 
 The 15 production classes that have static non-final attributes are more 
change-prone compared to similar classes. The average number of modifications is 

roughly 5 times higher (200.0667 vs. 40.6875) while the number of changes per 
commit is less than 2.5 times greater (7.7333 vs. 3.1875). The top 3 change types 

are the same, but the following 2 and the percentages are very different. 
 Although there is a difference between the classes with constants and other 
similar classes in terms of average number of changes (77.2459 vs. 35.5031) and 
number of modifications per commit (5.9836 vs. 2.8696), this difference is not 
nearly as great as for the classes that contain static non-final attributes. Four of the 
top 5 change types are the same, albeit the percentages are fairly different. 
 The stateful singleton (Type) is more change-prone compared to the classes 

that were categorized as similar to it. It suffered 85 fine-grained modifications 
during 29 commits; for the similar classes the average number of modifications is 
almost half (46.8298) and the number of changes per commit is a bit higher 
(3.3665 vs. 2.931). The corresponding values for the 2 stateless singletons are 
much lower; their average number of changes is 8.5 while the amount of 
modifications per commit is 1.3077, thus indicating that they are less change-prone. 
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Regarding the top 5 change types, only statement updates and deletes appear in all 
4 rankings; the results might be inconclusive due to the very small number of 

instances (1 and 2, respectively). 
 The change-proneness of the utility classes is much higher than for other 
similar classes. The average number of changes is triple (135.9 vs. 44.5442) and 
there are twice as many modifications per commit (6.4 vs. 3.2841). The other 
production classes that contain static methods also appear to be more change-prone 
compared to similar classes. Both the ones with static methods that access state 

and those with methods that only operate on parameters have had, on average, a 

higher number of modifications performed on them (148.375 vs. 41.3593 and 
142.8824 vs. 42.4727, respectively). The number of changes per commit is roughly 
double than for similar classes in both cases (6.125 vs. 3.1866 and 5.6471 vs. 
3.2596). Finally, 4 of the top 5 change types are the same, though their 
percentages and order are quite different. 
 The Utility class (448 changes) also contains a static initialization block 
along with 4 other classes; the average number of changes for these instances is 

considerably higher than for similar classes (132.8 vs. 45.7937) and there are 
slightly more changes per commit (4.8 vs. 3.3466). However, they are not so 
different with regard to the types of changes that were performed; the top 3 
changes types are the same and even the percentages are quite close. 
 
Table 5.4.1.2: Defect-proneness of classes with static constructs vs. similar classes 

for BCEL 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 52.2667 12.8 53.5714 SD 
13.648 SI 
8.9286 SU 
5.4847 SPC 
3.9541 CEC 

13.75 4.2012 20.4878 SD 
16.7627 SU 
15.2993 SI 
14.0133 DD 
5.9424 DU 

Constants 26.5278 8.1111 24.6388 SD 
22.7376 DD 
13.6122 SI 
7.3004 SU 
6.5399 SPC 

12.0559 4.1189 32.3666 SD 
20.4176 SI 
15.8353 SU 
5.6265 DU 
5.3364 RF 

Singletons Stateful 17 3.4 47.0588 RF 
17.6471 DAC 
11.7647 SU 
11.7647 AAM 
11.7647 IAC 

16.9775 4.9326 29.186 SD 
14.957 SI 
14.7584 SU 
10.4897 DD 
4.9301 DU 

Stateless 1 1 100 SU 17.6 4.8 32.5875 SD 
17.7281 DD 
9.4664 SI 
7.9174 DU 
7.1715 SU 

Static 
methods 

Utility classes 39.6 9 22.2222 SI 
17.1717 SOC 
12.6262 SD 
12.1212 DU 
10.606 SPC 

16.3276 4.8046 30.1654 SD 
15.3819 SU 
14.3611 SI 
11.158 DD 
4.3999 DU 

Access state 71.5 4 54.5455 SD 
13.7004 SI 

14.2013 4.5849 20.1949 SD 
17.0062 SU 
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8.1946 SU 
4.2254 SPC 
3.073 RF 

15.279 SI 
13.9061 DD 
6.023 DU 

Operate on 
parameters 

12.375 3.0625 20.7071 SU 
19.697 SD 
16.1616 SI 
7.0707 RF 
6.5657 SPC 

17.4294 5.1043 28.6727 SD 
14.7835 SI 
14.3259 SU 
11.1228 DD 
4.8222 DU 

Static initialization blocks 39 7.75 17.9487 SI 
12.8205 SD 
10.8974 SOC 
9.6154 SPC 
8.9744 SU 

16.4743 4.8571 29.8994 SD 
15.0538 SU 
14.7069 SI 
10.9955 DD 
4.8907 DU 

 
 All 15 production classes that contain static non-final attributes were 
modified during bug-fix commits. Same as for change-proneness, these classes are 
more error-prone compared to other similar classes; the average number of 
modifications is almost 4 times higher (52.2667 vs. 13.75) while the number of 

changes per commit is 3 times greater (12.8 vs. 4.2012). An interesting observation 
is that more than half of the changes performed on the classes with static non-final 
attributes are statement deletes; for the other classes this percentage is a bit over 
20%. 
 The classes with constants are not as error-prone as they are change-prone. 
Although the average number of changes for such classes is more than double 

compared to other similar classes (26.5278 vs. 12.0559), the amount of 
modifications per commit is also double (8.1111 vs. 4.1189); this implies that the 
number of bug-fix commits in which these classes were altered is roughly the same 
as for similar classes. The top 5 change types are quite different, both regarding 
their types and especially the percentages. 

The stateful singleton was modified in 5 bug-fix commits. The average 
number of changes is almost identical (17 vs 16.9775) to the one obtained for 

similar classes; however, there were fewer modifications per commit (3.4 vs. 
4.9326), thereby implying that the singleton was altered more frequently. This is 
not the case for the 2 stateless singletons; each of them suffered only 1 fine-
grained source code change (in separate bug-fix commits). The top 5 change types 
are also very different; for example, the 2 modifications performed on the stateless 
variants were statement updates. 

Five utility classes were modified during bug-fix commits and the average 

number of changes is higher than for similar classes (39.6 vs. 16.3276). However, 
the ratio is considerably smaller than the one obtained for change-proneness. The 
number of changes per commit is also greater (9 vs. 4.8046). There are significant 
differences between the top 5 change types for utility classes and other similar 
classes, both in terms of order and percentage-wise. Unlike for change-proneness, 
only the classes with static methods that access state have a higher error-proneness 

than similar classes; those with static methods that only operate on parameters do 
not. For the first category, the average number of changes is 5 times higher (71.5 
vs. 14.2013) while the amount of modifications per commit is comparable (4 vs. 
4.5849); this indicates that there are more bug-fix commits in which they were 
altered. This is not the case for the classes with methods that solely operate on 
parameters; they actually appear to be less error-prone when compared to similar 
classes (12.375 vs. 17.4294 average number of modifications and 3.0625 vs. 

5.1043 number of changes per commit). In terms of the top 5 change types, the 3 
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statement-level changes are the most commonly occurring in both cases while the 
following 2 differ when compared to those of similar classes. 

 The situation for the classes with static initialization blocks is similar to that 
of utility classes. They suffered more changes on average (39 vs. 16.4743) and the 
number of modifications per commit is higher (7.75 vs. 4.8571). In terms of top 
change types, they are different from the ones encountered for similar classes; for 
example, less than 13% of the modifications are statement deletes for the classes 
that contain static initialization blocks, while for the other classes the corresponding 

value is roughly 30%. 

 

 5.4.2. Commons Collections 
 
Table 5.4.2.1: Change-proneness of classes with static constructs vs. similar classes 

for Commons Collections 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 87.7215 6.0823 19.1631 SU 
13.456 DU 
10.8658 SI 
9.8413 SD 
7.0851 PTC 

74.1667 6.9667 19.457 SU 
13.4232 DU 
11.0412 SI 
8.7341 SD 
6.8165 PTC 

Singletons Stateful - - - - - - 

Stateless 9 2.6667 51.8519 SU 
14.8148 DD 
7.4074 ROS 
3.7037 AF 
3.7037 ATC 

68.7517 5.9139 17.5522 SU 
14.7263 DU 
11.6602 SI 
10.541 SD 
5.7717 PTC 

Static 
methods 

Utility 
classes 

181.3181 6.4091 22.2361 DU 
17.1221 SU 
12.5094 SI 
8.6489 PTC 
7.8967 SD 

73.2124 6.4027 19.757 SU 
11.326 DU 
10.5403 SI 
9.8634 SD 
6.5999 PTC 

Access state 77 5.1333 19.2941 DU 
17.1765 SU 
16 SI 
7.2941 DD 
6.5882 API 

68.8007 5.9088 18.6251 SU 
12.5969 DU 
11.5541 SI 
10.6489 SD 
7.8795 PTC 

Operate on 
parameters 

55.6723 4.8655 19.4717 SU 
13.4038 DU 
9.2679 SI 
9.1623 SD 
7.7736 SPC 

76.1559 6.5323 17.1857 SU 
14.8581 DU 
12.757 SI 
9.7 SD 
6.2902 PTC 

Static initialization blocks 55 13.75 25.4545 SI 
18.1818 SD 
14.5455 AF 
7.2727 AF 
7.2727 AOS 

82.915 6.3765 19.2969 SU 
13.4717 DU 
10.8838 SI 
9.458 SD 
7.0166 PTC 

 
 There are no classes that contain static non-final attributes. For the classes 
with constants, both the average number of changes (87.7215 vs. 74.1667) and the 
number of modifications per commit (6.0823 vs. 6.9667) are comparable to those of 



   114 

similar classes. Additionally, the order and percentages for the top 5 change types 
are nearly identical. 

 The stateless singletons suffered, on average, 9 fine-grained changes; this 
value is much smaller than the corresponding one for similar classes (68.7517). The 
number of modifications per commit is less than half (2.6667 vs. 5.9139); 
therefore, the singletons were altered in much fewer commits. The changes 
performed on them are also very different compared to the top 5 change types for 
similar classes; however, statement updates are first in the rankings in both cases. 

The utility classes were modified more compared to other similar classes 

(average number of changes of 181.3181 vs. 73.2124). This is mainly due to 3 
utility classes which suffered most of the modifications: CollectionUtils (900 
changes), IteratorUtils (470), and MapUtils (545). However, the number of changes 
per commit are almost identical, thus showing that the utility classes were changed 
in more commits. Also, the top 5 change types are the same, although the 
percentages are very different; over 22% of the changes are doc updates for utility 
classes (compared to 11.326%), proving once again that they are a central part of 

systems which are structured as libraries. For the rest of the classes that contain 
static methods, it was found that those with methods that access state are a bit 
more change-prone that similar classes while the ones with static methods that 
solely operate on parameters are actually less. The first have a higher average 
number of changes (77 vs. 68.8007) and roughly the same number of modifications 
per commit (5.1333 vs. 5.9088). On the other hand, for the classes with static 

methods that only operate on parameters the average is substantially lower 
(55.6723 vs. 76.1559) than for similar classes and the number of changes per 
commit is only slightly lower (4.8655 vs. 6.5323). With regard to the top 5 change 
types, classes with static methods that access state are one of the few cases in 
which a statement-level modification, statement deletes, does not appear in the list. 
This is not the case for those with static methods that only operate on parameters; 
for this category the ranking is very similar to the one obtained for similar classes 

(both in terms of order and percentages). 
 There is only 1 class that contains a static initialization block, 
FunctorException, on which 55 changes were performed over 4 commits. Although 
the number of changes is lower compared to the average for the classes that are 
similar to it, the number of modifications per commit is higher (13.75 vs. 6.3765). 
The types of changes and their percentages are very different, but the results might 
be skewed because there is only 1 instance of interest. 

 

Table 5.4.2.2: Defect-proneness of classes with static constructs vs. similar classes 
for Commons Collections 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 10.9034 3.8759 21.907 DU 
13.9558 SD 
12.6691 SU 
11.9762 SI 
7.0934 RF 

13.8906 3.875 28.9089 DU 
13.3858 SD 
10.7987 SU 
8.6614 SI 
7.9865 DD 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static Utility classes 49.8235 5.2353 28.3353 DU 16.0052 3.7552 22.1608 DU 
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methods 12.0425 SU 
11.4522 PTC 
9.5632 SI 
8.0283 SD 

15.4247 SD 
12.3007 SU 
11.6824 SI 
6.8012 RF 

Access state 21 5.25 29.3103 SI 
29.3103 DU 
10.3448 API 
10.3448 SU 
8.6207 CI 

15.9386 3.7632 25.1789 DU 
13.2361 SD 
11.1723 SU 
10.732 SI 
6.852 RF 

Operate on 
parameters 

11.6293 3.0603 28.9844 DU 
13.7139 SD 
12.4537 SU 
11.8606 SI 
9.3403 RF 

20.0256 4.5299 23.0901 DU 
12.6761 SD 
10.542 SI 
10.414 SU 
5.2924 RF 

Static initialization blocks - - - - - - 

 
As mentioned before, there are no production classes with static non-final 

attributes. For the ones that contain constants we observed that they are not more 
defect-prone than other similar classes. The average number of modifications are 
similar (10.9034 vs. 13.8906) and the number of changes per commit are almost 

identical (3.8759 vs. 3.875). The top 4 change types are the same, but the 
percentages do differ to some extent. 
 None of the changes performed on the stateless singletons occurred during 
bug-fix commits. Therefore, even though we were able to evaluate their change-

proneness, the defect-proneness of the singletons could not be assessed. 
The average number of changes in bug-fix commits is higher for utility 

classes compared to similar classes (49.8235 vs. 16.0052). However, the number of 

changes per commit is comparable (5.2353 vs. 3.7552), thus suggesting that the 
former have been modified in more commits in which errors were repaired. Even 
though the top 5 change types are roughly the same, the percentages for them vary 
significantly; only 8% are statement deletes for utility classes while for the others 
this percentage is around 15.5%. For the other classes that contain static methods 
the situation is similar to the one observed for change-proneness. Those with 
methods that access state have, on average, a higher number of modifications (21 

vs. 15.9386); their number of changes per commit is also a bit higher (5.25 vs. 
3.7632). On the other hand, classes with static methods that only operate on 
parameters have a lower defect-proneness compared to similar classes; their 
average number of modifications is almost half (11.6293 vs. 20.0256) and the 

number of changes per commit is smaller (3.0603 vs. 4.5299). The top 5 change 
types are significantly different for the first category both order- and percentage-

wise. For the latter category, all 5 modification types are exactly the same and the 
percentages are quite similar. 
 None of the 4 commits in which FunctorException (the only class that 
contains a static initialization block) was modified are bug-fixes. 
 

 5.4.3. Commons Lang 

  
Table 5.4.3.1: Change-proneness of classes with static constructs vs. similar classes 

for Commons Lang 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 
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Static 
attributes 

Non-final 280 8.4848 28.5714 DU 
20 SI 
14.2857 SU 
12.1429 SD 
4.6429 RF 

203.6 5.9353 22.6395 SD 
20.9234 SI 
11.4007 SU 
10.4646 DU 
6.5786 RF 

Constants 84.5472 6.7925 22.5151 SI 
20.9535 SD 
11.4515 SU 
10.1452 DU 
6.8497 RF 

72.7692 4.5692 23.277 SI 
20.2114 SD 
13.5729 DU 
11.2474 SU 
4.7357 RF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

516.7907 9.1628 24.1427 SI 
21.9332 SD 
11.1781 SU 
10.2871 DU 
6.6736 RF 

98.9844 4.8672  

Access 
state 

545 11.8839 24.1305 SI 
21.9197 SD 
9.5444 SU 
7.6705 DU 
4.0847 SPC 

200.0118 5.8817 21.2101 SI 
20.5649 SD 
12.9313 SU 
11.4035 DU 
7.4034 RF 

Operate on 
parameters 

53.1842 4 21.3261 DU 
15.1905 SI 
14.6461 SD 
13.4587 SU 
5.5418 RF 

247.1504 6.5038 24.0751 SI 
21.2345 SD 
12.2987 SU 
9.951 DU 
6.6259 RF 

Static initialization blocks 328.25 9.125 22.8104 SI 
22.0107 SD 
13.1379 SU 
10.0533 DU 
4.9124 RF 

197.9509 5.7914 22.6027 SI 
20.7587 SD 
11.2843 SU 
10.6552 DU 
6.6975 RF 

 
The only class that contains a static non-final attribute, ToStringBuilder, 

suffered 280 fine-grained source code changes over 33 commits. The number of 
modifications is higher than the average for similar classes (203.6) and there are 

more changes per commit (8.4848 vs. 5.9353). However, the top 5 change types 
are on par with those of other classes, though the percentages are very different. 
 The change-proneness of the classes with constants is comparable to that of 
similar classes. Although there are, on average, more fine-grained changes 

(84.5472 vs. 72.7692), they were performed in fewer commits as the number of 
modifications per commit is higher (6.7925 vs. 4.5692). The top 5 change types are 
the same, even the order and the percentages are very similar. 

The only singleton present in the latest version of Commons Lang, 
ObjectToStringComparator, did not suffer any fine-grained source code changes 
throughout the project’s lifespan. Therefore, it is impossible to assess the impact of 
singletons on change- / defect-proneness for this system. 

