1. Information about the Program

1.1 Higher education institution	Politehnica University of Timisoara
1.2 Faculty ² / Department ³	Automation and Computing / Computer and Software Engineering
1.3 Chair	-
1.4 Domain of study	Computers and Information Technology
1.5 Study level	Bachelor of science
1.6 Study program / Qualification	Computers / engineer

2. Information about the Course

2.1 Course			Digital Signal Processing				
2.2 Lecturer			Prof. Dr. habil. eng. Mihai V. Micea				
2.3 Academic staff for	2.3 Academic staff for seminars/labs T/Assist. Dr. eng. Valentin Stângaciu						
2.4 Study year	3	2.5 Semester	2	2.6 Assessment type	Е	2.7 Course type	Elective

3. Total time estimated (hours/ semester of didactical activities)

			1		1	
3.1 Hours / week	4	of which: 3.2 lecture hours	2	3.3 seminar/lab hours	2	
3.4 Total curriculum hours	94	of which: 3.2 lecture hours	28	3.3 seminar/lab hours	28	
Time distribution						
Study using manuals, support materials, bibliography and notes						
Supplementary documentation in library, specialty electronic platforms and on site						
Supplementary preparation for seminars/labs, homework, reviews, portfolios and essays					10	
Tutoring activities						
Exams						
Other						
3.7 Total - hours of individual study	38					
3.8 Total - hours per semester	104					
3.9 Credits	4	1				

4. Prerequisites (if appropriate)

4.1 curriculum related	Mathematical analysis
	 Computer assisted mathematics
4.2 competence related	Competences and knowledge of arithmetic, analytic and trigonometric calculus

5. Conditions (if appropriate)

5.1 for lectures	 Large/medium sized room Support equipment: laptop, video-projector, board 			
5.2 for seminars/labs	Laboratory with10-20 workstations			
	Hardware/software development kits for DSP-based applications (10-20 pcs): DSP- based development systems, corresponding C programming environments, software analysis and debugging tools			
	 Discrete logic development boards, integrated circuits, I/O modules, microphones, speakers and headphones 			
	• Laboratory instrumentation (10-20 pcs): multimeters, stabilized programmable power sources, oscilloscopes, logic analyzers			
	Hardware development equipments and tools: soldering stations, universal programmers for memory modules, electronic toolkits, connectors and wires			

 ¹ Formularul corespunde Fişei Disciplinei promovată prin OMECTS 5703/18.12.2011 (Anexa3);
 ² Se înscrie numele facultății care gestionează programul de studiu căruia îi aparține disciplina;
 ³ Se înscrie numele departamentului căruia i-a fost încredințată susținerea disciplinei și de care aparține titularul cursului;

6. Specific competencies acquired

Professional competencies ⁴	 Operating with the scientific, engineering and IT fundamentals Designing hardware, software and communication components Problem solving by using computer science and engineering tools Improving the performance of hardware, software and communication systems Designing, managing the life cycle, integrating and managing the integrity of hardware, software and communication systems Designing intelligent systems
Transversal competencies	 Behaving honorably, responsibly and ethical, according to the law, to ensure problem solving Identifying, describing and executing the processes of project management, by fulfilling various roles within the team, and describing the results in the field of activity, in a clear and concise manner, verbal and in writing, using the Romanian language and an international language Proving action and initiative spirit to get current with the knowledge at professional, economic and management levels

7. Objectives of the course (issued from the list of the competencies acquired)

7.1 General goal	 Providing detailed knowledge on the basic techniques used in digital signal processing and building the necessary skills to apply these techniques in various domains
7.2 Specific objectives	 Learning the basic techniques used in the conversion, analysis and processing of digital signals and systems in the time and frequency domains Building the necessary skills of using computing systems and specialized equipments (digital signal processors – DSPs) in signal processing applications Developing abilities of designing, implementing, testing, debugging and improving the performances of hardware and software systems used in digital signal processing applications

8. Content

8.1 Lecture	Hours	Lecturing methods
1. Introduction		
1.1 General considerations	2	
1.2 Fields of application of digital signal processing, with examples	2	
1.3 Course structure, conventions and notations		
2. Digital signal processors		
2.1 General description of DSPs		
2.2 Presentation of the DSP families Motorola/Freescale and	4	
Analog Devices		
2.3 Applications		Lectures supported by
3. Time domain digital signal processing		PowerPoint presentations and
3.1 Discrete-time signals		video-projections, discussions,
3.2 Conversion of digital signals		explanations and examples
3.3 Discrete-time systems (digital processors)		
3.4 Convolution of discrete-time signals	10	
3.5 Applications of the convolution		
3.6 Correlation of discrete-time signals		
3.7 Applications of correlation		
3.8 Digital systems characterized by difference equations		
4. Frequency domain digital signal processing		
4.1 The Z transform and its applications	12	
4.2 Frequency domain analysis of LTI systems		

Bibliography

- M.V. Micea, "Digital Signal Processing: Course Notebook", 3.3rd Edition, Politehnica University of Timisoara, 2015, online: http://dsplabs.cs.upt.ro/~micha/courses/PNS/support/DSP%20-%20Course%20Support.pdf.
- J.G. Proakis, D.G. Manolakis, "Digital Signal Processing. Principles, Algorithms and Applications", 4th Edition, Prentice-Hall, 2007.
- V.K. Ingle, J.G. Proakis, "Essentials of digital signal processing using MATLAB", 3rd Edition, Cengage Learning, 2012.