There have been, on average, 5 times more changes performed on utility 
classes (516.7907 vs. 98.9844) than on classes that are similar to them. This is due 
to a series of classes that were frequently modified, such as ArrayUtils (3224 

changes), StringUtils (4866), or NumberUtils (2646). The number of changes per 
commit is also higher (9.1628 vs. 4.8672). Commons Lang is a system in which the 
discrepancy between the classes that contain other types of static methods is huge. 
The ones with methods that access state are more change-prone than classes which 
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are similar to them in terms of size and complexity. The average number of 
modifications is almost triple (545 vs. 200.0118) while the number of changes per 

commit is double (11.8839 vs. 5.8817). On the other end of the spectrum are the 
classes with static methods that only operate on parameters. For this category the 
average number of changes is roughly 5 times smaller (53.1842 vs. 247.1504) than 
that of similar classes, but the number of modifications per commit is only a bit 
lower (4 vs. 6.5038). However, with regard to the top 5 change types, both cases 
are very similar. For the first category the top 4 changes are exactly the same while 

for the latter all 5 change types resemble the ones for similar classes (albeit in a 

different order). 
As was the case for utility classes, both the average number of changes 

(328.25 vs. 197.9509) and the number of changes per commit (9.125 vs. 5.7914) 
are higher for the classes that contain static initialization blocks compared to other 
similar classes. Finally, the top 5 change types are the same in terms of order and 
even percentages. 

 

Table 5.4.3.2: Defect-proneness of classes with static constructs vs. similar classes 
for Commons Lang 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 141 14.1 32.6241 DU 
19.1489 SD 
14.1844 SI 
11.3475 SU 
4.2553 RF 

85.5 7.8452 24.8677 SI 
22.7096 SD 
10.22 DU 
8.7162 SU 
5.0404 SPC 

Constants 26.7755 9.8571 24.0985 SD 
23.68 SI 
10.0129 DU 
8.7733 SU 
5.1513 SPC 

30.8611 5.2778 28.4428 SD 
16.2016 SI 
14.2214 DU 
8.7309 SU 
6.1206 APD 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

156.4483 9.8621 24.4655 SI 
22.9888 SD 
10.5356 DU 
10.0507 SU 
5.4882 CEC 

49.75 6.9107 27.6382 SD 
19.4185 SI 
10.8399 DU 
6.6762 SU 
5.6712 SPC 

Access state 100.5 12.5625 29.6389 SD 
20.8626 SI 
8.4754 DU 
6.0181 SU 
5.3661 SPC 

41.3768 7.9275 23.1751 SI 
22.9311 SD 
11.4656 DU 
9.7955 SU 
5.2543 CEC 

Operate on 
parameters 

55.8571 6.4286 21.4834 SD 
16.8798 DU 
16.3683 SI 
8.1841 SU 
7.9284 SPC 

88.8718 8.0513 24.9423 SD 
22.8938 SI 
10.3001 DU 
8.7998 SU 
4.8615 SPC 

Static initialization blocks 91.75 13.875 34.7411 SD 
23.5695 SI 
5.7221 SU 
5.3133 DU 
5.0409 SPC 

85.5714 7.2987 23.6455 SD 
22.4313 SI 
11.246 DU 
9.1069 SU 
5.0235 SPC 
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There are 10 bug-fix commits in which the only class with a static non-final 
attribute, ToStringBuilder, was modified. In total, 141 fine-grained changes were 

performed on it, a value that is higher than the average for similar classes (85.5). 
The amount of changes per commit is also roughly double (14.1 vs. 7.8452), but 
there are more modifications related to documentation (almost 33% are doc 
updates) than for the other classes. 

Just as for change-proneness, the defect-proneness of the classes that 
contain constants is not higher than that of similar classes. The average number of 

changes is comparable (26.7755 vs. 30.8611) and the number of modifications per 

commit is higher (9.8571 vs. 5.2778), thus indicating that they were altered in 
fewer bug-fix commits. The top 4 change types are the same and their percentages 
are also very similar. 

There have been, on average, more modifications performed on utility 
classes compared to similar classes (156.4483 vs. 49.75), but the ratio is smaller 
than for change-proneness. The difference between the number of changes per 
commit is also lower (9.8621 vs. 6.9107). The top 5 change types differ, especially 

in terms of percentages; for example, even though statement updates are fourth in 
both rankings, the percentages are quite different (10.0507 vs. 6.6762). Similarly to 
what was discovered for change-proneness, the classes with static methods that 
access state are much more error-prone than other similar classes, while the ones 
with static methods that solely operate on parameters are not. The former have, on 
average, more than double the number of changes (100.5 vs. 41.3768) and slightly 

more modifications were performed on them per commit (12.5625 vs. 7.9275). For 
the latter there were fewer modifications overall (55.8571 vs. 88.8718) and the 
amount of changes per commit is similar (6.4286 vs. 8.0513); this shows that they 
were altered in fewer commits. The top 4 types of changes are exactly the same in 
both cases and they resemble the ones for similar classes. 

There is hardly any difference between the average number of modifications 
for the classes that contain static initialization blocks and other classes (91.75 vs. 

85.5714). However, the number of changes per commit is higher for the first 
category (13.875 vs. 7.2987), therefore indicating that there are fewer bug-fix 
commits in which the classes with initialization blocks were changed. The top 5 
change types are the same, even the order is almost identical; there are however 
some differences percentage-wise. 
 

 5.4.4. Commons Math 

  

Table 5.4.4.1: Change-proneness of classes with static constructs vs. similar classes 
for Commons Math 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 129.3333 8 38.1443 SD 
13.4021 SI 
8.7629 CD 
7.732 SU 
5.9278 DU 

94.7475 6.0777 18.4892 SI 
18.4459 SD 
15.7329 SU 
11.4143 DU 
6.4468 RF 

Constants 40.0198 8.332 20.2512 SI 
19.9520 SD 
16.5194 SU 
11.3112 DU 

65.0884 5.7569 16.4163 SD 
15.856 SI 
14.5197 SU 
11.6162 DU 
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5.1489 RF 8.2209 RF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

294.5 8.6154 20.7784 SD 
20.0862 SI 
12.8249 SU 
11.114 RF 
8.058 AF 

86.0612 6.7211 18.216 SD 
18.1804 SI 
16.0893 SU 
12.0307 DU 
5.713 RF 

Access state 174.6667 7.8057 21.6671 SD 
18.9324 SI 
18.2225 SU 
10.781 DU 
5.4694 SPC 

87.6378 6.5996 20.0087 SD 
19.3268 SI 
14.6409 SU 
12.6963 DU 
5.1956 RF 

Operate on 
parameters 

67.7 7.6333 18.2568 SI 
18.0282 DU 
16.776 SD 
13.8839 SU 
6.0326 RF 

82.6587 6.5326 21.982 SD 
19.6539 SI 
15.3065 SU 
10.0118 DU 
4.9391 RF 

Static initialization blocks 534.6667 11.3333 23.1614 SD 
19.8266 SI 
15.1244 SU 
9.1478 DU 
6.6297 RF 

90.57 6.743 19.5801 SD 
19.2271 SI 
14.9962 SD 
13.2811 DU 
5.1405 RF 

 
 The 3 classes that have static non-final attributes appear to be more 

change-prone compared to other similar classes. More fine-grained changes were 
performed on them on average (129.3333 vs. 94.7475) and the number of 
modifications per commit is higher (8 vs. 6.0777). The top 5 change types are also 
different; for example, over 38% of their changes are statement deletes while for 
similar classes this percentage is around 18.5%. 
 The classes that contain constants suffered less changes compared to other 

classes. The average number of modifications is lower (40.0198 vs. 65.0884) while 
the number of changes per commit is higher (8.332 vs. 5.7569), thus indicating that 
they were altered in significantly fewer commits. The top 5 change types resemble 
the ones observed for other production classes. 
 No fine-grained source code changes were encountered for Decimal64Field, 
the only singleton found in the last version of Commons Math. Because of this, we 
are not able to determine its effect on change- / defect-proneness. 

 Utility classes were changed more frequently compared to other classes that 

are similar to them in terms of size and complexity (average number of changes of 
294.5 vs. 86.0612). This is mainly because certain instances are central to the 
system and have suffered numerous modifications throughout its lifetime; examples 
include ComplexUtils (1103 changes), MathUtils (1223), and FastMath (2329). 
However, the number of changes per commit is not so different (8.6154 vs. 
6.7211), thereby suggesting that the utility classes were modified in many more 

commits. Similar to what was observed for the previous project, the classes with 
static methods that access state are more change-prone than other classes while 
the ones with static methods that only operate on parameters are not. For the first 
category the average number of changes is significantly higher (174.6667 vs. 
87.6378) while the amount of modifications per commit is comparable (7.8057 vs. 
6.5996). On the other hand, for classes with static methods that solely operate on 

parameters the averages are completely different (67.7 vs. 82.6587) and the 
number of changes per commit are similar (7.6333 vs. 6.5326). In both cases, the 
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top 4 change types are the same as for similar classes; for the latter even the fifth 
one, REMOVED_FUNCTIONALITY, is identical. 

 The classes that contain at least 1 static initialization block are also changed 
more compared to similar classes (an average of 534.6667 vs. 90.57 changes). The 
results might be skewed because there are only 6 instances and FastMath (with 
2329 changes) is one of them. Furthermore, the number of modifications per 
commit is also higher (11.3333 vs. 6.743). 
 

Table 5.4.4.2: Defect-proneness of classes with static constructs vs. similar classes 

for Commons Math 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 55.6667 6 14.2857 DAC 
10.3896 DU 
10.3896 SD 
9.0909 CD 
7.7922 AF 

46.3631 7.5706 18.144 SD 
17.2862 SI 
15.1666 SU 
13.5194 DU 
5.7869 RF 

Constants 29.8772 8.5848 22.0139 SI 
17.8826 SD 
16.3297 SU 
14.6303 DU 
4.2289 SPC 

33.9171 6.6188 16.5011 SD 
13.1292 SU 
11.5654 SI 
11.4514 DU 
8.9102 AF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

101.5789 9.1053 27.3057 SD 
17.3057 SI 
12.1762 RF 
10.1036 SU 
5.544 SPC 

42.9006 7.4699 18.1844 SI 
15.8815 SD 
15.7972 SU 
14.6669 DU 
5.343 AF 

Access state 43.2 4.8 20.4216 SI 
19.3676 SD 
15.0198 SU 
11.1989 DU 
9.8814 AF 

42.1617 6.8271 20.5617 SD 
19.465 SI 
16.9594 DU 
12.4476 SU 
4.8239 SPC 

Operate on 
parameters 

48.4792 7.3333 36.055 DU 
15.6854 SI 
12.1186 SD 
11.0443 SU 
5.0279 RF 

42.1026 6.6624 22.5944 SD 
20.4324 SI 
13.0532 SU 
11.7946 DU 
5.5319 SPC 

Static initialization blocks 214.8 15 31.9367 SD 
18.2495 SI 
8.2886 CD 
8.1937 SU 
8.0074 SPC 

43.742 7.4493 18.077 SI 
16.2083 SD 
15.6186 SU 
14.2867 DU 
5.9042 RF 

 
 All 3 classes that contain static non-final attributes were modified during 

bug-fix commits and the average number of changes is higher than for classes 
which are similar to them in terms of size and complexity (55.6667 vs. 46.3631). 
However, the number of changes per commit is lower (6 vs. 7.5706), thus indicating 
that there are more commits in which they were fixed. The top 5 change types are 
very different compared to what was observed thus far; it is one of the few cases in 
which statement inserts and updates do not appear in this ranking. 
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 There is no significant difference between the average number of changes 
for classes with constants and other similar classes (29.8772 vs. 33.9171). 

However, the number of modifications per commit is higher for the former (8.5848 
vs. 6.6188), thereby suggesting that they were changed less frequently. Four of the 
top 5 change types are the same, albeit the order and the percentages are slightly 
different. 

Nineteen utility classes were modified during bug-fix commits. Even though 
the average number of changes for utility classes is higher than for similar classes 

(101.5789 vs. 42.9006), the difference is smaller compared to what was observed 

for change-proneness. Additionally, comparable values were obtained in terms of 
the number of changes per commit (9.1053 vs. 7.4699). However, the top 5 change 
types are different both regarding order and percentage-wise. The classes with 
static methods that access state are a bit more defect-prone compared to similar 
classes. The average number of modifications is higher (43.2 vs. 42.1617) while the 
amount of changes per commit is lower (4.8 vs. 6.8271), thus suggesting that they 
were modified in more bug-fix commits. For the classes with static methods that 

only operate on parameters, even though the average is slightly higher (48.4792 vs. 
42.1026), the number of changes per commit is also higher (7.3333 vs. 6.6624); 
this indicates that the number of bug-fix commits in which they were changed is 
roughly the same. Like for change-proneness, the top 4 change types are the same, 
although the order and the percentages are quite different (especially for the latter 
category). 

 The observations that can be made regarding the error-proneness of the 
classes that contain static initialization blocks are similar to the ones for utility 
classes. Although the ratio between the average number of changes is very high 
(214.8 vs. 43.742), it is lower than for change-proneness. The number of 
modifications per commit is double for this kind of classes compared to similar 
classes (15 vs. 7.4493). This is mainly due to 1 class, FashMath, which suffered 929 
changes over 28 bug-fix commits. The percentages for the top 5 change types are 

also very different; for example, almost 32% of the changes are statement deletes 
for the classes with static initialization blocks while for the other classes this 
percentage is just over 16%. 
 

 5.4.5. Digester 

  

Table 5.4.5.1: Change-proneness of classes with static constructs vs. similar classes 
for Digester 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 66.75 3.375 19.5521 SD 
16.8389 SU 
14.6856 DU 
13.4798 SI 
7.5797 RF 

61.3654 3.7404 21.1376 SU 
18.5522 SI 
15.8258 SD 
10.0125 DU 
5.0611 CEC 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

6 2.625 41.6667 SU 
16.6667 ROS 
16.6667 RF 

68.9841 3.6905 19.9609 SU 
17.2227 SI 
16.8431 SD 



   122 

16.6667 IAC 
8.3333 DU 

11.2632 DU 
5.6143 RF 

Access state - - - - - - 

Operate on 
parameters 

103.1667 4.3333 22.1325 SI 
20.0323 SD 
15.5089 SU 
8.7237 DU 
8.5622 RF 

66.2705 3.6393 20.334 SU 
16.8213 SI 
16.5739 SD 
12.4533 DU 
5.4051 RF 

Static initialization blocks - - - - - - 

 
There are no singletons or production classes with static non-final attributes 

/ initialization blocks in the latest version of Digester. The change-proneness of the 
classes that contain constants is comparable to that of other classes; both the 
average number of changes (66.75 vs. 61.3654) and the number of modifications 
per commit (3.375 vs. 3.7404) are very similar. Four of the top 5 change types are 
the same, although the percentages are quite different. 

The 2 utility classes, AnnotationUtils and LogUtils, suffered only a small 
number of changes (9 and 3, respectively) compared to other similar classes. The 
amount of modifications per commit is also lower (2.625 vs. 3.6905). In terms of 
change types, they are very different; two of the most common types, statement 
inserts and deletes, were not performed regularly on the aforementioned classes. 
There are no classes with static methods that access their state. Those with static 
methods that only operate on parameters are slightly more change-prone than 

classes that are similar to them in terms of size and complexity. They have, on 
average, a higher number of changes (103.1667 vs. 66.2705), but there are also 
more changes per commit (4.3333 vs. 3.6393). The top 5 modification types are the 
same as for similar classes, albeit the order and percentages do differ. 
 
Table 5.4.5.2: Defect-proneness of classes with static constructs vs. similar classes 

for Digester 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 12.3125 3.125 25.5539 SD 
21.5657 DU 
15.0665 SI 
11.226 SU 
4.579 RF 

18.0141 3.8451 27.5997 SI 
21.1102 SD 
18.1392 DU 
10.4769 SU 
3.8311 SPC 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes - - - - - - 

Access state - - - - - - 

Operate on 
parameters 

22.2 2.8 24.3243 DU 
20.7207 SI 
19.8198 SD 
9.9099 SU 
7.2072 RF 

22.5 3.7683 23.4146 SI 
22.8184 SD 
19.0244 DU 
10.7859 SU 
4.0108 SPC 

Static initialization blocks - - - - - - 

 
There are no static non-final attributes in the production code. The classes 

with constants are not more error-prone compared to other similar classes; they 
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were changed less frequently in bug-fix commits (average number of modifications 
of 12.3125 vs. 18.0141) and the number of changes per commit is close (3.125 vs. 

3.8451). The top 4 change types are the same, but their order and percentages are 
different.  

The changes performed on the 2 utility classes, AnnotationUtils and LogUtils, 
did not occur during bug-fix commits. No static methods that access state were 
found. The classes with static methods that only operate on parameters are not 
more error-prone than other similar classes. The average number of modifications is 

almost identical (22.2 vs. 22.5) and there are a comparable number of changes per 

commit (2.8 vs. 3.7683). The top 4 change types are also the same, the only 
differences are in terms of order and percentages. 
 