⁴ Aspectul competențelor profesionale va fi tratat cf. Metodologiei OMECTS 5703/18.12.2011. Se vor prelua competențele care sunt precizate în Registrul Național al Calificărilor din Învățământul Superior RNCIS (<u>http://www.rncis.ro/portal/page? pageid=117.70218& dad=portal& schema=PORTAL</u>) pentru domeniul de studiu de la pct. 1.4 și programul de studii de la pct. 1.6 din această fişă.

8.2 Seminar/lab		Hours	Instruction methods
1. Introduction t Motorola/Fre- correspondin tools.	o the architecture and programming of the escale and Analog Devices DSPs. Presentation of the g application development environments and software	4	
2. Basic DSP pr	rogramming and testing.	2	Presentation of the workshop,
3. Audio CODE	C programming and applications.	2	discussions, questions and
4. Programming	the autonomous operation of the DSPs.	2	answers, implementation of the
5. Elementary d	ligital signals. Parameters. Applications.	2	specifications, testing and
6. Digital signal	acquisition using the DSPs.	2	debugging
7. Impulse resp	onse of digital systems. Applications.	2	
8. Applications	of the convolution operator.	2	
9. Practical stud	dy of the time domain behavior of elementary digital	2	
filters.			
10. Operating pri	nciples of the RADAR and SONAR systems.	2	
11. Frequency do	omain analysis of digital signals.	2	
12. Frequency do	omain analysis of the elementary digital systems.	2	
13. Development	t of a spectral analyzer for audio signals.	2	

Bibliography

• V. Stangaciu, C.S. Stangaciu, "Digital Telecommunications, Signal Acquisition and Processing: Projects and Practical Applications", Editura Politehnica, Timisoara, Romania, 2016.

• M.V. Micea, "Digital Signal Processing: Course Notebook", 3.3rd Edition, Politehnica University of Timisoara, 2015, online: http://dsplabs.cs.upt.ro/~micha/courses/PNS/support/DSP%20-%20Course%20Support.pdf.

- J.G. Proakis, D.G. Manolakis, "Digital Signal Processing. Principles, Algorithms and Applications", 4th Edition, Prentice-Hall, 2007.
- Technical documentation and data sheets for the Analog Devices Blackfin BF537 EZ-KIT Lite and VisualDSP++.

9. Correlation between the course content and the requirements of the specialists in the field and the expectations of the main employers

• This course provides fundamental knowledge and skills, required in the majority of the fields related to the engineering of digital processing systems, embedded systems and modern telecommunications.

10. Evaluare

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in final mark
	Solving of a theoretical module covering course subjects	Written examination; length: 1 hour	22%
10.4 Lecture	Solving of a module with problems derived from the examples discussed during the lectures and lab workshops	Written examination; length: 2 hours	44%
10.5 Seminar /labs	Carrying out the lab workshops, according to the specifications	Presentations of the results, questions and answers	29%
	Attendance	Attendees list	5%

10.6 Minimal performance standards (minimal specific knowledge required for passing the exam, the means to assess mastering the specific knowledge)

 Knowledge of the definition and the main types of discrete-time signals and systems; Main properties of discrete-time signals and systems; Definition of the convolution and correlation operations; Definition of the Z Transform and knowledge of its properties – written examination;

• Basic skills of designing, implementing, testing and debugging hardware and software systems for simple digital signal processing applications – presentation of the system and results, questions and answers.

11. International compatibility

- Massachusetts Institute of Technology, SUA, Department of Electrical Engineering and Computer Science, Basic Undergraduate Program: "Signals and Systems" (6.003, D. M. Freeman, Q. Hu, J. S. Lim, A. S. Willsky), "Introduction to Communication, Control, and Signal Processing" (6.011, A. V. Oppenheim, G. C. Verghese)
- Carnegie Mellon University, SUA, Department of Electrical and Computer Engineering, Undergraduate Program: "Signals and Systems" (18-396), "Digital Signal Processing" (18-491), " Digital Communication and Signal Processing Systems Design" (18-551)

 University of Cambridge, UK, Department of Engineering, Undergraduate Program: "Signals and Systems" (3F1, J.M. Goncalves, N.G. Kingsbury), "Signal and Pattern Processing" (3F3, S. J. Godsill)

Date

Signature of the course instructor

Signature of the academic staff for seminars/labs T/Assist. Dr. eng. Valentin STÂNGACIU

Prof. Dr. habil. eng. Mihai V. MICEA

.....

.....

Date of approval in the Department

Signature of the Department Director Prof. Dr. eng. Vladimir CREŢU

.....