 5.4.6. Geode 

 
Table 5.4.6.1: Change-proneness of classes with static constructs vs. similar classes 

for Geode 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 847.1574 9.3333 20.383 SI 
19.7873 SD 
13.3518 SU 
8.1689 SPC 
5.0113 CEC 

252.2445 7.2836 16.1517 SD 
15.843 SI 
13.5458 SU 
5.098 DU 
4.7261 CEC 

Constants 112.4557 9.252 18.6819 SI 
18.2977 SD 
14.7422 SU 
6.0478 SPC 
5.7684 CEC 

148.7544 5.5167 11.7809 IAC 
11.4253 SI 
11.1711 SD 
10.1268 SU 
9.0795 DAC 

Singletons Stateful 431.2667 6.9333 30.3756 SU 
14.5308 SI 
11.1145 SD 
9.0122 DU 
5.3022 CEC 

279.5486 7.3865 17.78 SD 
17.4616 SI 
12.3458 SU 
5.1266 SPC 
4.7614 CEC 

Stateless 496.4808 3.6731 24.4606 SU 
16.1599 SPC 
12.1625 SI 
11.9417 SD 
10.6209 SOC 

275.5052 7.4701 15.9505 SI 
15.5954 SD 
15.0576 SU 
4.8966 DU 
4.8827 CEC 

Static 
methods 

Utility 
classes 

203.4145 4.6891 16.2867 SI 
16.0626 SD 
13.3014 ROS 
12.9448 AOS 
7.9116 SPC 

287.5462 7.6296 16.788 SI 
16.43 SD 
14.0658 SU 
4.9194 SPC 
4.8774 DU 

Access 
state 

964.7198 10.9066 21.1255 SI 
20.728 SD 
12.6103 SU 
9.3616 CEC 
6.3419 SPC 

221.1674 7.0777 15.1035 SI 
14.7718 SD 
13.8617 SU 
5.7841 DU 
4.8912 RF 

Operate on 
parameters 

413.2644 5.5076 20.0649 SU 
17.5532 SI 
17.2656 SD 
6.3178 SPC 
5.6353 PTC 

258.1554 7.7 16.5422 SI 
16.1757 SD 
11.7498 SU 
5.2278 DU 
4.9318 RF 
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Static initialization blocks 1113.6667 15.7576 17.5016 SI 
17.4145 SD 
12.1643 CEC 
10.5616 SU 
6.7236 SPC 

255.7004 7.1338 17.6605 SI 
16.2767 SD 
12.9021 SU 
5.1585 DU 
4.8927 SPC 

 

 Classes with static non-final attributes appear to be more change-prone 
than other similar classes, while the ones that contain only constants are not. For 
the first category, the average number of changes is almost 3.5 times higher 

(847.1574 vs. 252.2445) and the amount of modifications per commit is 
comparable (9.3333 vs. 7.2836). On the other hand, the average for classes with 
constants is lower (112.4557 vs. 148.7544) and the number of changes per commit 

is almost double (9.252 vs. 5.5167); this indicates that they were modified in fewer 
commits. The top 5 change types are the same for both categories; only the 
statement-level ones appear in the rankings for similar classes. An interesting 
observation can be made with regard to the top modification for the classes that are 
similar in terms of size and complexity to those with constants; it is of type 
INCREASING_ACCESSIBILITY_CHANGE and represents 11.78% of the total number 
of modifications that were performed. 

 Both types of singletons have a much higher change-proneness than similar 
classes. The average number of changes is greater (431.2667 vs. 279.5486 and 
496.4808 vs. 275.5052, respectively) and the amount of changes per commit is 
lower (6.9333 vs. 7.3865 and 3.6731 vs. 7.4701) compared to the other classes; 

this implies that they were changed in many more commits. With regard to the top 
5 change types, only the 3 most common ones (statement inserts, deletes, and 
updates) are present in all the rankings. 

The change-proneness of the utility classes is comparable to that of other 
classes. Although less modifications were performed on them on average (203.4145 
vs. 287.5462), the number of changes per commit is also lower (4.6891 vs. 
7.6296); thus the amount of commits in which they were changed is more or less 
the same. In terms of top 5 change types, this is one of the few cases in which 
additional / removed object state modifications appear in the list (ranked third and 

fourth); because of this, only the first 2 change types resemble the ones for similar 
classes. 

The rest of the classes that contain static methods are also more change-
prone than other similar classes, especially the ones with static methods that access 
state. These classes have, on average, almost 4.5 times more changes (964.7198 

vs. 221.1674) while the amount of modifications per commit is comparable to that 
of similar classes (10.9066 vs. 7.0777). The classes with static methods that 

operate on parameters are also a bit more change-prone. When compared to other 
classes, more changes were performed on them (413.2644 vs. 258.1554) and the 
number of modifications per commit is lower (5.5076 vs. 7.7); this shows that they 
were modified in more commits. In terms of top 5 change types, the first 3 are the 
same both for the 2 categories of classes with static methods and for other classes 
that are similar to these instances in terms of size and complexity. 
 Finally, the classes with static initialization blocks suffered roughly 4 time 

more modifications (1113.6667 vs. 255.7004) than similar classes and there are 
twice as many changes per commit (15.7576 vs. 7.1338); this indicates that their 
change-proneness is higher. Four of the top 5 change types are identical, even the 
percentages are very similar. 
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Table 5.4.6.2: Defect-proneness of classes with static constructs vs. similar classes 
for Geode 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 560.6947 9.8947 20.4408 SI 
19.932 SD 
12.462 SU 
8.7692 SPC 
5.266 CEC 

153.3238 9.6025 15.7888 SD 
15.6849 SI 
15.1362 SU 
5.2902 DU 
5.0906 AF 

Constants 130.416 13.2471 17.9384 SD 
17.4154 SI 
15.8108 SU 
6.3485 SPC 
5.8649 CEC 

100.0837 4.6946 13.6287 SI 
11.9873 SD 
11.1341 SU 
9.8444 DU 
8.0119 AF 

Singletons Stateful 247.0769 7.4615 29.67 SU 
15.0685 SI 
10.2117 SD 
9.5268 DU 
5.1059 CEC 

174.6582 9.6389 17.5633 SD 
17.5136 SI 
13.5224 SU 
6.5048 SPC 
5.0831 AF 

Stateless 276.551 3.6939 23.9244 SU 
16.8401 SPC 
12.191 SI 
11.1505 SD 
9.6229 SOC 

172.3137 9.7911 15.7411 SI 
15.6948 SD 
15.2579 SU 
6.2717 AF 
5.1622 CEC 

Static 
methods 

Utility 
classes 

171.1538 5.3615 16.2966 ROS 
16.0315 SI 
14.5888 SD 
12.809 AOS 
7.9506 SPC 

175.4005 9.9539 16.6446 SD 
16.5346 SI 
15.5172 SU 
5.3145 AF 
5.2864 SPC 

Access 
state 

495.6746 9.8462 22.2063 SD 
16.9621 SI 
13.5492 SU 
9.2648 CEC 
7.2986 SPC 

141.505 9.5995 16.3281 SI 
15.0945 SU 
14.3962 SD 
5.7665 DU 
5.2545 AF 

Operate on 
parameters 

231.519 5.1044 19.8619 SI 
18.8518 SU 
18.0071 SD 
6.2876 SPC 
5.801 PTC 

163.0041 10.6003 16.0341 SD 
15.4655 SI 
13.3967 SU 
5.8077 AF 
5.5012 DU 

Static initialization blocks 402.2453 14.8302 19.4148 SI 
14.807 SD 
10.6479 CEC 
10.1427 SU 
8.6918 SPC 

158.9849 9.4629 16.7274 SD 
16.1027 SI 
15.2946 SU 
5.2242 DU 
5.0403 SPC 

 
 The classes with static non-final attributes are more error-prone than other 
similar classes, while for the ones that contain constants defect-proneness is lower. 

For the former the average number of modifications is more than 3.5 times higher 
(560.6947 vs. 153.3238) and the amount of changes per commit is the same 
(9.8947 vs. 9.6025). For the second category, although there are slightly more 
changes (130.416 vs. 100.0837), the number of modifications per commit is roughly 
3 times higher (13.2471 vs. 4.6946); therefore, they were altered in fewer bug-fix 
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commits. The top 5 modification types are the same in both cases, but only the first 
3 (the statement-level ones) also appear in the rankings for similar classes. 

 Similar to what was observed for change-proneness, the singletons are also 
more error-prone. Both the stateful and the stateless ones have, on average, a 
higher number of changes (247.0769 vs. 174.6582 and 276.551 vs. 172.3137, 
respectively) than other similar classes and the amount of modifications per commit 
is lower (7.4615 vs. 9.6389 and 3.6939 vs. 9.7911), thus proving that they were 
changed in more bug-fix commits. Three of the top 5 change types are the same, 

the statement-level ones, but even for them the percentages are higher for the 

singletons. 
The defect-proneness of utility classes is similar to that of other classes. The 

average number of changes is almost the same (171.1538 vs. 175.4005), but the 
number of modifications per commit is smaller (5.3615 vs. 9.9539). The top 5 
change types in bug-fix commits differ as well due to the additional / removed 
object state modifications that were performed on utility classes. 

Just as for change-proneness, the other classes with static methods are 

more defect-prone than similar classes. For the ones with methods that access their 
state, the average number of modifications is more than 3.5 times higher (495.6746 
vs. 141.505) while the number of changes per commit is roughly the same (9.8462 
vs. 9.5995). For the other category, classes with static methods that only operate 
on parameters, the error-proneness is not significantly higher than that of similar 
classes; there were, on average, more changes performed on them (231.519 vs. 

163.0041) and the number of modifications per commit is lower (5.1044 vs. 
10.6003). Finally, while the top 3 modification types are identical (statement-level 
changes), their order and percentages are different. 
 Although classes that contain static initialization blocks are more defect-
prone compared to similar classes, the error-proneness is lower than their change-
proneness. They suffered, on average, 2.5 times more modifications (402.2453 vs. 
158.9849), but more changes were performed on them per commit (14.8302 vs. 

9.4629). In terms of top 5 change types, 4 of them are the same, albeit the order 
and percentages are significantly different. 
 

 5.4.7. jHotDraw 

  
Table 5.4.7.1: Change-proneness of classes with static constructs vs. similar classes 

for jHotDraw 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 91.75 11.3445 23.4332 SD 
14.9864 SI 
11.7166 SU 
10.3542 RF 
5.4496 AF 

88.8229 6.92 21.288 SD 
16.4143 SU 
16.1698 SI 
7.5775 RF 
4.6999 SPC 

Constants 104.8304 6.5536 19.7513 SD 
16.387 SI 
15.3224 SU 
8.3042 RF 
5.5106 SPC 

62.2388 7.791 25.8034 SD 
15.3477 SU 
11.7266 SI 
9.4964 RF 
7.0983 DU 

Singletons Stateful - - - - - - 

Stateless - - - - - - 
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Static 
methods 

Utility classes - - - - - - 

Access state 78 8.6667 21.7949 AF 
20.5128 SI 
12.8205 RF 
10.2564 SU 
8.9744 SD 

88.9494 7.0112 21.3983 SD 
15.354 SU 
15.1393 SI 
8.596 RF 
5.6528 SPC 

Operate on 
parameters 

34.1667 5.4306 24.878 SD 
18.5366 SI 
12.1951 SU 
11.2195 DU 
10.7317 RF 

90.7861 7.0867 22.2912 SD 
14.3699 SU 
14.1216 SI 
8.5891 RF 
6.6221 SPC 

Static initialization blocks 539 10.7105 26.6234 SD 
20.0371 SI 
18.2746 SU 
7.9777 SPC 
3.8961 CEC 

83.8023 6.9831 20.9533 SD 
15.1149 SU 
14.8116 SI 
9.0137 RF 
5.8181 DU 

 
 Surprisingly, the classes that contain static non-final attributes are not more 
change-prone than other similar classes. The average number of modifications is a 

bit higher (91.75 vs. 88.8229), but so is the amount of changes per commit 
(11.3445 vs. 6.92). Unlike for the previous systems, for jHotDraw the classes with 
constants have a higher change-proneness than similar classes. Their average 
number of changes is greater (104.8304 vs. 62.2388) and there are fewer 
modifications per commit (6.5536 vs. 7.791). 

 No stateful singletons were found in the latest version of the project. 

Additionally, the only stateless singleton (FigureLayerComparator) did not suffer any 
fine-grained changes throughout its existence. Neither did any of the 4 utility 
classes. Only 1 class that contains static methods that access state was altered 
(AbstractDrawing with 78 changes in 9 commits); this class is a bit less change-
prone compared to the classes that were categorized as similar to it. The 6 classes 
with static methods that solely operate on parameters have a much lower change-
proneness. Their average number of modifications is almost 3 times smaller 

(34.1667 vs. 90.7861) while the number of changes per commit is comparable 
(5.4306 vs. 7.0867). 
 Two classes with static initialization blocks were modified, 
DefaultDrawingView (949 changes in 61 commits) and AttributeKeys (129 changes 
in 22 commits). It can be observed that the number of modifications is very high, 
thus showing that they are more change-prone than other classes. 

 

Table 5.4.7.2: Defect-proneness of classes with static constructs vs. similar classes 
for jHotDraw 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 29 22.5 32.7586 SI 
29.3103 SD 
17.2414 SU 
3.4483 PD 
3.4483 SPC 

19.9195 9.4253 26.5626 SD 
17.1766 SI 
15.0415 SU 
7.7513 RF 
6.232 SPC 

Constants 24.0545 8.6727 25.0945 SD 
17.7627 SI 
15.5707 SU 
6.576 RF 

13.7647 11.4118 27.3504 SD 
21.1538 SI 
17.5214 SU 
6.8376 RF 
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6.5004 SPC 5.7692 DU 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes - - - - - - 

Access state 26 13 53.8462 SI 
11.5385 SD 
11.5385 SU 
7.6923 PD 
7.6923 RF 

20.0568 9.6818 25.8924 SD 
18.1303 SI 
16.1473 SU 
6.6289 RF 
6.2323 SPC 

Operate on 
parameters 

6 6 66.6667 SI 
16.6667 SD 
16.6667 SU 

20.2841 9.7614 25.7143 SD 
18.4874 SI 
16.0784 SU 
6.6667 RF 
6.1625 SPC 

Static initialization blocks 106.5 12.8555 27.6995 SD 
23.9437 SU 
10.7981 SI 
9.3897 SPC 
3.7559 DU 

18.1379 9.6552 25.4119 SD 
19.7085 SI 
15.019 SU 
7.2243 RF 
5.7034 SPC 

 
 Only 2 classes that contain static non-final attributes were changed during 
bug-fixing, AbstractDrawing (26 changes in 2 commits) and ColorIcon (32 changes 
in 1 commit). Though the average number of changes is higher (29 vs. 19.9195), so 
is the amount of modifications per commit (22.5 vs. 9.4253); this indicates that 

they were altered in a comparable number of bug-fix commits. Same as for change-
proneness, classes with constants are also more error-prone. They have, on 
average, a higher number of changes (24.0545 vs. 13.7647) and the amount of 
changes per commit is lower (8.6727 vs. 11.4118). 
 As mentioned before, the only class with static methods that access state 
suffered 26 fine-grained changes over 2 bug-fix commits; the values are 
comparable to the ones obtained for the classes that are considered similar to it. 

RelativeLocator is the sole class with static methods that operate on parameters 
that was changed when errors were fixed. Only 6 modifications were performed on it 
in a single commit, much fewer than for similar classes. 
 Unsurprisingly, the 2 classes that contain static initialization blocks are also 
more prone to error. The average number of changes is almost 6 times higher 
(106.5 vs. 18.1379) while the amount of modifications per commit is slightly greater 

(12.8555 vs. 9.6552). 

 

 5.4.8. Pig 

  
Table 5.4.8.1: Change-proneness of classes with static constructs vs. similar classes 

for Pig 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 79.8333 9.6667 30.5047 SD 
21.5277 SI 
9.5911 SU 
6.9016 SPC 
4.728 RF 

40.975 6.3524 27.3827 SD 
18.8605 SI 
8.845 SU 
7.8542 SPC 
5.0469 RF 

Constants 44.4253 7.6851 28.84 SD 
19.0464 SI 

23.017 6.1473 26.4 SD 
21.00092 SI 
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10.3782 SU 
7.5034 SPC 
5.3353 SOC 

8.0862 SU 
7.8892 SPC 
6.7446 RF 

Singletons Stateful 68.3 7.1 23.8653 SD 
13.7628 SI 
12.0059 SU 
8.0527 SPC 
8.0527 SOC 

46.7092 6.8646 29.3028 SD 
20.693 SI 
8.7296 SU 
6.5953 SPC 
4.9735 RF 

Stateless 4.3333 3.3333 30.7692 SD 
23.0769 RF 
15.3846 AF 
15.3846 SI 
7.6923 PID 

47.2314 6.8843 28.2041 SD 
20.5643 SI 
9.7838 SU 
6.6085 SPC 
4.9467 RF 

Static 
methods 

Utility classes 64.26 8.4 29.225 SD 
22.9381 SI 
9.2126 SU 
6.4737 SPC 
6.3803 RF 

55.5565 6.7381 28.0833 SD 
19.1701 SI 
9.8437 SU 
7.7349 SPC 
4.7997 RF 

Access state 81.8431 7.1961 34.6191 SD 
17.5371 SI 
9.2717 SU 
6.9957 RF 
5.2228 SPC 

44.1215 6.8407 27.2088 SD 
19.8772 SI 
10.8586 SU 
6.9754 SPC 
4.6371 RF 

Operate on 
parameters 

62.2911 6.9494 29.2278 SD 
19.5995 SI 
11.3153 SU 
8.9151 SPC 
4.2655 RF 

40.883 6.8571 26.8912 SD 
18.5512 SI 
10.3083 SU 
9.2033 SPC 
5.4688 RF 

Static initialization blocks 98 8.619 27.794 SD 
22.3518 SI 
11.2245 SU 
9.8154 SPC 
6.3168 RF 

45.2969 6.8063 28.2304 SD 
19.3618 SI 
9.6757 SU 
7.4474 SPC 
5.1052 RF 

 
 The average number of changes for classes with static non-final attributes is 
almost double than for other similar classes (79.8333 vs. 40.975). The number of 

changes per commit is also higher (9.6667 vs. 6.3524) and the top 5 change types 
are identical (even the percentages are very close). 
 Surprisingly, similar observations can be made for classes that contain 
constants. The average number of modifications is once again double (44.4253 vs. 

23.017), but the number of changes per commit is closer to the one obtained for 
other classes (7.6851 vs. 6.1473). The top 4 change types are the same and their 
percentages differ by a small margin. 

Ten of the 14 stateful singletons were altered throughout the history of Pig. 
They appear to be more change-prone compared to similar classes; the average 
number of changes is higher (68.3 vs. 46.7092) while the amount of modifications 
per commit is roughly the same (7.1 vs. 6.8646). Similar to before, the top 4 
change types are identical, albeit the percentages are significantly different. Three 
of the 4 stateless singleton have also suffered fine-grained changes. However, their 

corresponding measurements are much lower than for similar classes (4.3333 vs. 
47.2314 and 3.3333 vs 6.8843, respectively) or their stateful counterparts. The top 
5 change types are also very different than what was observed for the other static 
constructs; for example, it is the first time PARENT_INTERFACE_DELETE appears in 
the rankings. 
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The change-proneness of the utility classes is comparable to that of similar 
classes. Though their average number of changes is higher (64.26 vs. 55.5565), the 

amount of modifications per commit is also greater (8.4 vs. 6.7381); this indicates 
that they were altered in roughly the same number of commits. The top 5 change 
types are also identical, even the percentages are almost the same. 
 The other classes that contain static methods are more change-prone 
compared to similar classes. Both the ones which have methods that access their 
state and those with static methods that only operate on parameters have suffered, 

on average, a higher number of changes (81.8431 vs. 44.1215 and 62.2911 vs. 

40.883, respectively) and the number of modifications per commit are almost 
identical (7.1961 vs. 6.8407 and 6.9494 vs. 6.8571). Furthermore, the top 5 
modification types are also the same (even in terms of order); there are only small 
differences regarding the percentages. 
 Classes with static initialization blocks seem more change-prone than other 
classes that are similar to them. The average number of modifications is more than 
double (98 vs. 45.2969) and the number of changes per commit is only a bit higher 

(8.619 vs. 6.8063). Finally, the top 5 change types are again the same; this 
situation was encountered several time for different categories of static constructs. 
 
Table 5.4.8.2: Defect-proneness of classes with static constructs vs. similar classes 

for Pig 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 37.1744 8.6163 36.0963 SD 
14.0131 SI 
10.7914 SU 
8.508 SPC 
4.8796 SOC 

22.3587 5.6675 28.535 SD 
18.4851 SI 
10.0712 SU 
9.7525 SPC 
5.7049 CEC 

Constants 25.1836 6.3281 29.3105 SD 
17.9305 SI 
10.6251 SU 
9.3483 SPC 
5.8732 SOC 

14.3546 6.004 33.3056 SD 
15.9034 SI 
9.6586 SPC 
9.3256 SU 
7.6603 CEC 

Singletons Stateful 34.3333 8.4444 23.6246 SD 
11.9741 SPC 
11.6505 SU 
11.0032 SI 
11.0032 SOC 

24.7008 6.1265 31.6235 SD 
16.5108 SI 
11.2187 SU 
8.3732 SPC 
5.3085 CEC  

Stateless 3.5 3.5 57.1429 SD 
28.5714 SI 
14.2857 APD 

24.9564 6.1782 30.4372 SD 
17.3451 SI 
11.2595 SU 
9.4422 SPC 
4.2607 CEC 

Static 
methods 

Utility classes 33.4651 6.7442 33.148 SD 
18.1376 SI 
11.1188 SU 
8.4781 SPC 
4.934 RF 

24.0754 6.1142 30.1047 SD 
17.25 SI 
10.1423 SU 
9.5605 SPC 
5.2994 CEC 

Access state 37.5 6.5 36.8696 SD 
12.9275 SI 
10.7826 SU 
6.6667 SOC 

23.6117 6.1345 29.435 SD 
18.0524 SI 
10.17 SU 
9.9035 SPC 
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6.4928 SPC 5.5214 CEC 

Operate on 
parameters 

14.4444 5.2698 27.8214 SD 
18.1786 SI 
11.25 SPC 
11 SU 
5.4286 CEC 

22.0946 6.295 31.2029 SD 
17.1152 SI 
10.0408 SU 
8.9195 SPC 
5.2803 SOC 

Static initialization blocks 41.3684 6.2632 32.4427 SD 
14.7583 SPC 
14.2494 SU 
14.1221 SI 
5.598 CEC 

24.2295 6.1639 30.3197 SD 
16.566 SI 
9.9882 SU 
9.0832 SPC 
6.2351 CEC 

 
 Just as for change-proneness, the average number of modifications in bug-
fix commits is higher for classes that contain static non-final attributes than for 

similar classes (37.1744 vs. 22.3587). The number of changes per commit is also 
higher (8.6163 vs. 5.6675). Finally, the top 4 change types are the same and the 
percentages are not very different either. 
 Classes with constants also seem a bit more defect-prone compared to the 
other classes. Both the average number of changes (25.1836 vs. 14.3546) and the 
number of modifications per commit (6.3281 vs. 6.004) are higher. Four of the top 
5 change types are the same, all of them being statement-level changes, but the 

order and percentages are different. 
 With regard to singletons, 9 stateful and 2 stateless ones (SparkShims and 

DownloadResolver) were changed during bug-fixing activities. While the first appear 
to be a bit more error-prone compared to similar classes, those from the second 
category are not. The average number of modifications and the number of changes 
per commit are higher for the former (34.3333 vs. 24.7008 and 8.4444 vs. 6.1265, 
respectively).  For the stateless variants the corresponding measurements are very 

low (3.5 for both values). It is also worth noting that only 3 types of changes have 
been encountered in the bug-fix commits for stateless singletons (out of a total of 7 
changes). 
 The defect-proneness of utility classes is a bit higher than for similar 
classes. The average number of changes is greater (33.4651 vs. 24.0754), while the 
amount of modifications per commit is close (6.7442 vs. 6.1142). The top 4 change 

types are identical, even the percentages are more or less the same. 
 The classes that contain static methods that access state are also more 
defect-prone than other similar classes. The average number of modifications is 
higher (37.5 vs. 23.6117) while the number of changes per commit is very close 

(6.5 vs. 6.1345). On the other hand, even though they were proven to be change-
prone, classes with static methods that only operate on parameters are not more 
error-prone when compared to similar classes. They suffered, on average, a smaller 

number of changes (14.4444 vs. 22.0946) and the number of modifications per 
commit is also a bit lower (5.2698 vs. 6.295). Similar to before, the top 4 change 
types are the same and the percentages are close. 
 The classes with static initialization blocks have a defect-proneness which is 
similar to that of utility classes. When compared to other production classes, they 
were modified more (average number of changes of 41.3684 vs. 24.2295) and the 
same amount of changes were performed on them per bug-fix commit (6.2632 vs. 

6.1639). The top 5 modification types are the same, but the order and the 
percentages are significantly different. 
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 5.4.9. Spring Core 

  
Table 5.4.9.1: Change-proneness of classes with static constructs vs. similar classes 

for Spring Core 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 713.5 8 23.8963 SI 
23.0904 SD 
14.7162 SU 
11.0021 MR 
7.288 ROS 

844.4419 8.1938 24.339 SD 
24.3234 SI 
16.2217 SU 
4.9283 DU 
4.0488 CD 

Constants 154.9277 12.9518 29.6425 SD 
29.6295 SI 
14.3143 SU 
4.3931 CD 
4.3245 CI 

419.3352 5.9832 16.9635 SU 
16.9129 SI 
16.9023 SD 
10.7339 DU 
6.5693 CEC 

Singletons Stateful - - - - - - 

Stateless 5070 809.9231 37.86  SI 
37.7515 SD 
5.9862 API 
5.9467 APD 
3.9645 CI 

12.5 8.1577 23.7108 SI 
23.7004 SD 
16.9455 SU 
6.0812 DU 
3.9999 CD 

Static 
methods 

Utility 
classes 

511.9348 7.7174 38.2946 SD 
38.2691 SI 
9.9537 SU 
3.0362 APD 
3.015 API 

912.8287 8.2917 23.7591 SD 
23.7565 SI 
15.8436 SU 
5.2569 DU 
4.4403 CD 

Access 
state 

5355.75 29.6984 26.5195 SD 
25.7715 SI 
11.1926 SU 
4.0533 RF 
3.9685 AF 

676.5976 6.7967 25.1528 SI 
24.9154 SD 
16.527 SU 
5.3514 DU 
4.4814 CEC 

Operate on 
parameters 

315.3158 6.7368 28.6763 SU 
25.0876 SI 
24.6703 SD 
4.4734 SPC 
4.2564 SOC 

883.6584 8.3045 26.3277 SD 
26.311 SI 
14.8396 SU 
5.9602 DU 
5.0083 CD 

Static initialization blocks 28.7647 6.3529 24.1309 SI 
16.7689 SD 
9.816 CEC 
9.6115 RF 
8.998 SU 

898.902 8.3184 25.3289 SD 
25.3075 SI 
15.229 SU 
4.8658 DU 
4.0031 CD 

 
 From the 4 classes that have static non-final attributes 1 stands out, 
ResourceDecoder, which suffered 2663 fine-grained source code changes during 411 
commits. These classes have, on average, a smaller number of modifications (713.5 

vs. 844.4419) while the number of changes per commit is almost identical to that of 
similar classes (8 vs. 8.1938); this suggests that their change-proneness is lower. 
The situation is even clearer for production classes that have constants. For them 
the average is almost 3 times lower (154.9277 vs. 419.3352) and the number of 
modifications per commit is twice as high (12.9518 vs. 5.9832); thus, they were 
altered in much fewer commits. Only the first 3 of the top 5 change types are 

similar, the last 2 are completely different. 
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 There are no stateful singletons in the latest version of Spring Core that was 
studied. Only 2 of the 5 stateless ones have undergone fine-grained changes and 

the results obtained for them are at opposite ends of the spectrum. 
AnnotationAwareOrderComparator has suffered a record of 10139 modifications 
over 411 commits, while ComparableComparator was changed only once. Because 
of this, it is impossible to make a proper assessment with regard to the change-
proneness of stateless singletons for this system. 
 The 46 utility classes have a lower change-proneness than classes which are 

similar to them in terms of size and complexity. The average number of changes is 

smaller (511.9348 vs. 912.8287) and the amount of modifications per commit is 
roughly the same (7.7174 vs. 8.2917). The top 3 change types are identical, but the 
following 2 (alternative part delete / insert) are not. Regarding the rest of the 
classes that contain static methods, only 4 with methods that access state and 31 
with static methods that solely operate on parameters have suffered fine-grained 
changes throughout Spring Core’s lifetime. The most noticeable one in terms of 
number of modifications is Frame (18219 changes over 435 commits). It is from the 

first category, which causes the average number of changes for these instances 
(5355.75) to be much higher than for similar classes (676.5976) or for classes with 
static methods that only operate on parameters (315.3158). This observation also 
holds true for the number of modifications per commit (29.6984 vs. 6.7967 and 
6.7368, respectively). With regard to the top 5 change types, only the statement-
level ones appear in all 3 rankings. 

The 17 classes that contain static initialization blocks have a much lower 
change-proneness than other similar classes. The average number of modifications 
is very low (28.7647 vs. 898.902) and the amount of changes per commit is 
comparable to that of similar classes (6.3529 vs. 8.3184). From the top 5 change 
types 3 appear in both lists, but the order and percentages are significantly 
different. 
 

Table 5.4.9.2: Defect-proneness of classes with static constructs vs. similar classes 
for Spring Core 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 286.5 14.5 47.1663 SD 
15.1129 SI 
13.4189 SU 
7.0637 CD 
2.8953 APD 

80.9423 5.75 25.7781 SD 
16.6073 SU 
10.5726 SI 
8.9808 DU 
6.795 CD 

Constants 72.75 12 36.0825 SI 
15.4639 SD 
10.6529 SU 
9.2784 AOS 
7.9038 MR 

166.561 9.061 41.2505 SD 
15.4604 SU 
12.2669 SI 
7.1167 CD 
3.756 DU 

Singletons Stateful - - - - - - 

Stateless 755 25.1667 56.6887 SD 
18.8079 SI 
10.3311 APD 
6.8874 CD 
3.4437 AF 

155.2235 9.0118 39.7984 SD 
15.2039 SU 
13.4531 SI 
6.988 DU 
3.8881 CD 

Static 
methods 

Utility 
classes 

122 9.7333 50.5464 SD 
26.776 SI 

170.6901 9.0845 38.2277 SD 
14.2388 SU 
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8.6339 SU 
5.082 APD 
2.7869 SPC 

11.7749 SI 
8.004 CD 
4.101 DU 

Access 
state 

699.5 23.3734 42.2059 SD 
11.1177 SI 
10.6471 SU 
6.9706 AF 
5.4412 CD 

138.8026 8.7763 40.2313 SD 
16.4327 SU 
14.7407 SI 
6.4794 CD 
3.7918 DU 

Operate on 
parameters 

69.5 9.25 35.9712 SU 
27.3381 SI 
9.7122 SD 
9.3525 CD 
4.6763 RF 

166.7195 9.1951 42.343 SD 
13.9419 SU 
13.4665 SI 
5.9344 CD 
3.7671 DU 

Static initialization blocks 17.5714 8.4286 43.9024 SI 
22.7642 SD 
4.065 SOC 
4.065 DU 
3.252 SPC 

175.0127 9.2658 40.8723 SD 
14.48 SU 
13.4746 SI 
7.0302 CD 
3.7104 DU 

 
 Four classes with static non-final attributes were changed during bug-fix 
commits. The average number of changes is more than 3 times higher than for 
similar classes (286.5 vs. 80.9423). The number of modifications per commit is also 

greater (14.5 vs. 5.75). On the other hand, the classes that contain constants have 
low defect-proneness. Compared to other similar classes, their average number of 

modifications is less than half (72.75 vs. 166.561), but the number of changes per 
commit is higher (12 vs 9.061); this indicates that they were altered in much fewer 
bug-fix commits. 
 As mentioned earlier, there are no stateful singletons in the last version of 
Spring Core. Only 1 stateless singleton was modified during bug-fix commits 

(AnnotationAwareOrderComparator); it suffered 755 fine-grained changes over 30 
commits, much more compared to other similar classes. The 15 utility classes that 
were fixed throughout the project’s lifetime are less error-prone compared to the 
classes that were categorized as similar to them (in terms of size and complexity). 
The average number of changes is lower (122 vs. 170.6901) and the amount of 
modifications per commit is comparable (9.7333 vs. 9.0845). 
 Two classes which have static methods that access state were changed 

while fixing defects, AnnotationWriter and Frame. Both their average number of 
modifications and the amount of changes per commit are very high (699.5 vs. 
138.8026 and 23.3734 vs. 8.7763, respectively). For the classes that contain static 

methods that solely operate on parameters it is the other way around. They have, 
on average, a smaller number of changes (69.5 vs. 166.7195) and were modified in 
a comparable number of commits (9.25 vs. 9.1951). 

 Similar to before, the classes with static initialization blocks have a much 
lower error-proneness. The average number of modifications is roughly 10 times 
smaller (17.5714 vs. 175.0127) and the number of changes per commit is close 
(8.4286 vs. 9.2658). 
 

5.4.10. Tomcat 
 
The 13 production classes that have static non-final attributes are more 

change-prone compared to similar classes. The average number of modifications is 
higher (210 vs. 167.6067) while the number of changes per commit is comparable 
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(7.6154 vs. 6.4972). Three of the top 5 change types are the same, but the other 2 
and the percentages are different. 

 
Table 5.4.10.1: Change-proneness of classes with static constructs vs. similar 

classes for Tomcat 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 210 7.6154 20 SI 
16.7033 SD 
12.8205 SU 
9.8901 AF 
7.2527 RF 

167.6067 6.4972 19.3308 SD 
18.2934 SI 
13.3031 AOS 
8.4937 SU 
8.297 ROS 

Constants 51.1615 5.8281 20.9256 SD 
19.2326 SI 
14.0617 AOS 
8.1898 ROS 
6.7741 SU 

289.322 7.3051 19.6478 SI 
18.0597 SU 
16.7261 SD 
6.4339 AF 
5.8638 RF 

Singletons Stateful 176 4.1321 17.8977 SU 
16.4773 SD 
15.625 SI 
14.4886 SPC 
7.9545 AF 

165.3433 6.5286 21.2716 SD 
18.3207 SI 
12.19 AOS 
8.5364 SU 
7.2675 ROS 

Stateless 230 6.6667 27.5362 RF 
15.942 ROS 
8.6957 DU 
7.2464 SD 
7.2464 AF 

166.5683 6.5765 19.2644 SD 
18.3163 SI 
13.1498 AOS 
9.5952 SU 
6.2387 ROS 

Static 
methods 

Utility 
classes 

59.2813 5.9688 24.776 SI 
17.475 SD 
10.2794 SU 
9.9895 DU 
6.3785 AF 

187.6689 6.6557 20.4336 SD 
18.9364 SI 
12.8042 AOS 
8.4785 SU 
7.5718 ROS 

Access state 219.1667 7.7777 18.9354 SI 
16.1217 SD 
13.8403 SU 
10.3422 AF 
7.6046 RF 

165.8833 6.5056 20.3406 SD 
19.3074 SI 
12.2978 AOS 
8.4748 SU 
7.301 ROS 

Operate on 
parameters 

166.6667 13.619 21.7143 SD 
18.6 SI 
13.2143 SU 
6.9286 RF 
5.0714 SPC 

165.2385 5.6269 20.06 SD 
19.39 SI 
13.4751 AOS 
7.9914 SU 
7.7138 ROS 

Static initialization blocks 148.2727 6.5 21.8271 AOS 
16.8915 SD 
13.6419 ROS 
11.6493 SI 
6.3458 SU 

156.487 6.5389 21.4393 SD 
19.7314 SI 
11.5958 AOS 
8.7172 SU 
5.8875 ROS 

 
For the classes with constants, both the average number of changes 

(51.1615 vs. 289.322) and the number of modifications per commit (5.8281 vs. 
7.3051) are lower than those of similar classes. The top 5 change types for the 
classes that contain constants / similar classes are the opposite of what was 
observed for the classes with static non-final attributes. 
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Four stateful singletons have suffered fine-grained changes throughout 
Tomcat’s lifespan. The average number of changes is comparable to the one 

obtained for similar classes (176 vs. 165.3433), but the number of modifications per 
commit is considerably lower (4.1321 vs. 6.5286); this indicates that they are more 
change-prone. The 3 stateless singletons also have a higher change-proneness; the 
average number of changes is greater (230 vs. 166.5683) and the amount of 
changes per commit is close (6.6667 vs. 6.5765). In both cases, the top 5 change 
types differ significantly when compared to the ones for similar classes. 

The utility classes were changed less frequently compared to other classes 

that are similar to them in terms of size and complexity (average number of 
changes of 59.2813 vs. 187.6689). However, the number of changes per commit is 
not so different (5.9688 vs.6.6557), thereby suggesting that the utility classes were 
modified in fewer commits. The classes that contain static methods that access state 
are more change-prone than other classes, while the ones with static methods that 
only operate on parameters are not. For the first category the average number of 
changes is higher (219.1667 vs. 165.8833) while the amount of modifications per 

commit is comparable (7.7777 vs. 6.5056). On the other hand, for classes with 
static methods that only operate on parameters the averages are very close 
(166.6667 vs. 165.2385) and the number of changes per commit is much higher 
(13.619 vs. 5.6269). The rankings for top 5 change types resemble one another, 
but are very different compared to those for similar classes. 

The classes with static initialization blocks suffered roughly the same 

amount of modifications as similar classes (148.2727 vs. 156.487) and the number 
of changes per commit is basically the same (6.5 vs. 6.5389); this indicates that 
their change-proneness is almost identical. The top 5 change types are also the 
same, but the order is different. 

 
Table 5.4.10.2: Defect-proneness of classes with static constructs vs. similar classes 

for Tomcat 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 27.25 8.6667 20.1835 SD 
18.3486 SU 
16.8196 SI 
7.6453 SPC 
4.893 ROS 

20.6026 6.3013 22.3076 SD 
20.271 SI 
8.854 ROS 
8.1205 SU 
5.5316 SPC 

Constants 73.9403 6.2985 23.3347 SD 
19.9939 SI 
9.679 ROS 
7.933 SU 
5.7832 SPC 

98.757 6.5701 21.0762 SI 
16.8909 SD 
12.4564 DU 
10.7125 SU 
8.0717 RF 

Singletons Stateful 58.5 6.2084 26.4957 SU 
17.094 SI 
12.8205 SD 
11.9658 DU 
9.4017 SPC 

49.364 6.3724 22.3428 SD 
20.2068 SI 
9.7642 ROS 
8.2217 SU 
5.5518 SPC 

Stateless 23 2.875 39.1304 RF 
17.3913 ROS 
8.6957 PI 
8.6957 SD 
8.6957 SI 

49.55 6.4375 23.2755 SD 
19.1985 SI 
8.7286 ROS 
8.4174 SU 
5.6004 SPC 
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Static 
methods 

Utility 
classes 

26.6531 7.7347 25.9571 SI 
19.6018 DU 
12.5574 SD 
12.4043 SU 
4.441 SPC 

55.2552 6.0833 23.4424 SD 
20.4646 SI 
9.5768 ROS 
6.9084 SU 
5.731 SPC 

Access state 34.75 8.125 23.741 SU 
17.2662 SI 
14.3885 SD 
7.1942 SPC 
6.1151 AOS 

19.9442 6.3605 22.4371 SD 
21.2458 SI 
8.8339 ROS 
8.0347 SU 
5.5513 SPC 

Operate on 
parameters 

40.6207 8.2414 25.0424 SD 
15.5348 SI 
13.4126 SU 
7.2156 CEC 
6.3667 RF 

50.6462 6.1698 21.9428 SD 
20.6855 SI 
9.4067 ROS 
7.8514 SU 
5.523 SPC 

Static initialization blocks 32.7059 8.4118 17.8058 ROS 
16.0072 SD 
9.7122 SU 
8.9928 SI 
7.3741 RF 

50.7098 6.2679 22.5548 SD 
20.7237 SI 
8.337 SU 
8.3018 ROS 
5.6871 SPC 

 
 The 12 classes that have static non-final attributes appear to be more error-
prone compared to other similar classes. More fine-grained changes were performed 
on them on average (27.25 vs. 20.6026) and the number of modifications per 

commit is a bit higher (8.6667 vs. 6.3013). The top 5 change types are the same, 
though the order and percentages are different. 

The classes with constants are not as error-prone as the previous ones. The 
average number of changes for such classes is smaller compared to similar classes 
(73.9403 vs. 98.757) and the amount of modifications per commit is more or less 
the same (6.2985 vs. 6.5701); this implies that the number of bug-fix commits in 
which these classes were altered is lower than for similar classes. The top 5 change 
types are fairly different, both regarding their types and especially the percentages. 

All 4 stateful singletons and only 1 stateless singleton (JreCompat) were 

changed during bug-fix commits. For the former the average number of 
modifications is higher (58.5 vs. 49.364) and the number of changes per commit is 
close (6.2084 vs. 6.3724). On the other hand, the stateless instance suffered fewer 
changes (23 vs. 49.55), but the amount of changes per bug-fix commit is also 
smaller (2.875 vs. 6.4375); it was modified in the same number of commits (8) as 
other similar classes. In both cases, the top 5 change types differ considerably 

(especially for the stateless singleton). 
The utility classes suffered a smaller number of changes (26.6531 vs. 

55.2552) compared to other similar classes. However, the amount of modifications 
per commit is higher (7.7347 vs. 6.0833). In terms of change types, they are not so 
different; the only type that does not appear in the list for similar classes is 
DOC_UPDATE. The 8 classes that contain static methods that access state are more 
defect-prone than similar classes. The average number of modifications is higher 

(34.75 vs. 19.9442) while the number of changes per commit is quite close (8.125 
vs. 6.3605). In contrast, the classes with static methods that only operate on 
parameters are not more error-prone. They suffered, on average, a smaller number 
of changes (40.6207 vs. 50.6462) and the number of modifications per commit is 
actually higher (8.2414 vs. 6.1698).  
 Finally, the classes with static initialization blocks are in a similar situation; 
the average number of modifications is lower (32.7059 vs. 50.7098) while the 
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amount of changes per commit is greater (8.4118 vs. 6.2679). The top 4 change 
types are the same, albeit their order and percentages differ. 

 

 5.4.11. Wicket 
 

Table 5.4.11.1: Change-proneness of classes with static constructs vs. similar 
classes for Wicket 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 128.1818 4.0909 23.4994 SI 
18.0077 SD 
15.0702 SU 
7.9183 PTC 
5.8748 DU 

98.921 4.3267 16.7064 SI 
16.4268 SD 
14.8057 SU 
5.8749 RF 
5.517 DU 

Constants 35.5553 4.649 19.4783 SD 
19.1396 SI 
14.9545 SU 
5.4778 RF 
5.0168 DU 

47.1797 3.793 16.352 SD 
15.9215 SI 
14.2077 SU 
7.8324 DU 
7.435 RF 

Singletons Stateful - - - - - - 

Stateless 27.6667 4.3333 28.3133 SI 
24.0964 SD 
16.2651 SU 
6.6265 SPC 
3.6145 DU 

89.9639 4.3238 17.6846 SD 
17.4624 SI 
15.807 SU 
6.8635 RF 
5.5271 DU 

Static 
methods 

Utility 
classes 

92.7727 4.6818 22.44 SI 
17.4914 SD 
16.5605 SU 
6.8594 RF 
6.4674 DU 

98.625 4.3117 18.7423 SD 
18.3667 SI 
14.7522 SU 
5.8192 RF 
5.4859 DU 

Access state 107.6 3.9852 18.8687 SD 
15.6184 SU 
14.3943 SI 
7.5559 RF 
5.0654 DU 

97.0077 4.3364 19.6918 SD 
19.6399 SI 
13.7806 SU 
5.7929 RF 
5.5394 DU 

Operate on 
parameters 

105.2571 5.2286 20.3995 SD 
19.787 SU 
15.3884 SI 
5.4427 RF 
5.3591 DU 

86.4511 4.2156 18.1949 SI 
18.1278 SD 
15.7477 SU 
5.9774 RF 
4.5937 DU 

Static initialization blocks 80.6667 4.6667 25.2066 SD 
21.9008 SU 
7.438 SI 
5.3719 SPC 
4.9587 RF 

96.545 4.1213 18.4741 SD 
18.5278 SI 
14.5826 SU 
5.66 RF 
5.5248 DU 

 

The 11 classes that contain static non-final attributes are more change-
prone than classes which are similar to them in terms of size and complexity. There 
are more changes on average (128.1818 vs. 98.921) and the number of 
modifications per commit is roughly the same (4.0909 vs. 4.3267), thus indicating 
that they were altered in more commits. Four of the top 5 change types are 
identical, though the percentages are a bit different. 
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On the other hand, the classes with constants are not changed more 
frequently compared to similar classes. The average number of modifications is 

lower (35.5553 vs. 47.1797) while the amount of changes per commit is higher 
(4.649 vs. 3.793), therefore the number of commits in which they suffered 
modifications is also lower. 
 There are no stateful singletons in the final version of Wicket. Six of the 8 
stateless singletons have suffered fine-grained source code changes throughout the 
project’s lifespan. However, the average number of changes is lower than for similar 

classes (27.6667 vs. 89.9639), while the number of modifications per commit is 

almost the same (4.3333 vs. 4.3238); this indicates that they are less change-
prone. The top 5 change types also resemble the ones for similar classes; only the 
fourth in the rankings (STATEMENT_PARENT_CHANGE) is different. 

Both the average number of changes (92.7727 vs. 98.625) and the number 
of changes per commit (4.6818 vs. 4.3117) for utility classes are very similar to 
those of other production classes. Additionally, the top 5 change types are also the 
same, with statement-level modifications occurring most frequently. For the other 

classes that contain static methods, the average number of changes is higher 
(107.6 vs. 97.0077 for the ones with methods that access state and 105.2571 vs. 
86.4511 for those with static methods that solely operate on parameters). However, 
for the ones from the first category the number of changes per commit is lower 
(3.9852 vs. 4.3364) than for similar classes, while for the classes from the second 
category it is higher (5.2286 vs. 4.2156). This indicates that the former were 

modified in more commits compared to other similar classes; this is not the case for 
the latter, for which the number of commits is almost identical (roughly 20 
commits). The top 5 change types are the same, just the order and percentages are 
slightly different. 

The 3 classes with static initialization blocks, TagUtils (27 changes), 
WicketTagIdentifier (74), and JavaSerializer (141), have suffered less changes 
compared to similar classes (80.6667 vs. 96.545 on average). However, the number 

of changes per commit is comparable (4.6667 vs. 4.1213). Finally, the top 5 change 
types are also similar, but the percentages are quite different (e.g., 7.44% vs. 
18.53% for statement inserts). 

 
Table 5.4.11.2: Defect-proneness of classes with static constructs vs. similar classes 

for Wicket 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 55.4 3.9 28.7402 SD 
24.8031 SI 
12.9921 SU 
4.7244 RF 
4.3307 SPC 

38.7883 4.3777 22.643 SD 
19.745 SI 
13.8784 SU 
5.9654 SPC 
5.1562 RF 

Constants 21.2228 4.7636 23.252 SD 
20.1857 SI 
14.3607 SU 
5.7613 SPC 
4.8647 RF 

20.1762 3.6166 22.3164 SD 
17.7966 SI 
12.379 SU 
6.8053 SPC 
6.2917 RF 

Singletons Stateful - - - - - - 

Stateless 17.8 6.2 35.9551 SD 
31.4607 SI 
11.236 SPC 

38.6751 4.3538 21.6594 SD 
20.7564 SI 
13.927 SU 
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3.3708 CEC 
3.3708 CD 

5.9227 SPC 
5.162 RF 

Static 
methods 

Utility classes 35.4091 4.7273 24.9037 SI 
22.8498 SD 
13.9923 SU 
7.3171 SPC 
7.1887 DU 

38.5911 4.3587 23.7001 SD 
18.6561 SI 
13.8619 SU 
5.8906 SPC 
5.144 RF 

Access state 76.5 4.7813 26.8489 SD 
19.1318 SI 
10.6109 SU 
6.1093 RF 
5.7879 SPC 

38.6907 4.387 21.5913 SD 
19.8248 SI 
14.9712 SU 
4.9494 RF 
4.1213 SPC 

Operate on 
parameters 

32.7368 3.8947 23.4263 SD 
20.512 SI 
14.2586 SU 
5.3654 SPC 
5.0908 RF 

33.968 4.318 23.4152 SD 
18.7127 SI 
13.8248 SU 
6.0822 SPC 
5.2285 RF 

Static initialization blocks 17 3 33.3333 SU 
21.5686 SD 
11.7647 SI 
7.8431 ROS 
5.8824 SPC 

38.6043 4.3777 21.7171 SD 
19.8239 SI 
14.8278 SU 
5.9448 SPC 
5.1528 RF 

 
Ten of the 11 classes with static non-final attributes were modified during 

bug-fix commits. Similar to change-proneness, they are more error-prone than 

other classes; the average number of changes is higher (55.4 vs. 38.7883) and 
there are approximately the same amount of changes per commit (3.9 vs. 4.3777). 
The top 5 change types are identical, but the order and percentages have small 

variations. 
The classes that contain constants are not more error-prone when compared 

to similar classes. The average number of modifications is almost the same 
(21.2228 vs. 20.1762), but there is roughly 1 change more per commit (4.7636 vs. 
3.6166); this implies that there are fewer bug-fix commits in which such classes 
were modified. Just as before, the top 5 change types are the same, even the 
percentages are very similar. 

Five of the 8 stateless singletons were altered during bug-fix commits. The 
average number of changes is lower (17.8 vs. 38.6751) than for similar classes, but 
the amount of modifications per commit is higher (6.2 vs 4.3538); therefore, it is 
clear that they were modified in much fewer bug-fix commits. Another interesting 

observation is that statement updates were not done regularly on the stateless 
singletons during bug-fixing; the respective change type is not part of the ranking. 

Bug-fixes have been performed on 22 of the 25 utility classes; nevertheless, 

the defect-proneness for this kind of static constructs is exactly the same as for 
other similar classes. Both the average number of modifications (35.4091 vs. 
38.5911) and the amount of changes per commit (4.7273 vs. 4.3587) are very 
close. The top 4 change types are also extremely similar (even percentage-wise). 

Just as for change-proneness, the classes with static methods that access 
state are more error-prone than other similar classes while the ones that contain 

methods that only operate on parameters are not. For the first category the average 
number of changes is double (76.5 vs. 38.6907) and the amount of modifications 
per commit is almost the same (4.7813 vs. 4.387). The classes from the second 
category have suffered, on average, the same number of changes (32.7368 vs. 
33.968) and the number of modifications per commit is comparable (3.8947 vs. 
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4.318). With regard to the top 5 change types, even the order is identical and the 
percentages are very close. 

All the production classes with static initialization blocks were modified 
during bug-fix commits. However, the average number of changes performed is less 
than half (17 vs. 38.6043) while the amount of modifications per commit is only a 
bit less (3 vs. 4.3777); therefore, they were changed in fewer commits. Four of the 
top 5 change types are the same, but more statement updates have been done than 
for any other static construct. 
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6. DISCUSSION 
 
 

6.1. Revisiting the research questions 
 

In the first section of this chapter we provide an interpretation of the results 
with regard to each research question. We look at the obtained results as a whole, 
thereby being able to draw meaningful conclusions. Below are our remarks per 
research question: 
 

RQ1. Are static constructs used in complex software systems? 

 For the first research question, we begin by establishing if instances from 
each category are present in the production code of the studied systems. In Table 
6.1.1 we specify whether or not this is indeed the case per project; with 2 
checkmarks we are representing that a considerable amount of instances of the 

respective type were found. 

 

Table 6.1.1: Static construct presence 

System Static attributes Singletons Static methods Static init. 
blocks Non-final Constants Stateful Stateless Utility 

classes 
Access 
state 

Operate on 
parameters 

BCEL         

Commons 
Collections 

        

Commons Lang         

Commons Math         

Digester         

Geode         

jHotDraw         

Pig         

Spring Core         

Tomcat         

Wicket         

 

 All the projects contain static constructs, but not all categories of static 
constructs are present within a system. It can be observed that only 4 of the 11 
systems (BCEL, Geode, Pig, and Tomcat) have instances from all 8 categories. While 

the last 3 are the largest projects studied, BCEL is considerably smaller; 
nevertheless, the project contains only 1 stateful singleton, the type that causes 5 
of the other systems (except Commons Collections and Digester) not to appear on 
the previous list. 

 Static non-final attributes are encountered in 9 of the projects studied. 
Commons Collections and Digester are the only systems in which such instances are 
not present; they are 2 of the smallest projects in terms of size. There is also 1 
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system, Pig, which contains a considerable amount of static non-final attributes; 
thus, 2 checkmarks have been put for the corresponding entry in the table. The 

other type of static attributes, constants, are present all throughout the source code 
of the 11 projects that were analysed. 

 Ten of the projects contain at least 1 singleton. However, stateful instances 
are present only in the 4 systems enumerated above. On the other hand, stateless 
variants are found in all the projects except Digester (the smallest system studied). 

 Utility classes also appear in all the systems; the number of instances is 
substantial for 5 of them: Commons Collections, Commons Math, Geode, Spring 
Core, and Tomcat. Other types of static methods (that are not part of singletons or 
utility classes) have been encountered in all 11 systems. With the exception of 

Digester, static methods that access their class’s state are present in the rest of the 
projects. Static methods that only operate on parameters have been found 
throughout the code. However, the amount of instances of both types is very low 
compared to the number of non-static methods. 

 Finally, static initialization blocks appear in 10 of the systems, but the 

number of instances is again on the low side. 

  

Table 6.1.2: Percentage of instances per category 

System Static attributes Singletons Static methods Static init. 
blocks Non-final Constants Stateful Stateless Utility 

classes 
Access 
state 

Operate on 
parameters 

BCEL 2.3121 80.2312 0.1156 0.2312 1.2717 6.474 8.7861 0.578 

Commons 
Collections 

0 52.4194 0 1.0081 6.25 0.2016 39.9194 0.2016 

Commons Lang 0.125 65.625 0 0.125 6.375 0.375 25.5 1.875 

Commons Math 1.3746 72.394 0 0.1145 2.8637 1.1455 20.7331 1.3746 

Digester 0 80 0 0 4.4444 0 15.5556 0 

Geode 2.8633 74.6491 0.158 0.595 2.8539 1.7105 16.7705 0.9947 

jHotDraw 5.6054 82.7354 0 0.2242 0.8969 1.3453 8.7444 0.4484 

Pig 12.1891 54.7761 0.6965 0.199 3.7313 4.2786 22.4378 1.6915 

Spring Core 1.0363 63.3161 0 0.5181 6.5285 1.3472 24.456 2.7979 

Tomcat 3.3779 78.2959 0.2017 0.126 3.756 1.1596 10.5873 2.4956 

Wicket 1.6807 79.1444 0 0.6112 1.9099 0.4584 15.9664 0.2292 

 

 The table above shows the percentage of instances of a certain type from 
the total number of static constructs present within a system. Constants are by far 
the most common category; more than half of the static construct instances are 
constants for any of the projects. The lowest percentages are a little bit above 50% 
(52.42% for Commons Collections and 54.78% for Pig), while the highest ones are 
around 80% (e.g., 79.14% for Wicket). 

 The second most common type of static constructs are static methods that 
only operate on parameters. This observation holds true for all the projects; 
nevertheless, the percentages differ considerably from one project to another; for 
BCEL and jHotDraw it is around 8.75%, while for Commons Collections the 
percentage is almost 5 times higher (39.92%). 

The percentages for utility classes are generally higher than for the 
remaining types of static constructs. Similar to the previous category, there are 
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cases in which the corresponding values are lower, such as jHotDraw (0.9%) or 
BCEL (1.27%). 

An interesting observation can be made with regard to the static non-final 
attributes. There are 2 projects, jHotDraw and Pig, in which the percentages for this 
type of static constructs are considerably higher (5.61% and 12.19%, respectively) 
than for the previous category. Nonetheless, there are more cases where they are 
much lower, including Commons Collections, Commons Lang, Digester, or Spring 

Core (under 1%). 

Static methods that access state are next in this ranking; however, this is 
the case for only some of the systems, such as BCEL, Geode, jHotDraw, or Pig. 
There are also situations in which the percentage is 0 (Digester) or very small 

(0.2% for Commons Collections). 

There are more instances of static initialization blocks than singletons 
(regardless of their kind). The only projects that do not adhere to this rule are 
Commons Collections and Wicket. There is also Digester, which does not have 
instances of any of these types. 

Finally, stateless singletons appear in 10 of the 11 systems while the 
stateful ones are present in only 4 of them. From these 4 projects, the percentages 
for the stateful variant are higher in 2 of them (Pig and Tomcat) and lower in the 
other 2 (BCEL and Geode). In terms of actual types, Eager Instantiation seems to be 

the predominant type followed closely by the general form (Lazy Instantiation). 

Other variations, such as Subclassed Singleton or Limiton, were rarely found in the 
studied systems; however, it is worth mentioning that in Geode (the project with 
the highest amount of instances) there are 2 hierarchies in which most of the 
classes are Subclassed Singletons. 

 

 

RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

 For the second research question, we analyse each category of static 
constructs separately in terms of evolution. We compare the percentage of instances 

of a particular type for the initial version of a project and the latest one studied. 
Additionally, the maximum value for this percentage along with the date on which it 
was reached are also recorded. These measurements allow us to determine whether 

or not the number of instances increased as a system grew in size or if they are 
utilized less nowadays. 

 

Table 6.1.3: Evolution of static attributes and singletons 

System Static non-final attributes Constants Stateful singletons Stateless singletons 

First Max. Last First Max. Last First Max. Last First Max. Last 

BCEL 2.66 3.43 
5/2003 

1.17 54.68 70.33 
9/2015 

40.75 0.56 0.56 
11/2001 

0.23 0.56 0.84 
9/2002 

0.46 

Commons 
Collections 

2.86 5.69 
2/2002 

0 2.86 34.24 
8/2012 

29.85 0 0 0 0 1.66 
5/2013 

0.95 

Commons 
Lang 

3.39 6.15 
5/2003 

0.001 64.41 67.08 
12/2009 

60.57 0 0 0 0 0.39 
2/2020 

0.31 

Commons 
Math 

0 9.17 
9/2007 

0.56 17.33 34.46 
1/2016 

29.74 0 0 0 0 0.45 
2/2007 

0.12 
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Digester 1.49 9.91 
5/2004 

0 1.49 10.91 
11/2011 

10.91 0 0 0 0 0.66 
8/2010 

0 

Geode 2.41 2.41 
4/2015 

1.39 53.18 53.18 
4/2015 

36.21 0.53 0.53 
5/2015 

0.44 2.09 2.12 
6/2015 

1.41 

jHotDraw 3.55 17.86 
5/2009 

2.21 20.49 42.91 
5/2020 

42.91 0.56 0.56 
9/2000 

0 0 0.34 
5/2020 

0.34 

Pig 8.06 13.24 
12/2008 

6 16.12 25.36 
11/2014 

24.58 1.13 1.32 
2/2008 

0.8 0 0.36 
3/2008 

0.23 

Spring Core 2.22 6.77 
8/2010 

0.52 41.78 41.78 
10/2007 

31.97 0 0.25 
7/2013 

0 1.05 1.15 
12/2013 

0.77 

Tomcat 7.5 7.5 
2/2006 

1.39 28.14 33.76 
11/2010 

32.18 0.48 0.48 
3/2006 

0.38 0.1 0.24 
12/2020 

0.24 

Wicket 1.37 1.79 
10/2009 

0.84 44.77 45.06 
12/2008 

39.59 0.09 0.09 
3/2007 

0 0.99 1.18 
1/2012 

0.65 

 

 For static non-final attributes we calculated the percentage of instances 

from the total number of attributes and the situation is straightforward. This 
percentage is higher in the first version of a project compared to the latest one. The 
only system that does not adhere to this rule is Commons Math, because there were 
no static non-final attributes in its initial version; however, the percentage for the 
last version is also very low (0.56%). Furthermore, the maximum values for this 
percentage were reached towards the beginning of the development process; the 
latest maximum was encountered in 2015 (but it corresponds to the first version of 

Geode available). This indicates that the developers have become aware of the 
problems caused by static non-final attributes and started to utilize them less. 

 On the other hand, for constants no clear pattern could be observed. For 6 
of the systems the percentage of constants from all the attributes is higher in the 

latest version, while for the other 5 it is greater in the initial one. There are many 
cases in which the percentages are very close, for example Commons Lang, Pig, 
Tomcat, or Wicket. In general, it was observed that the number of instances 
increased proportionally to the total number of attributes. In terms of the maximum 
values, they were encountered around halfway through the development period in 
most cases. The only exception would be jHotDraw; for this system the peak 
percentage was found for the last version studied. 

 The percentage of singletons from the total number of production classes is 
very low throughout the lifespan of any system; thus, the idea that singletons are 
overused is not supported by the obtained results. For the stateful variant, there are 

4 projects in which there were no such instances throughout their entire existence 

and 3 with no singletons of this type in their latest version. Even for the other 4 
systems, the percentage of stateful singletons is extremely low (less than 1%). 
Additionally, the maximum values for this percentage were encountered at the 
beginning of the development process in all cases. Stateless singletons were utilized 
a bit more frequently. Although they appeared in the initial version of only 4 
projects, Digester is the sole system that does not have such instances in its final 
version. The percentages are again low, but they are a little higher than for stateful 

singletons. There are also situations in which the maximum was found towards the 
end of the development cycle, such as Commons Lang, jHotDraw, and Tomcat. This 
suggests that the developers are not as reluctant to create stateless singletons 
compared to their stateful counterparts. 
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Table 6.1.4: Evolution of utility classes, static methods, and initialization blocks 

System Utility classes Methods access state Methods only parameters Static init. blocks 

First Max. Last First Max. Last First Max. Last First Max. Last 

BCEL 1.67 2.55 
4/2021 

2.55 0.43 0.63 
6/2006 

0.35 2.23 3.31 
6/2019 

3.17 4 5  
8/2015 

5 

Commons 
Collections 

11.11 11.11 
5/2001 

5.9 0 0.28 
2/2002 

0.02 0.35 5.16 
9/2007 

4.45 1 2  
5/2013 

1 

Commons 
Lang 

42.86 42.86 
8/2002 

16.04 0 1.69 
2/2004 

0.08 0.29 5.7 
4/2020 

5.67 2 16  
5/2008 

15 

Commons 
Math 

5.71 10.53 
6/2003 

3.04 0 0.91 
11/2008 

0.17 0.27 3.86 
7/2016 

3.12 0 19  
3/2016 

12 

Digester 0 6.7 
1/2004 

1.06 0 0.35 
11/2003 

0 0.57 0.84 
8/2010 

0.76 0 1  
1/2004 

0 

Geode 5.79 5.79 
5/2015 

5.32 0.67 0.67 
4/2015 

0.33 3.79 3.79 
4/2015 

3.24 171 171  
4/2015 

107 

jHotDraw 1.69 5.01 
9/2003 

1.03 0.79 1.94 
1/2010 

0.22 1.44 3.94 
1/2003 

1.43 0 23  
11/2010 

8 

Pig 2.82 6.29 
4/2008 

4.1 0.79 0.96 
1/2018 

0.95 2.82 5.11 
1/2017 

4.98 0 39  
10/2015 

34 

Spring Core 0 19.16 
10/2008 

9.75 0 0.44 
5/2018 

0.27 0.43 4.98 
9/2018 

4.89 7 28  
12/2015 

27 

Tomcat 7.13 7.41 
4/2006 

7.01 1.85 1.85 
3/2006 

0.22 4.13 4.13 
3/2006 

1.98 49 110 
10/2018 

99 

Wicket 1.53 2.64 
3/2016 

2.02 0.23 0.33 
3/2008 

0.07 2.69 3.18 
10/2009 

2.28 0 4  
11/2015 

4 

 

 For utility classes, if there were such instances in the first version of a 
system, then their percentage is higher than the corresponding value for the last 
version studied. This is true for 6 of the 9 projects in this situation; for all 3 
remaining ones, BCEL, Pig, and Wicket, the percentages for the initial and final 
versions are very close. Similar to before, the maximums appeared at the start of 
the development period. There are nonetheless exceptions, such as BCEL or Wicket. 

The fact that utility classes are used less in recent years is surprising especially for 
the projects that are structured as libraries (which rely heavily on such static 
constructs). 

 For static methods that access state, the situation is similar to the one 

described above. If the percentage is greater than 0 in the initial version, then it is 
also higher than the value obtained for the latest version. Pig is the only exception, 

but for this project the values are relatively constant throughout its entire existence. 
For the projects which had no instances of this type initially, the percentage 
increased considerably in the first few months of development and eventually 
became higher than the one for the latest version. In general, the maximums were 
encountered at the very beginning of the development process, proving once again 

that there are some types of static constructs that are being used less and less. 

 The case for static methods that only operate on parameter is very different. 
For 7 of the projects the percentage of instances is higher in the latest version 
analysed, while for 3 of the remaining ones the values are close (e.g., for 
jHotDraw). This is especially true for some of the projects, such as Commons 

Collections or Commons Math, where the difference is substantial. Furthermore, the 
maximum values were reached towards the end of the development cycle for more 
than half of the systems. 
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For static initialization blocks we reason in terms of number of instances. We 
could have provided the percentage of production classes that contain such 

instances instead, but decided not to due to the fact that a class may have 2 or 
more static initialization blocks. It can be observed that for 8 of the 11 systems the 
number of instances is higher in the latest version compared to the initial one. For 
Commons Collections and Digester the amount of static initialization blocks is low 
throughout their entire lifespan. However, for Geode it dropped considerably even 
though the number of production classes only decreased from 4992 to 4528. 

Another observation would be that the maximum number of instances was generally 

encountered halfway through the development process. There is only 1 system, 
Tomcat, for which it was found towards the end (in late 2018). 

 

RQ3. Do static constructs have a negative impact on software quality 
aspects? 
 We evaluate the impact of each category of static constructs on the 3 
quality aspects considered. The types are studied independently in order to establish 
which of them are the most harmful with respect to a certain aspect. 
 

Table 6.1.5: Impact of static constructs on class testability 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL << > < - > ≈ >> >> 

Commons 
Collections 

- << - > ≈ ≈ ≈ > 

Commons Lang << > - >> < < > > 

Commons Math << < - < ≈ < > << 

Digester - > - - ≈ - ≈ - 

Geode << > ≈ > >> ≈ > > 

jHotDraw - - - - - - - - 

Pig << ≈ < > ≈ << > ≈ 

Spring Core << < - >> ≈ < >> ≈ 

Tomcat > >> ≈ ≈ > > ≈ < 

Wicket << ≈ - > >> < >> ≈ 

 
 In the above table, we provide an overview of the testability of the classes 
that contain different types of static constructs when compared to similar classes. 

Two symbols (<< or >>) are used to indicate that both the quantitative and the 
qualitative scores are higher in favour of one or the other. Only 1 symbol (< or >) 

shows that although the 2 scores differ (one is greater while the other is lower), the 
overall testability score is still considerably higher either for the classes of interest 
or for the similar classes. 
 For the ones with static non-final attributes it is clear that they are less 
testable than classes which are similar to them in terms of size and complexity. 
From the 8 systems in which such instances appear, for 7 of them the difference is 
heavily in favour of the similar classes. There is only 1 exception, Tomcat, but even 

for this project the classes that contain static non-final attributes are only tested 
more (the unit tests are not of better quality). It is worth mentioning that for some 
systems the results might be skewed due to the small number of classes that 
contain this kind of attributes (e.g., Commons Lang with 1 such instance). 



   148 

 The situation is not so straightforward for the classes with constants. For the 
10 systems analysed in terms of testability we found that: in 5 of them (especially 

in Tomcat) the classes of interest have a higher overall testability score, for 2 (Pig 
and Wicket) the scores are roughly the same, while for the other 3 the similar 
classes are more testable. There are numerous production classes that contain 
constants, therefore most of the remaining classes were included in the group of 
similar classes; this might cause the results to be more general than for the other 
categories of static constructs. 

 Only 4 systems have stateful singletons in their latest version. For 2 of them 

the overall testability of the singletons is lower than that of similar classes, while for 
the other 2 the values are more or less the same. On the other hand, the stateless 
variants appear to be much more testable than their stateful counterparts. There 
are 8 projects in which instances of this type exist and for 6 of them their 
corresponding score is greater than for similar classes. In 2 of the cases, Commons 
Lang and Spring Core, both the quantitative and the qualitative scores are higher; 
however, the number of instances in these systems is quite low (1 and 5 stateless 

singletons, respectively). For Tomcat the testability scores are very similar, while for 
Commons Math (only 1 instance) they are in favour of the similar classes. 
 The observations for utility classes resemble the previous ones (for the 
stateless singletons), albeit the number of instances is much higher. There are 4 
systems in which the utility classes are more testable than other similar classes, 5 
where the overall testability scores are comparable, and only 1 (Commons Lang) 

that does not adhere to the rule. For 2 of the projects from the first category, Geode 
and Wicket, the difference is substantial in favour of the utility classes. 
 For the rest of the production classes that contain static methods, the cases 
for those with methods that access their state and for the ones with static methods 
that only operate on parameters seem to be the opposite of one another. There are 
5 out of 9 projects for which the classes with static methods that access state are 
less testable. From the remaining 4 only Tomcat is an actual exception, in the other 

3 (BCEL, Commons Collections, and Geode) the overall testability scores are very 
similar. For static methods that solely operate on parameters, the classes that 
contain them have a higher testability in 7 of the 10 cases; in 3 of them (BCEL, 
Spring Core, and Wicket) both scores are greater. For the remaining 3 systems, the 
overall testability scores for the classes of interest and the similar classes are 
comparable; there is no situation in which the testability is higher for the latter 
category. 

 Finally, the classes with static initialization blocks also appear to be a bit 

more testable. Instances of this type are present in 9 of the projects and the cases 
are as follows: for 4 of them (especially for BCEL) the classes of interest have a 
higher testability, in 3 others the overall testability scores are roughly the same, 
while 2 of the systems represent exceptions. For Commons Math there are 12 
instances of static initialization blocks and the classes that contain them have a 

much lower testability score compared to similar classes; this is mainly due to the 
large difference in terms of coverage, thereby causing their quantitative score to be 
significantly smaller. 
 

Table 6.1.6: Impact of static constructs on change-proneness 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL >> ≈ >> << >> >> >> >> 
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Commons 
Collections 

- ≈ - << >> ≈ < < 

Commons Lang ≈ ≈ - - >> > << > 

Commons Math ≈ < - - >> >> < >> 

Digester - ≈ - - << - > - 

Geode >> << >> >> ≈ >> >> >> 

jHotDraw ≈ > - - - < << >> 

Pig > > > << ≈ >> > >> 

Spring Core ≈ << - >> << >> << << 

Tomcat >> < > > < >> << ≈ 

Wicket > < - << ≈ ≈ ≈ ≈ 

 
 Table 6.1.6 presents the change-proneness of the classes with different 

types of static constructs in comparison to that of similar classes. The symbols are 
the same as for the previous table; however, in this case 2 symbols are used to 
represent that both the average number of changes and the number of commits in 
which the instances from a certain category were modified are higher / lower. 
 The classes that contain static methods that access state have the highest 
change-proneness when compared to other similar classes. There are 10 systems in 
which such instances appear and for 7 of them this is clearly the case. Even for 2 of 

the others, Commons Collections and Wicket, the change-proneness of these classes 
is comparable to that of similar classes; they are by no means less susceptible to 
modifications. The only exception is jHotDraw, but for this system only 1 such 

instance was encountered. In general, the difference between the average number 
of changes is substantial while the amount of modifications per commit is not. 
 For all 4 projects that have stateful singletons we found that the respective 

instances are more change-prone than the classes that were categorized as similar 
to them (in terms of size and complexity). Especially for 2 of the systems, BCEL and 
Geode, the average number of modifications is much higher while the number of 
changes per commit is lower; this implies that the stateful singletons were changed 
in many more commits. The latter (Geode) is the project with the most instances of 
this type out of all the systems investigated. 
 Another category that resembles the previous ones would be classes with 

static non-final attributes; their change-proneness is also greater than that of 
similar classes. Nine of the 11 projects have such classes and the situation is as 
follows: for 5 of them the respective classes are more susceptible to changes, while 
in the other 4 the change-proneness is comparable. 

 Classes that contain static initialization blocks are also more change-prone. 
Six of the 10 projects with such instances adhere to this rule, while for 2 of the 
others (Tomcat and Wicket) the values are very close. The exceptions are Commons 

Collections (only 1 instance) and Spring Core, a system which does have a 
significant number of classes with static initialization blocks (25); 17 of them have 
been modified throughout its history. 
 An interesting case is that of utility classes; it would seem that they are 
more prone to modifications in projects that are structured as libraries, while for the 
other systems it is the other way around. For the 3 Commons libraries and BCEL the 

utility classes have a higher change-proneness, which might indicate that a special 
emphasis is put on these classes in this kind of projects. 
 Stateless singletons are in a similar situation; there are 7 projects in which 
these singletons have suffered modifications throughout their lifespan. In 3 of them 
the average number of changes is considerably higher compared to similar classes, 
while for the other 4 this is not the case; there is no system for which the values are 
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close. It is also worth mentioning that projects with a small number of instances 
appear in both categories (e.g., Spring Core for the first category and Commons 

Collections for the latter). 
 Finally, the classes that contain constants / static methods that only operate 
on parameters are not more change-prone than other similar classes. Instances of 
both types are present in all 11 projects. For the former category there are: 5 
systems (especially Geode and Spring Core) in which the classes with constants are 
less change-prone than similar classes, 4 where the proneness is relatively the 

same, and 2 in which it is lower. For classes with static methods that solely operate 

on parameters the situation is more polarized: there is only 1 project in which the 
values are close, for 6 of the others the classes of interest have a lower change-
proneness, while for the remaining 4 systems they are more susceptible to 
modifications. 
 

Table 6.1.7: Impact of static constructs on defect-proneness 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL > > ≈ << > >> ≈ > 

Commons 
Collections 

- ≈ - - >> ≈ < - 

Commons Lang > < - - >> > < ≈ 

Commons Math ≈ ≈ - - >> > ≈ >> 

Digester - ≈ - - - - ≈ - 

Geode >> ≈ > >> ≈ >> > >> 

jHotDraw ≈ > - - - ≈ << >> 

Pig > > > << > > < > 

Spring Core >> << - >> < >> << << 

Tomcat > < > ≈ < >> < < 

Wicket > ≈ - << ≈ >> ≈ << 

 
 Out of all the classes with static constructs, the ones that contain static 
methods that access state are by far the most defect-prone. Instances of this type 
are present in 10 of the 11 systems and in 8 of the cases their error-proneness is 
higher than that of similar classes; for 5 of the projects the difference is substantial. 
There are only 2 systems in which the values are comparable, Commons Collections 
and jHotDraw, but even for them the average number of changes is greater in 

favour of the classes with this kind of static methods. 

 Classes that contain static non-final attributes are almost as defect-prone as 
the previous ones. This observation holds true for 7 (especially Geode and Spring 
Core) out of the 9 projects in which such instances appear. The only exceptions are 
Commons Math and jHotDraw; for them the average number of modifications for 
the classes of interest / similar classes are very close. 
 Stateful singletons are also more error-prone compared to other similar 

classes, but the difference is smaller than for change-proneness. Three of the 4 
systems adhere to this rule, while for BCEL the corresponding values are almost 
identical. Just as for change-proneness, the results for the stateless variants are 
inconclusive; for 2 of the projects the instances have a higher defect-proneness 
when compared to similar classes, for 3 of the remaining ones it is the other way 
around, while for Tomcat the average number of changes and the amount of 

modifications per commit are more or less the same. 
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 For utility classes the situation is as follows: in 5 of the projects their defect-
proneness is higher than that of similar classes, for 2 (Geode and Wicket) it is 

comparable, and in the last 2 systems (Spring Core and Tomcat) the instances of 
interest are less prone to error. This is quite different compared to what was 
observed for change-proneness; there the utility classes were more prone to 
modifications only in the systems that are structured as libraries. 
 Classes with static initialization blocks are in a similar situation. The 
instances were changed during bug-fix commits in 9 of the 11 projects and for 5 of 

the systems the respective classes are more defect-prone. For 3 of the largest 

projects, Spring Core, Tomcat, and Wicket, this is not the case, while for Commons 
Lang the ratio between the average number of modifications and the amount of 
changes per commit is close to the one obtained for similar classes. 
 Like for change-proneness, the classes that contain constants and static 
methods that solely operate on parameters also appear to be less error-prone. This 
is very clear for the latter category where there is only 1 exception, Geode. In 6 of 
the projects (especially in Spring Core) the classes with this type of static methods 

have a lower defect-proneness than their similar counterparts, while for the other 4 
systems the computed values are comparable. Finally, for the classes with constants 
there are: 5 systems for which the values are close, 3 (Commons Lang, Spring 
Core, and Tomcat) where their error-proneness is lower, and 3 (BCEL, jHotDraw, 
and Pig) in which they are actually more susceptible to defects than other similar 
classes. 

 
 
 

6.2. Threats to validity 
 
 In this section, we present the factors that could be considered threats to 
the validity of the empirical study and the obtained results. Additionally, we discuss 
the ways in which we tried to mitigate them. The factors are grouped into 3 
categories: construction, internal, and external threats. This categorization is done 
based on the guidelines established by Perry et al. in [98]. The threats from the first 
category are related to the independent and dependent variables; more specifically, 

whether or not they model the formulated hypotheses accurately. The internal 
threats arise when the changes in the dependent variables cannot be attributed to 
changes in the independent ones. Finally, the threats from the third category 

address the results of the empirical study, namely if they are generalizable to other 
settings. For each category we have identified a series of threats: 

1. Construction threats 
These threats may appear due to problems in the code that was developed 

for collecting the data required in our analyses. To avoid such issues, the 
proposed approach was carefully tested using several small-scale systems 
created specifically for this purpose. For static construct presence / usage, 
we added instances from each category in different combinations and 
checked that they are detected correctly. As an example, for singletons we 
manually recreated all the variations discussed in [91] while also studying 

jHotDraw at specific commits from the time of the article. Furthermore, we 
verified the number of clients for each instance to determine if they are 
calculated correctly (along with their localization). In terms of evolution, we 
randomly chose commits from every system and checked that the number 
of instances / clients of each type are identified properly. For testability we 
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ensured that the quantitative and qualitative metrics are computed 
correctly; the coverage and test smell data was inspected to confirm that 1) 

the percentages for production methods addressed by tests / unit tests that 
contain smells and 2) the number of different types of smells that appear in 
a test class are in order. We also corroborated that the corresponding scores 
are determined properly based on the proposed threshold values. Finally, for 
change- / defect-proneness we verified that the fine-grained source code 
changes were extracted correctly by manually comparing consecutive 

commits to establish what was modified. Additionally, we checked 1) that 

the lists of issue keys corresponding to bugs are correct and complete and 
2) that the bug-fix commits are identified accurately. 

2. Internal threats 
The main threats from this category are confounding factors, namely other 
variables that could mask an actual association or falsely prove an apparent 
association between the independent and dependent variables. It is difficult 
to identify all the factors that have an impact on these variables, but we will 

try to discuss as many as possible. For the first hypothesis, there might be 
other system characteristics that affect the presence / usage of different 
types of static constructs. Studying multiple combinations of characteristics 
can help alleviate this threat. With regard to the second hypothesis, there 
may be other factors that influence the evolution of static constructs. 
Though they are important, the size and complexity of the studied systems 

should not be the sole causes why instances / their clients were created or 
deleted. Finally, for the last hypothesis, the presence of certain types of 
static constructs might not be the only reason why a class suffers from lack 
of testability or has high change- / defect-proneness. This is especially true 
for the smaller constructs, such as constants or static methods that are not 
part of singletons / utility classes; their impact on the 3 software quality 
aspect should be lower than for the other categories. 

3. External threats 
 Only open-source projects: one of the biggest threats from this category is 

that the observations presented above might not be generalizable to other 
software systems. Up until this point, we did not have access to projects 
from industry; therefore, all 11 systems that were included in the analysis 
are open-source. Different types of static constructs might appear more 
frequently in commercial projects and they could also be utilized in other 

ways. Furthermore, their evolutionary patterns may not resemble the ones 

that have been observed thus far. The way in which class testability is 
assessed (in relation to other similar classes) could be inappropriate if all 
the production classes are fully tested with unit tests of the highest quality. 
Finally, change- and fault-proneness might prove easier to quantify due to 
better development practices (e.g., more fine-grained commits or better 

commit messages). All in all, there is a clear need to study industrial 
projects; we are actively working to address this threat and expect to obtain 
access to at least 2 commercial systems in the near future. 

 Only object-oriented Java systems: another cause for concern may be that 
all the projects included in the empirical study were developed in Java by 
following an object-oriented approach. In terms of programming language, 
we are confident that the solution can be easily adapted to enable us to 

analyse systems created in other object-oriented languages (such as C# or 
C++). The code might need to be reimplemented in the respective 
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language, but the proposed approach should still apply. However, studying 
systems which were developed by following other programming paradigms 

could prove more difficult. For example, class testability is investigated in an 
object-oriented context, by evaluating the quantity and quality of the 
associated unit tests. This may not be possible for projects created in 
imperative or functional programming languages because some of the 
concepts on which our approach is based might not exist. We need to 
experiment with other programming languages / paradigms before we can 

generalize the obtained results. 

 High granularity of the study: the level at which everything is studied could 
also be considered a threat to validity; most of the analyses are performed 
at class level. Although there are situations in which an analysis is more 
fine-grained (e.g., the extracted source code changes), in most cases we 
only look at classes as a whole. For example, we categorize a production 
class as a singleton client if at least 1 of its methods utilizes the singleton. 
Studying exactly which methods use it would have allowed for a better 

categorization, thereby obtaining more detailed results. Granularity may 
also impact the process through which we study the evolution of static 
constructs. In our approach, we performed sampling on a system’s commits 
with a frequency of 1 commit per month. The results could have been a bit 
different if all the commits were considered. As explained in Chapter 3, the 
probability that a static construct was added and immediately removed 

within that 1 month period is quite low. Nonetheless, we can extend the 
approach so that 1) the projects are studied at method level or 2) all the 
commits are analysed. 

 System selection process: the projects that were chosen for the empirical 
study could also represent an external threat. Even though they were 
selected based on a set of well-established criteria, there may be other 
systems with completely different characteristics that should have been 

included in the analysis. We tried to choose projects 1) of various sizes and 
complexities, 2) with unique development practices, and 3) varying testing 
efforts. However, systems created by following certain development 
methodologies might be worth considering. While the specific methodology 
may not influence all the software quality aspects, there could be some that 
are impacted. For example, we expect Test-Driven Development to affect 
our assessment on class testability. The code coverage for projects 

developed by following TDD should be significantly higher because the 

corresponding unit tests must be written before the production classes are 
implemented. On the other hand, this does not guarantee that the quality of 
the tests will be higher. In the same vein, the change- / defect-proneness of 
the production classes should be lower because the requirements are clearer 
and less bugs are introduced. The above are just suppositions, we need to 

analyse this kind of projects before any meaningful conclusions can be 
drawn. 
To conclude this subsection, we want to reiterate that we selected systems 
with different characteristics, a considerable number of versions were 
analysed, and both the test suites and the change histories were considered 
appropriate. Although there are several ways in which the empirical study 
can be improved, we firmly believe that it represents a solid foundation for 

the research that will follow. We plan to address all the aforementioned 
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external threats in the near future, as will be explained in the future work 
section. 

 
 

 
 
 
 

 
 
 
 
 
 
 

 

In summary, this chapter discusses: 

1. The implications of the results with regard to each research question:  

 For RQ1 we found that: a) static constructs are present in all the 
systems studied; b) constants are by far the most common type 

followed by static methods and utility classes; static non-final 
attributes, initialization blocks, and singletons appear less often, 
especially in the smaller projects; c) the number of clients of static 
constructs (and their localization) are not much different than those 
of other entities of the same type. 

 For RQ2 we saw that there are indeed several categories of static 
constructs for which fewer instances are added nowadays compared 

to earlier stages of development. 

 For RQ3 we established that: a) static non-final attributes, stateful 
singletons, and static methods that access state have the highest 
impact on class testability; b) all the categories of static constructs 
except constants and static methods that only operate on parameters 

affect change-proneness, albeit for utility classes and stateless 
singletons the results are contradictory for different types of systems; 

c) for defect-proneness, their impact is not as significant as for 
change-proneness. 

2. The threats to the validity of the empirical study: 

 construction threats: problems in the code that was developed in 
order to a) detect static constructs, b) study the evolution of different 
types of instances and their clients, and c) quantify class testability, 

change- and defect-proneness. 

 internal threats: lack of / erroneous correlation between the 
independent and dependent variables (for each hypothesis). 

 external threats: lack of generalizability of the results because a) all 
the projects are open-source and implemented in Java, b) the 

granularity of the study is too high, c) the system selection process 
was inappropriate. 
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7. CONCLUSIONS 
 
 

 Developing software systems is a complex process that is comprised of 
several activities, including: design, implementation, testing, and deployment. 
Performing these activities can be difficult if a project does not possess some key 

quality features. For example, testing could be hindered because the system’s 
production classes lack testability. The implementation time might also increase due 
to the high change- / defect-proneness of the classes. These aspects need to be 
taken into account especially in the context of evolution. As projects evolve, they 
still have to meet a series of quality requirements, such as: performance criteria 
(e.g., speed or accuracy), being easily maintainable and testable, or not being 
susceptible to change / defects. However, little research has been done thus far on 

what makes a system 1) difficult to test and 2) change- / 3) error-prone. Static 
constructs have already been shown to have a negative effect on understandability, 
maintainability, and efficiency, but there are other aspects that still need to be 
studied. We have been addressing this knowledge gap by conducting an empirical 

study that investigates the impact of static constructs on the quality aspects 
mentioned above. 

First, we categorized the static constructs and defined detection strategies 

through which instances of each type can be identified. Afterwards we studied these 
instances both for the latest version of a system and throughout its entire lifespan; 
this was done to establish how static constructs have evolved over time. Finally, we 
defined models that can be used to quantify the 3 quality aspects investigated. For a 
part of the production code that contains static constructs we can determine if it is 
less testable or more change- / defect-prone compared to other similar classes. 

In this final chapter of the thesis, we start by providing an overview of the 
main scientific contributions made through our work. Then we summarize the 
results that were obtained and discuss the conclusions that can be drawn from 
them. Next, we reflect on what we have accomplished and explain what could have 
been done better. We end the chapter with future work directions that we are 

currently pondering. 
 

 

7.1. Contributions 
 
 In this thesis, we investigate static constructs, how they evolved, and their 

effect on various software quality aspects. This is done in order to: 1) determine 
how they are currently being utilized, 2) compare it to the way in which they were 
used throughout the lifespan of a system, 3) establish if they have a negative 
impact on testability or change- / defect-proneness. By doing this we bring the 
following contributions: 

1. A methodology for studying the evolution and the impact on 1) testability 
and 2) change- / 3) defect-proneness of any design flaw. Even though the 

thesis focuses on static constructs, the proposed approach can be used to 
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investigate other design flaws. The corresponding detection strategies need 
to be defined; then the evolution and the effect on software quality may be 

studied in a similar manner. For example, the God Class design flaw can be 
detected as proposed in [33], by computing the corresponding metrics WMC 
(Weighted Method per Class), Tight Class Cohesion (TCC), and Access to 
Foreign Data (AFD) and comparing them to the threshold values. The results 
are combined into a detection strategy that can be utilized to identify 
instances of the God Class flaw. The presence of such instances can be 

analysed both for the latest version of a project and for its entire history. 

Finally, their impact on the 3 software quality aspects can be established by 
making use of the proposed quantification models. As an example, we can 
determine if God Classes were changed more frequently during bug-fixing 
commits compared to the rest of the classes. 

2. A model for quantifying the testability of a production class. Unlike other 
publications that address software testability, we evaluate this quality 
aspect based on the test code rather than the production code. We consider 

that a part of the system is tested less / with unit tests of a lower quality 
compared to other parts of the code because it is more difficult to test (has 
low testability). Therefore, testability was assessed both from a quantitative 
and from a qualitative perspective. In terms of quantity, we relied on code 
coverage data; for quality we determined if particular smells are present in 
the associated unit tests. These 2 aspects were combined in order to 

compute a testability score for a specific part of the production code. 
3. A process for determining 1) what was changed during a commit and 2) 

whether or not that particular commit is a bug-fix. First and foremost, to 
evaluate change-proneness we needed to be able to establish the exact 
modifications that were made during a commit. For this we extract fine-
grained source code changes which specify: the entity that was modified 
(class, attribute, or method), the type of the change (e.g., conditional 

statement modification in method), and other details related to it (such as 
severity). We use these data to determine if a class that has static 
constructs is more change-prone than other production classes. The entire 
change history of the studied class is analysed and compared to that of 
similar classes (in terms of size and complexity). Defect-proneness is 
evaluated in the same manner, but only the commits that were categorized 
as bug-fixes are taken into account. In order to determine if a commit is a 

bug-fix we rely on 2 types of information: 1) the one available in the commit 

message and 2) additional data collected from the corresponding Jira issue 
tracker. Based on this data, we are able to accurately categorize commits as 
bug-fixes. 

4. A tool that incorporates all these aspects. The aspects that have been 
discussed above were integrated into DFAnalyser. This tool is an extension 

of Patrools [95], which could already compute some of the required metrics. 
We designed it to have a modular structure; several modules can be 
combined together in order to perform the wanted analysis. One of the 
modules contains the detections strategies for the design flaws that are 
being investigated (e.g., singletons and utility classes). Another module is 
concerned with quantifying the software quality aspect for which we want to 
assess the impact of the respective design flaws. Finally, if we also need to 

study the evolution of these flaws, we have to add the appropriate module. 
The modules are highly configurable and can be easily extended; for 
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example, a different quality aspect could be investigated by creating a 
module with a suitable model for evaluating it. 

5. An empirical study through which we answer the proposed research 
questions. We began our research by formulating a series of questions that 
cover the major aspects that we wanted to understand with regards to static 
constructs. For each of the research questions we also prepared several 
hypotheses that needed to be tested. To answer them we conducted an 
empirical study that includes 11 open-source software projects. In this 

study, we investigate all the aspects discussed above, namely: static 

construct usage, evolution, impact on testability and change- / defect-
proneness. Each type of static construct was analysed in isolation; 
afterwards, some general conclusions have been drawn for static constructs 
as a whole. 

6. A better understanding of static constructs, their evolution, and the effect 
they have on various software quality aspects. First, we wanted to establish 
if static constructs (e.g., mutable global state) are present in the production 

classes of complex software projects and whether or not other classes utilize 
them. Then we were keen to observe how they are used nowadays, once a 
system has reached maturity, compared to earlier stages of development. 
Finally, we assessed the effect of static construct usage on quality aspects 
such as testability or change- / defect-proneness; we determined which 
types of static constructs have the biggest negative impact on the 

aforementioned quality aspects and discussed possible reasons why this is 
the case. 

 
 
 

7.2. Conclusions 
 

The proposed approach was successfully implemented and an empirical 
study which includes 11 open-source systems was conducted. Some interesting 
findings were obtained through this study. We are now capable of answering the 
research questions that were formulated: 

For RQ1, “Are static constructs used in complex software systems?”, we 
analysed the presence and usage of each type of static construct for the latest 
version of a project. The main finding is that instances of static constructs actually 

do appear in the code and are frequently utilized by other production classes. 
Classes with constants and static methods are present all throughout the source 
code, while static non-final attributes, singletons, and static initialization blocks are 
used, but to a smaller extent. We make a distinction between stateful and stateless 

singletons; those from the latter category seem to appear more often. We also 
divided the static methods which are not part of singletons into 3 categories: 1) 
those from utility classes; 2) that utilize the attributes of their class; 3) which only 
operate on parameters. Based on the specific characteristics of a system, the static 
methods from one category are used more compared to the others. For example, in 
a project which is structured as a library (e.g., Commons Math), the most common 

type of static methods are the ones that are part of utility classes. 
In terms of usage, the number of production classes that utilize such 

instances varies depending on the static construct’s type. As an example, there are 
more classes that use static methods (regardless of their category) than there are 
singleton clients. Unlike the other types, static non-final attributes and constants are 
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generally utilized within the class in which they are declared rather than from other 
production classes. 

For RQ2, “How have static constructs evolved throughout the lifespan of a 
project?”, we studied the evolution of each type of static construct in isolation for 
monthly versions of a system. In general, it was observed that most of the static 
constructs are utilized less once a project reaches maturity. The percentage of 
instances present from each category is usually higher in the initial versions of a 
system compared to the latest ones. Also, the maximum number of instances of a 

particular type was encountered more frequently towards the beginning of the 

development process. For example, there were more singletons in a version that is 
halfway through the development period than in the final version studied although 
the number of production classes is constantly growing. The only exceptions are 
constants and static methods that solely operate on parameters (to some extent); 
for these 2 categories the amount of instances increases continuously as a project 
grows in size. 

The situation is even more evident for static construct clients. There are 

numerous cases in which the number of clients for a particular instance remained 
constant (or even decreased) while the total number of production classes was 
growing exponentially. Situations in which the classes with / that utilize static 
constructs were marked as Deprecated have also been encountered. Starting from 
that version, the number of client classes began to decrease until reaching 0 (or 
until the respective class was removed). All of the above suggest that the 

developers have become aware of the problems associated with the usage of 
specific types of static constructs and started to utilize them less. 

For RQ3, “Do static constructs have a negative impact on software quality 
aspects?”, we investigated the effects of each category of static constructs on the 3 
quality aspects addressed by this study. For testability we found that some of the 
instances have a more detrimental effect compared to others. Stateful singletons 
and static non-final attributes appear to have the biggest impact on the testability of 

the production classes that utilize them. This causes the respective classes to have a 
lower testability score; they are tested less compared to other similar classes and 
the unit tests covering them are of a lower quality (have more test smells, such as 
General Fixture or Assertion Roulette). Similar observations can be made for some 
types of static methods. While the usage of static methods that access state causes 
a production class to be tested less, for the ones that are part of utility classes or 
that only operate on parameters this is not the case. Constants do not have a 

negative impact on testability, neither in the classes in which they are declared nor 

in the corresponding client classes (because of their low usage). Finally, the classes 
with static initialization blocks also seem a bit more testable, albeit for them it was 
difficult to evaluate this quality aspect due to the small number of instances present. 

The change- and defect-proneness aspects were studied together because 
the procedures for assessing them are quite similar. The major difference is that for 

the latter only the commits which were categorized as bug-fixes are considered. 
Mutable global state instances, namely stateful singletons and static non-final 
attributes, are also very detrimental to change-proneness (same as for testability). 
The classes that have such instances were modified more frequently during commits 
and the number of fine-grained changes that occurred is higher than for the rest of 
the production classes. Besides the ones that solely operate on parameters, the 
other static methods appear to have a negative impact on change-proneness; 

however, the effect is not as noticeable as for the mutable global state instances. 
Classes with static initialization blocks are in a similar situation. Finally, constants do 
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not make the classes of which they are part of more change-prone; the average 
number of commits in which they were changed is comparable to that of similar 

classes. 
The most important observation in terms of defect-proneness is that the 

classes that contain certain types of static constructs are less error-prone than they 
are change-prone. For example, the ratio between the average number of bug-fix 
commits in which stateful singletons / similar classes were modified is lower than 
the corresponding measurement when all the commits are taken into account. This 

observation also holds true for classes that have static non-final attributes and static 

methods that access state. For the other types of static methods, constants, and 
static initialization blocks the values are very similar to the ones obtained for 
change-proneness. All of the above suggest that using certain types of static 
constructs does have a negative effect on the software quality aspects investigated; 
nonetheless, there are static constructs (such as constants or static methods that 
solely operate on parameters) that do not affect these aspects. 
 

 
 

7.3. Reflection 
 

No major issues were encountered while implementing the proposed 
approach. The detection strategies for the different types of static constructs were 

successfully defined by leveraging the metrics already computed by Patrools and 
adding the ones that were missing (e.g., class has only private constructors). For 
testability we were able to obtain 1) coverage information by using JaCoCo through 
Maven / Gradle plugins and 2) data related to test smells with TSDetect. The scripts 

necessary for running these tools were easily integrated into DFAnalyser. The 
correlation between specific parts of the production code and the corresponding unit 
tests was also established using Patrools. In order to assess change-proneness, we 
managed to extract fine-grained source code changes for the production classes 
using ChangeDistiller. For defect-proneness, we categorized commits as bug-fixes 
based on the information gathered both from the commit message and from the 
associated Jira issue tracker. In general, the proposed procedures were 

straightforward and easy to implement. Nonetheless, we consider that the ones 
related to the testability score and the bug-fix categorization can be improved, as 
will be explained in the future work section that follows. 

Just like during implementation, the empirical study was conducted without 
any problems. The systems were selected based on a set of well-established 
criteria; we tried to choose projects that are different in terms of size and 
complexity, development practices, and testing effort. We did not encounter any 

issues while retrieving them from the corresponding Git repositories or when 
accessing the associated issue trackers. However, both while developing the 
approach and when conducting the study, we needed to make some decisions on 
how to proceed. Every time this had to be done, we provided the reasoning behind 
the decisions that were taken. Just as any empirical study, there are ways in which 
ours can be extended; we will analyse them in the next section. 
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7.4. Future work 
 

Even though we tried to reach closure, there are several ways in which the 
proposed approach and the conducted study could be improved. We will discuss 
them, in no particular order, in the current section. Although the list is not 
exhaustive, these are the directions on which we will be focusing in the foreseeable 

future. 
1. Extending the empirical study: as discussed in Section 6.2, there are 

several limitations to our study. We plan to address them by enhancing the 
empirical study in the following ways: 

 Additional Java systems: first of all, we want to add more Java projects to 
our analyses. Although we studied a considerable number of systems which 
were selected based on a set of well-established criteria, there may still be 

some particular projects worth including. An important limitation of the 
study is that all the analysed systems are open-source. We hope that in the 
future we will have access to commercial projects. They might differ from 
the open-source ones in terms of: 1) amount and types of the static 
constructs present; 2) testing effort and quality of the unit tests; 3) 
development practices. Studying such systems would ensure that our results 
are generalizable to any software project. 

 Other development technologies and programming paradigms: another 
limitation is that all the analysed projects are implemented in Java. We are 

already pondering the possibility of reimplementing the tool in order to 
support other object-oriented programming languages (namely, C# and 
C++). The proposed approach should still apply, but the coding might need 
to be done in a C-family language. It will be interesting to see if the 

observed patterns are still valid for this type of systems. 
In addition to the development technology, we also want to study projects 
created by following other programming paradigms. As an example, static 
constructs can be used very differently in embedded systems. This is why 
we are keen to extend the study to both imperative and declarative 
paradigms, including: procedural, functional, and logic programming. We 
will focus on the way in which static constructs are utilized, but will also 

examine their impact on the 3 quality aspects of interest. 
 Different development methodologies: the methodologies play an important 

role in how a system is created. Different development practices have been 

observed for the chosen projects; however, none of the systems were 
created through Test-Driven Development. For TDD the test cases have to 
be written before the production code is implemented, thus the method 
through which we quantify testability might need to be adjusted accordingly. 

The latest agile development methodologies, such as extreme programming 
or lean development, will also be investigated. Doing this will add to the 
credibility of the obtained results, thereby improving the quality of the 
empirical study. 

2. Studying other design flaws:  
 Object instantiations in constructors / methods: instantiating objects instead 

of using Dependency Injection is a very common design problem. The issues 
that arise when doing this in constructors are discussed by Hevery in [17]; 
the most notable ones are: the violation of the Single Responsibility 
Principle, the difficulty of directly testing such constructors, and the fact that 
they cannot be subclasses or overridden for testing purposes. Most of the 
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problems also appear when instantiating objects in production methods. We 
can extend the tool so that it can detect new statements within constructors 

/ methods. For this flaw, we will mainly focus on the testability aspect as it 
is less likely to have an impact on change- / defect-proneness. 

 Law of Demeter violations: they occur when objects are received as 
parameters but never used directly; instead, their methods are called just to 
gain access to other objects. This design flaw should be detrimental to 
testability because multiple objects need to be configured in order to set up 

the state properly. A class that contains such violations might also be 

change-prone since there are a lot of other classes (that could be modified) 
on which it depends. The tool can easily detect Law of Demeter violations by 
querying the method call chain. 

 Other well-known design flaws (such as God Class or Feature Envy): while 
their effect on other software quality aspects has been thoroughly 
investigated, the impact they have on the 3 aspects that we are focusing on 
was not. Strategies for detecting these flaws have already been proposed 

[99] along with the corresponding thresholds [101]. We only need to 
integrate them into our tool and then we will be able to study the flaws in a 
similar manner to static constructs. 

3. Improving the way in which we compute the testability score: 
although we evaluate both the quantity and the quality of the corresponding 
unit tests when assessing the testability of a specific part of the production 

code, we still consider that the process through which we obtain the 
testability score could be refined. Especially for the quantitative perspective, 
more metrics could be included in addition to line coverage and the 
percentage of production methods addressed by tests. The evaluation on 
unit test quality could also be improved by adding more test smells to the 
analysis. 

4. Refining the process through which we identify bug-fix commits: we 

also want to perfect the method for categorizing commits as bug-fixes. Even 
though we leverage information extracted both from the commit message 
and from the corresponding issue tracker, there are still a lot of data 
available that can be utilized to improve this process. For example, the tool 
proposed in [102] could aid us in gathering additional information for 
refining our assessment. Furthermore, the commit history might also 
provide valuable data in this regard. 

5. Analysing everything at a lower level of granularity: at the moment, 

most of the analyses are performed at class level. For example, a class is 
categorized as a singleton client if it utilizes at least one of its methods. We 
would like to make the analysis more fine-grained, therefore we need to be 
able to pinpoint which singleton methods are used by each of the methods 
from the respective class. This also applies to other static constructs, such 

as utility classes or mutable static attributes. Analysing everything at a 
lower level of granularity would also be beneficial for the models through 
which we evaluate the software quality aspects. Studying these aspects at 
method level would allow for a more precise assessment. For testability we 
could determine which production methods are covered by a particular unit 
test; this would be interesting considering that some of the tests have 
significantly more smells than others. The method by which we categorize a 

commit as a bug-fix might also benefit from this refinement; for example, 
we would be able to search for smaller entities (e.g., attribute or parameter 
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names) in the commit message and trace them back to their corresponding 
classes. The benefits of a more fine-grained analysis were highlighted by the 

source code changes that were extracted; being able to determine exactly 
what was changed during a commit was very important when assessing 
change-proneness. 

6. Proposing repair techniques for both production and test code: the 
last research direction that we are considering is improving the code by 
refactoring the parts in which the problematic static constructs are present 

or by rewriting the unit tests so that the smells do not appear anymore. As 

an example, mutable global state instances could be eliminated by replacing 
the static non-final attributes with immutable ones while preserving the 
functionality. In the same vein, we could remove the General Fixture test 
smell by distributing the set-up logic to the appropriate unit tests; for 
example, only the tests that address a singleton client will configure the 
required singleton state, it will not be done in the set-up method of the test 
class. By performing these refactorings the quality of both the production 

and the test code will greatly improve. 
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In summary, this chapter discusses: 

1. The contributions brought through our work: 
 the methodology for studying the evolution and the impact on 

software quality of any design flaw; 
 the model for quantifying class testability; 
 the process for identifying bug-fix commits and determining the fine-

grained source code changes that occur between certain commits; 

 a tool for investigating the aspects of interest; 
 an empirical study that answers the research questions for different 

types of static constructs; 
 a better understanding of static constructs, their evolution and the 

effect they have on 3 software quality aspects. 

2. The main findings with regard to each research question: 

 that static constructs are heavily present in the code and are 
frequently utilized by other production classes; 

 that they are used less once a project reaches maturity compared to 
the earlier stages of its development; 

 that certain types of static constructs, such as mutable global state 
instances (static non-final attributes and stateful singletons) or static 
methods that access their class’s state, have a negative impact on 

the 3 quality aspects investigated. 

3. What was accomplished thus far and what could have been done better. 

4. Future work directions that we are currently considering: 
 improving the empirical study by adding more systems to it, including 

commercial ones and projects written in other languages / by 
following different programming paradigms; 

 investigating other design flaws, such as object instantiations in 

constructors / methods or Law of Demeter violations; 
 refining the models through which we quantify the 3 quality aspects 

(e.g., adding more metrics to the testability score); 
 studying everything at a lower level of granularity; 
 suggesting repair techniques for the problematic parts of both 

production and test code. 
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